首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A thymine-modified derivative of histone H3, isolated as a result of heat treatment of covalently crosslinked DNA-protein photoadduct from UV-irradiated chromatin, was obtained. Sequence analysis of one of its tryptic peptides revealed that lysine-14 of the N-terminal tail of the histone H3 molecule covalently binds to thymine residue of DNA. This type of UV-crosslinking is most probably the only type for histone H3 and, possibly, for H1.  相似文献   

2.
Resonance Raman spectra of complexes between DNA and the four core histones, alone or associated, have been investigated in vitro using excitations at 300 and 257 nm, which give complementary informations about the DNA bases. H2A and H2B fractions recognize the G-C base pairs, while H3 and H4 (arginine rich fractions) recognize the A-T base pairs. The associated fractions form complexes with DNA which yield about the same DNA spectral modifications as the DNA-H4 complexes. This reveals the important role of the arginine rich fractions in the core particle formation and confirms the preferential in vitro assembly of nucleosome cores on A-T rich regions of DNA (25).  相似文献   

3.
The interaction of acetylated histones with DNA in chromatin has been studied by UV laser-induced crosslinking histones to DNA. After irradiation of the nuclei, the covalently linked protein-DNA complexes were isolated and the presence of histones in them demonstrated immunochemically. When chromatin from irradiated nuclei was treated with clostripain, which selectively cleaved the N-terminal tails of core histones, no one of them was found covalently linked to DNA, thus showing that crosslinking proceeded solely via the N-terminal regions. However, the crosslinking ability of the laser was preserved both upon physiological acetylation of histones, known to be restricted to the N-terminal tails, and with chemically acetylated chromatin. This finding is direct evidence that the postsynthetic histone acetylation does not release the N-terminal tails from interaction with DNA.  相似文献   

4.
Linker DNA bending induced by the core histones of chromatin   总被引:10,自引:0,他引:10  
J Yao  P T Lowary  J Widom 《Biochemistry》1991,30(34):8408-8414
We have previously reported that ionic conditions that stabilize the folding of long chromatin into 30-nm filaments cause linker DNA to bend, bringing the two nucleosomes of a dinucleosome into contact [Yao, J., Lowary, P. T., & Widom, J. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 7603-7607]. Dinucleosomes are studied because they allow the unambiguous detection of linker DNA bending through measurement of their nucleosome-nucleosome distance. Because of the large resistance of DNA to bending, the observed compaction must be facilitated by the histones. We have now tested the role of histone H1 (and its variant, H5) in this process. We find that dinucleosomes from which the H1 and H5 have been removed are able to compact to the same extent as native dinucleosomes; the transition is shifted to higher salt concentrations. We conclude that histone H1 is not essential for compacting the chromatin filament. However, H1 contributes to the free energy of compaction, and so it may select a single, ordered, compact state (the 30-nm filament, in long chromatin) from a family of compact states which are possible in its absence.  相似文献   

5.
The kinetics of the chromatin core particle reassembly reaction in solution were quantitatively studied under conditions such that nucleohistone aggregation did not occur. Core particles, salt-jumped rapidly by dilution from 2.5 m-NaCl (in which DNA and histones do not interact) to 0.6 m-NaCl (in which core particles are nearly intact), reassemble in two distinct time ranges. Approximately 75% of the DNA refolds into core particle-like structures “instantaneously” as measured by several physical and chemical techniques with dead times in the seconds to minutes time range. The remaining DNA refolds with relaxation times ranging from 250 minutes at 0 °C to 80 minutes at 37 °C; this slow effect cannot be attributed to sample heterogeneity. The fraction of slowly refolding DNA and the slow relaxation time are independent of the core particle concentration. Transient intermediates present during the slow phase of refolding were identified as free DNA and core particle-like structures containing excess histone. Mixing experiments with DNA, histones, and core particles showed that core particle-histone interactions are responsible for the slow kinetics of DNA refolding. Upon treatment of reassembling core particles with the protein crosslinking reagent, dimethylsuberimidate, the slow phase of the reassembly reaction was arrested and a 13 S particle containing DNA and two octamers of histone was isolated. Consistent with the nature of this kinetic intermediate, it is shown that in 0.6 m-NaCl, core particles co-operatively bind at least one additional equivalent of histones with high affinity in the form of excess octamers. Also, core particles continue to adsorb considerably more histones with a weaker association constant of the order 105m?1 (in units of octamers) to a maximum value of 12 ± 2 equivalents (octamers) per core particle. The sedimentation coefficient increases with the two-thirds power of the molecular weight of the complex, as it would in the case of clustered spheres.A reassembly mechanism consistent with the data is presented, and other simple mechanisms are excluded. In the proposed mechanism, core particles reassemble very rapidly and compete effectively with DNA for histones such that approximately one-third of the particles initially formed are complexed with an excess octamer of histones, and 25% of the total DNA remains uncomplexed. The amount of this unusual reaction intermediate decays slowly to an equilibrium value of about 10%, thereby leaving 9% of the total DNA uncomplexed. Approximate values are calculated for the free energies, rate constants, and two of the activation energies which characterize this migrating octamer mechanism. This mechanism provides a means whereby histone octamers can be temporarily stripped off DNA at a modest free energy cost, approximately 2.6 kcal per nucleosome. Also, the properties of excess histone adsorption by chromatin and octamer migration suggest an efficient mechanism, consistent with observations by others, for nucleosome assembly in vivo during replication.  相似文献   

