首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During embryonic development, each cell of a multicellular organ rudiment polymerizes its cytoskeletal elements in an amount and pattern that gives the whole cellular population its characteristic shape and mechanical properties. How does each cell know how to do this? We have used the Xenopus blastula as a model system to study this problem. Previous work has shown that the cortical actin network is required to maintain shape and rigidity of the whole embryo, and its assembly is coordinated throughout the embryo by signaling through G-protein-coupled receptors. In this paper, we show that the cortical actin network colocalizes with foci of cadherin expressed on the cell surface. We then show that cell-surface cadherin expression is both necessary and sufficient for cortical actin assembly and requires the associated catenin p120 for this function. Finally, we show that the previously identified G-protein-coupled receptors control cortical actin assembly by controlling the amount of cadherin expressed on the cell surface. This identifies a novel mechanism for control of cortical actin assembly during development that might be shared by many multicellular arrays.  相似文献   

2.
Abstract

Lysophosphatidic acid (LPA) is a bioactive phospholipid that is involved in signal transduction between cells. Plasma and ascites levels of LPA are increased in ovarian cancer patients even in the early stages and thus LPA is considered as a potential diagnostic marker for this disease. This review presents the current knowledge regarding LPA signaling in epithelial ovarian cancer. LPA stimulates proliferation, migration and invasion of ovarian cancer cells through regulation of vascular endothelial growth factor, matrix metalloproteinases, urokinase plasminogen activator, interleukin-6, interleukin-8, CXC motif chemokine ligand 12/CXC receptor 4, COX2, cyclin D1, Hippo-Yap and growth-regulated oncogene α concentrations. In this article, all of these targets and signal pathways involved in LPA influence are described.  相似文献   

3.
As the fertilized Xenopus egg undergoes sequential cell divisions to form a blastula, each cell develops a network of cortical actin that provides shape and skeletal support for the whole embryo. Disruption of this network causes loss of shape and rigidity of the embryo, and disrupts gastrulation movements. We previously showed that lysophosphatidic acid (LPA) signaling controls the change in cortical actin density that occurs at different stages of the cell cycle. Here, we use a gain-of-function screen, using an egg cDNA expression library, to identify an orphan G protein-coupled cell-surface receptor (XFlop) that controls the overall amount of cortical F-actin. Overexpression of XFlop increases the amount of cortical actin, as well as embryo rigidity and wound healing, whereas depletion of maternal XFlop mRNA does the reverse. Both overexpression and depletion of XFlop perturb gastrulation movements. Reciprocal rescue experiments, and comparison of the effects of their depletion in early embryos, show that the XLPA and XFlop signaling pathways play independent roles in cortical actin assembly, and thus that multiple signaling pathways control the actin skeleton in the blastula.  相似文献   

4.
Fibronectin (FN) matrix assembly is a cell-dependent process mediated by cell surface-binding sites for the 70-kDa amino-terminal region of FN. We have shown recently that lysophosphatidic acid (LPA) is a stimulator of FN matrix assembly. Disruption of microtubules has been shown to mimic some of the intracellular effects of LPA including the formation of actin stress fibers and myosin light chain phosphorylation. We compared the effects of microtubule disruption and LPA on FN binding and actin cytoskeleton organization. The disruption of microtubules by nocodazole or vinblastine increased FN binding to adherent cells. The modulation of binding sites was rapid, dynamic, and reversible. Enhanced binding was due to increases in both the number and affinity of binding sites. These effects are similar to the effects of LPA on FN binding. Binding induced by nocodazole was inhibited by the microtubule-stabilizing agent Taxol but not by pretreatment with a concentration of phospholipase B that totally abolished the stimulatory effect of LPA. Fluorescence microscopy revealed a close correlation among actin stress fiber formation, cell contraction, and FN binding. Blockage of the small GTP binding protein Rho or actin-myosin interactions inhibited the effects of both nocodazole and LPA on FN binding. These observations demonstrate that Rho-dependent actin stress fiber formation and cell contraction induce increased FN binding and represent a rapid labile way that cells can modulate FN matrix assembly.  相似文献   

5.
Tissue-specific expression of actin genes injected into Xenopus embryos   总被引:12,自引:0,他引:12  
C Wilson  G S Cross  H R Woodland 《Cell》1986,47(4):589-599
We have isolated a complete Xenopus borealis cardiac actin gene, which is normally expressed in the myotomes and heart of the embryo and tadpole. After injection into the zygote, this cloned gene becomes distributed throughout the embryo, but it is expressed almost wholly in the myotomes. The same wide distribution of injected DNA but spatially restricted pattern of expression is found with a fusion between the first two actin gene exons and the last exon of a mouse beta-globin gene. By contrast, a histone-globin fusion gene is expressed fairly uniformly in all regions. We discuss the special advantages of using Xenopus in studies of tissue-specific gene expression from injected, cloned genes in early development.  相似文献   

6.
A Xenopus laevis complementary DNA (cDNA) library prepared from messenger RNAs extracted from embryos has been screened for actin-coding sequences. Two cDNA clones corresponding to an alpha cardiac and an alpha skeletal muscle actin mRNA have been identified and characterized. From a genomic library, we have furthermore isolated the genes that correspond to the characterized cDNAs. In addition we have identified an actin processed gene which seems to be derived from a second type of skeletal muscle actin gene. Southern blot analysis of X. laevis DNA reveals that each of the three genes is present in at least two copies. In Xenopus tropicalis, a similar Southern blot analysis demonstrates that the three alpha actin genes exist as single copy. This result correlates with the genome duplication that has been proposed to have occurred recently in a X. laevis ancestor. A sequence comparison of the X. laevis cardiac and skeletal muscle actin cDNAs shows that the encoded peptides are highly conserved. Nevertheless, the numerous nucleotide changes at silent mutation sites suggest that the genes originated before the amphibia/reptile-bird divergence, more than 350 million years ago. Comparison of the promoters of the cardiac and skeletal actin genes, which are co-expressed in embryos, reveals a few common structural sequence elements.  相似文献   

7.
Early Xenopus embryos are large, and during the egg to gastrula stages, when there is little extracellular matrix, the cytoskeletons of the individual blastomeres are thought to maintain their spherical architecture and provide scaffolding for the cellular movements of gastrulation. We showed previously that depletion of plakoglobin protein during the egg to gastrula stages caused collapse of embryonic architecture. Here, we show that this is due to loss of the cortical actin skeleton after depletion of plakoglobin, whereas the microtubule and cytokeratin skeletons are still present. As a functional assay for the actin skeleton, we show that wound healing, an actin-based behavior in embryos, is also abrogated by plakoglobin depletion. Both wound healing and the amount of cortical actin are enhanced by overexpression of plakoglobin. To begin to identify links between plakoglobin and the cortical actin polymerization machinery, we show here that the Rho family GTPase cdc42, is required for wound healing in the Xenopus blastula. Myc-tagged cdc42 colocalizes with actin in purse-strings surrounding wounds. Overexpression of cdc42 dramatically enhances wound healing, whereas depletion of maternal cdc42 mRNA blocks it. In combinatorial experiments we show that cdc42 cannot rescue the effects of plakoglobin depletion, showing that plakoglobin is required for cdc42-mediated cortical actin assembly during wound healing. However, plakoglobin does rescue the effect of cdc42 depletion, suggesting that cdc42 somehow mediates the distribution or function of plakoglobin. Depletion of alpha-catenin does not remove the cortical actin skeleton, showing that plakoglobin does not mediate its effect by its known linkage through alpha-catenin to the actin skeleton. We conclude that in Xenopus, the actin skeleton is a major determinant of cell shape and overall architecture in the early embryo, and that plakoglobin plays an essential role in the assembly, maintenance, or organization of this cortical actin.  相似文献   