6.
7.
An RGD-containing epitope from the foot-and-mouth disease virus (FMDV) VP1 protein was inserted into the e1 loop of the hepatitis B virus core (HBc) protein. This chimeric protein was expressed at high levels in Escherichia coli and spontaneously assembled into virus-like particles which could be readily purified. These fusion particles elicited high levels of both enzyme-linked immunosorbent assay- and FMDV-neutralizing antibodies in guinea pigs. The chimeric particles bound specifically to cultured eukaryotic cells. Mutant particles carrying the tripeptide sequence RGE in place of RGD and the use of a competitive peptide, GRGDS, confirmed the critical involvement of the RGD sequence in this binding. The chimeric particles also bound to purified integrins, and inhibition by chain-specific anti-integrin monoclonal antibodies implicated alpha 5 beta 1 as a candidate cell receptor for both the chimeric particle and FMDV. Some serotypes of FMDV bound to beta 1 integrins in solid- phase assays, and the chimeric particles competed with FMDV for binding to susceptible eukaryotic cells. Thus, HBc particles may provide a simple, general system for exploring the interactions of specific peptide sequences with cellular receptors.  相似文献   

8.
Regions of DNA protected by histones against the action of DNAse 1 in the chromatin were isolated. Such DNA fragments ("subhistones" DNA) have 80% double helix structure, their nucleotide composition is close to that of total DNA, and their sedimentation constant is within the range of 2-2.7S for completely denatured molecules. Kinetics of renaturation of "subhistone" DNA was studied: within a wide range of Cot values, renaturation curves of total and "subhistone" DNA are almost identical. According to the data on hybridization with nuclear d-RNA, "subhistone" DNA is transcribed in the cell. The data obtained witness for uniform character of distribution of histones along the DNA chain in the chromatin. DNA sites which are active in RNA synthesis seem to be bound to histones as well as the non-active ones. No significant difference was found in the hybridization of "subhistone" DNA from rat liver and thymus with ibver nuclear RNA.  相似文献   

9.
Present results provide direct evidence of the nature of a conformational change in DNA when nucleosomes are formed from core histones and poly [d(A-T)]. First, we have found some features which have characteristic aspects of the A like conformation of DNA. Thus, an increased contribution due to a sugar conformation close to C3'-endo puckering is detected in the Raman spectra. In addition, the circular dichroism (C.D.) spectra of reconstituted chromatin with poly [d(A-T)] exhibits an increases intensity at about 262 nm. A second feature acquired by poly [d(A-T)] in nucleosome formation from core histones is related to the presence of a negative band at about 280 nm in the C.D.spectra. The nature of this change is correlated with a DNA conformation characterized by a decreased number of base pairs per turn (28,29). This indicates that these two features of reconstituted nucleosomes reflect the presence of two types of DNA conformations, which overall form is of the B type (22,36).  相似文献   

10.
11.
Crosslinking induced by ultraviolet light irradiation at 254 nm has been utilized to investigate the structure of chromatin and isolated nucleosomes. The results presented here imply that the four core histones, as well as histone H1, have reactive groups within a bond length of the DNA bases. In nucleosomes depleted of H1, all of the core histones react similarly with the DNA and form crosslinks. In chromatin, the rate of crosslinking of all histones to DNA is essentially similar. Comparison of mononucleosomes, dinucleosomes and whole chromatin shows that the rate of crosslinking increases significantly with increasing number of connected nucleosomes. These differences in the rate of crosslinking are interpreted in terms of interactions between neighbouring nucleosomes on the chromatin fiber, which are absent in an isolated mononucleosome.  相似文献   

12.
A high-resolution map for the arrangement of histones along DNA in the nucleosome core particles has been determined by a new sequencing procedure. The lysine groups of histones were crosslinked to partly depurinated DNA at neutral pH. One strand of DNA was split at the points of crosslinking, thus leaving the 5′-terminal DNA fragments bound to histones. The lengths of these crosslinked DNA fragments were measured to determine the position of histones on one strand of the core DNA from its 5′ end.The results demonstrate that histones are bound to regularly arranged, discrete DNA segments about six nucleotides long. These segments are separated by histone-free gaps about four nucleotides wide located at a distance of about 10n nucleotides from the 5′ end of DNA. The first 20 nucleotides from the 5′ ends of DNA seem to be free of histones. Histones appear to be arranged symmetrically and in a similar way on both DNA strands. Any one histone, being bound predominantly to discrete segments on one or other of the strands, can oscillate at the same time between the two strands across the major DNA groove. Two symmetrical models for the arrangement of two molecules of each core histone on linearized and folded DNA are proposed.  相似文献   