8.
9.
Rhodamine phalloidin (Rph) staining was used to examine the microfilament organization of the Xenopus laevis egg cortex during the early stages of fertilization. Unactivated eggs possessed a cytochalasin B (CR)-insensitive Rph-stained matrix that was reorganized upon egg activation and diminished in the presence of CB. Xenopus laevis sperm caused a temporary local increase in Rph staining on the Xenopus cortex. In CB-treated eggs, the local increases of cortical Rph staining later changed to a Rph-free area. These temporary local increases of cortical Rph staining were also observed when Notophthalmus viridescens sperm fertilized Xenopus and Rana pipiens eggs, and were followed by the appearance of concentric rings of stained and unstained areas. Our data suggest that Xenopus and Notophthalmus sperm have activities that can both organize and disrupt the cortical filamentous actin of the Xenopus egg. © 1993 Wiley-Liss, Inc.  相似文献   

10.
  相似文献   

11.
12.
Meng Y  Kang S  Fishman DA 《FEBS letters》2005,579(5):1311-1319
Conflicting reports exist on the effect of actin depolymerization in anti-Fas-induced apoptosis. Lysophosphatidic acid (LPA) has been found to inhibit apoptosis in variable cell types. In this study, we evaluated LPA's protective effects on anti-Fas-induced apoptosis enhanced by actin depolymerization and possible mechanisms in epithelial ovarian cancer. OVCAR3 cells were pretreated with vehicle or LPA, then treated with Cytochalasin D (Cyto D), followed with anti-Fas mAb to induce apoptosis. Cells were stained with apoptotic markers and analyzed by flow cytometry. We report that LPA inhibited anti-Fas-induced apoptosis enhanced by actin depolymerization. Immunoprecipition of Fas death-inducing signaling complex (DISC) and Western blot suggested that the actin depolymerization accelerated caspase-8 activation, while LPA inhibited the association and activation of caspase-8 at the DISC. LPA inhibited caspase-3 and 7 activation induced by anti-Fas and/or Cyto D in cytosols. Phosphorylation of ERK and Bad112 by LPA may play a role in preventing caspase-3 activation through mitochondrial pathway induced by Cyto D. Our investigation found that LPA inhibited anti-Fas-induced apoptosis enhanced by actin depolymerization, and LPA may protect epithelial ovarian cancer from immune cell attack and cytoskeleton disrupting reagents induced apoptosis through multiple pathways.  相似文献   

13.
14.
Polycomb group protein Ezh2, one of the key regulators of development in organisms from flies to mice, exerts its epigenetic function through regulation of histone methylation. Here, we report the existence of the cytosolic Ezh2-containing methyltransferase complex and tie the function of this complex to regulation of actin polymerization in various cell types. Genetic evidence supports the essential role of cytosolic Ezh2 in actin polymerization-dependent processes such as antigen receptor signaling in T cells and PDGF-induced dorsal circular ruffle formation in fibroblasts. Revealed function of Ezh2 points to a broader usage of lysine methylation in regulation of both nuclear and extra-nuclear signaling processes.  相似文献   

15.
Checkpoint pathways inhibit cyclin-dependent kinases (Cdks) to arrest cell cycles when DNA is damaged or unreplicated. Early embryonic cell cycles of Xenopus laevis lack these checkpoints. Completion of 12 divisions marks the midblastula transition (MBT), when the cell cycle lengthens, acquiring gap phases and checkpoints of a somatic cell cycle. Although Xenopus embryos lack checkpoints prior to the MBT, checkpoints are observed in cell-free egg extracts supplemented with sperm nuclei. These checkpoints depend upon the Xenopus Chk1 (XChk1)-signaling pathway. To understand why Xenopus embryos lack checkpoints, xchk1 was cloned, and its expression was examined and manipulated in Xenopus embryos. Although XChk1 mRNA is degraded at the MBT, XChk1 protein persists throughout development, including pre-MBT cell cycles that lack checkpoints. However, when DNA replication is blocked, XChk1 is activated only after stage 7, two cell cycles prior to the MBT. Likewise, DNA damage activates XChk1 only after the MBT. Furthermore, overexpression of XChk1 in Xenopus embryos creates a checkpoint in which cell division arrests, and both Cdc2 and Cdk2 are phosphorylated on tyrosine 15 and inhibited in catalytic activity. These data indicate that XChk1 signaling is intact but blocked upstream of XChk1 until the MBT.  相似文献   

16.
17.
To explain the pattern of preserved and superior abilities found in autism spectrum disorders, a hypothesis has emerged, which assumes that there is a developmental bias towards the formation of short-range connections. This would result in excessive activity and overconnectivity within susceptible local networks. These networks might become partially isolated and acquire novel functional properties. In turn, this would affect the formation of long-range circuits and systems governing top-down control and integration. Despite many tantalizing clues, mechanisms relating pathogenesis and altered cell function to the ‘disconnection’ of integrative and focal activity remain obscure. However, recent post-mortem studies of brains of individuals with autism have shown characteristic differences in the morphometry of radial cell minicolumns, which add credence to the connectivity hypothesis.  相似文献   

18.
Actincytoskeletal disruption is a hallmark of ischemic injury and ATPdepletion in a number of cell types, including renal epithelial cells.We manipulated Rho GTPase signaling by transfection and microinjectionin LLC-PK proximal tubule epithelial cells and observed actincytoskeletal organization following ATP depletion or recovery byconfocal microscopy and quantitative image analysis. ATP depletionresulted in disruption of stress fibers, cortical F-actin, and apicalactin bundles. Constitutively active RhoV14 prevented disruption ofstress fibers and cortical F-actin during ATP depletion and enhancedthe rate of stress fiber reassembly during recovery. Conversely, theRho inhibitor C3 or dominant negative RhoN19 prevented recovery ofF-actin assemblies upon repletion. Actin bundles in the apicalmicrovilli and cytosolic F-actin were not affected by Rho signaling.Assembly of vinculin and paxillin into focal adhesions was disrupted byATP depletion, and constitutively active RhoV14, although protectingstress fibers from disassembly, did not prevent dispersion of vinculinand paxillin, resulting in uncoupling of stress fiber and focaladhesion assembly. We propose that ATP depletion causes Rhoinactivation during ischemia and that recovery of normalcellular architecture and function requires Rho.

  相似文献   

19.
The cAMP signaling system has been postulated to be involved in embryogenesis of many animal species, however, little is known about its role in embryonic axis formation in vertebrates. In this study, the role of the cAMP signaling pathway in patterning the body plan of the Xenopus embryo was investigated by expressing and activating the exogenous human 5-hydroxytryptamine type 1a receptor (5-HT(1a)R) which inhibits adenylyl cyclase through inhibitory G-protein in embryos in a spatially- and temporally-controlled manner. In embryos, ventral, but not dorsal expression and stimulation of this receptor during blastula and gastrula stages induced secondary axes but were lacking anterior structures. At the molecular level, 5-HT(1a)R stimulation induced expression of the dorsal mesoderm marker genes, and downregulated expression of the ventral markers but had no effect on expression of the pan mesodermal marker gene in ventral marginal zone explants. In addition, ventral expression and stimulation of the receptor partially restored dorsal axis of UV-irradiated axis deficient embryo. Finally, the total mass of cAMP differs between dorsal and ventral regions of blastula and gastrula embryos and this is regulated in a temporally-specific manner. These results suggest that the cAMP signaling system may be involved in the transduction of ventral signals in patterning early embryos.  相似文献   

20.
The extension and retraction of filopodia in response to extracellular cues is thought to be an important initial step that determines the direction of growth cone advance. We sought to understand how the dynamic behavior of the actin cytoskeleton is regulated to produce extension or retraction. By observing the movement of fiduciary marks on actin filaments in growth cones of a neuroblastoma cell line, we found that filopodium extension and retraction are governed by a balance between the rate of actin cytoskeleton assembly at the tip and retrograde flow. Both assembly and flow rate can vary with time in a single filopodium and between filopodia in a single growth cone. Regulation of assembly rate is the dominant factor in controlling filopodia behavior in our system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号