13.
Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.  相似文献   

14.
[3H]Leucine incorporation into histones of seminiferous epithelial cells of hypophysectomized rats was used to calculate the molar proportions of the core histones of spermatogonia. The molar proportions H3:H2B:(H2A + protein A24):H4 are 1:1:1:1, viz. identical with those reported by others for somatic cells. Similar results were obtained when molar proportions of histones of seminiferous epithelial cells from immature rat testis (predominantly populated with spermatogonia) were determined by the dye-binding method. These data are relevant to mechanisms for the replacement of some of the core histones by variants during the primary spermatocyte stages.  相似文献   

15.
We have studied the hydrodynamic properties of the complexes formed by interaction of nucleosome core particles with excess histone octamers containing two each of the four core histones. The results are consistent with tight binding of two to three octamers to the exterior of each core particle. The binding is dependent upon the presence of the H3/H4 histone pair: when H3/H4 alone are added to nucleosome core particles, tight binding is observed, but H2A/H2B alone are bound only weakly. We have also examined the properties of the nucleosome core in solutions containing 0·1 m to 0·7 M-NaCl. We show that in this salt range the core particle undergoes some changes in shape, reflected in a 14% increase in the frictional coefficient. Even at the highest salt concentrations used, however, the nucleosome core is still a compact, folded structure.  相似文献   

16.
Physical studies of chromatin. The recombination of histones with DNA.   总被引:4,自引:0,他引:4  
Experiments have been carried out to define clearly which histone combinations can induce a higher order structure when combined with DNA. The criterion for a higher order structure being the series of low-angle X-ray diffraction maxima nominally at 5.5 nm, 3.7 nm, 2.7 nm and 2.2 nm. Such a pattern, with resolution similar to that of H1-depleted chromatin, is readily attainable by recombining histones H2A + H2B + H3 + H4 with DNA using a salt-gradient dialysis method. However, the use of urea in the recombination procedure is shown to be detrimental to the production of a higher order structure. Low-angle ring patterns are not obtained by recomgining DNA with single pure histones or any combination of histone pairs exept H3 + H4. The diffraction maxima from the latter are, however, weaker than those from chromatin and there are pronounced semi-equatorial arcs. The presence of a third histone, either H2A or H2B in the H3 + H4 recombination mixture tends to distort the recognised low-angle pattern. It is concluded that the histone pair H3 + H4 is essential for the formation of a regular higher order structure in chromatin, although for a complete structural development the presence of H2A + H2B is also required.  相似文献   

17.
The binding of core histone proteins to DNA, measured as a function of [NaCl[ is a reversible process. Dissociation and reassociation occurs in two stages. Between 0.7 and 1.2 M NaCl H2a H2b bind non-cooperatively as an equimolar complex with deltaGo = 1.6 Kcals/mole at 4 degree C and 1.0 M NaCl. Between 1.2 and 2.0 M NaCl H3 and H4 bind cooperatively as an equimolar complex with delta Go = 7.4 Kcal/mole at 4 degree C and 1.0 M NaCl. The proper binding of H2a and H2b requires the presence of bound H3 and H4. Nuclease digestion of the H3-H4 DNA produces a tetramer of H3-H4 bound to fragments of DNA 145, 125 and 104 base pairs long. Thus an H3-H4 tetramer can protect fragments of DNA as long as those found in complete core particles and must therefore span the nucleosome core particle.  相似文献   

18.
Rat liver chromatin core particles digested with clostripain yield a structurally well-defined nucleoprotein particle with an octameric core made up of fragmented histone species (designated H'2A, H'2B, H'3 and H'4, respectively) after selective loss of a sequence segment located in the N-terminal region of each core histone. Sequential Edman degradation and carboxypeptidase digestion unambiguously establish that histones H2A, H2B, H3 and H4 are selectively cleaved at the carboxyl side of Arg 11, Lys 20, Arg 26 and Arg 19 respectively and that the C-terminal sequences remain unaffected. Despite the loss of the highly basic N-terminal regions, including approximately 17% of the total amino acids, the characteristic structural organization of the nucleosome core particle appears to be fully retained in the proteolyzed core particle, as judged by physicochemical and biochemical evidence. Binding of spermidine to native and proteolyzed core particles shows that DNA accessibility differs markedly in both structures. As expected the proteolyzed particle, which has lost all the in vivo acetylation sites, is not enzymatically acetylated, in contrast to the native particle. However, proteolyzed histones act as substrates of the acetyltransferase in the absence of DNA, as a consequence of the occurrence of potential acetylation sites in the core histones thus rendered accessible. The possible role of the histone N-terminal regions on chromatin structure and function is discussed in the light of the present observations with the new core particle obtained by clostripain proteolysis.  相似文献   

19.
20.
The low-salt transition of chromatin core particles is reversible if the monovalent cation concentration is kept above 0.2 mM. Exposure of the particles to salt concentrations below this value results in a nonreversible secondary transition. The nonreversible changes are relatively slow with a half-time of about 15 minutes. Once exposed to such low ionic strength, the particles then begin to refold with increasing salt in at least two steps over a much higher ionic strength range than is required for the usual low-salt transition. The refolding is very fast, with a half-time less than a minute. Small differences between particles which had or had not been exposed to very low salt persist even when the particles are returned to near physiological ionic strengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号