首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Medium conditioned by human peripheral blood leukocytes (HLCM) was studied for its in vitro effects on haemopoietic progenitor cells (CFU-s and CFU-c) present in mouse bone marrow. HLCM has poor colony stimulating activity in semi-solid cultures of mouse bone marrow cells, but invariably increases the number of colonies obtained in the presence of plateau levels of semi-purified colony stimulating factor (CSF). In liquid cultures, HLCM appears to contain a potent initiator of DNA synthesis in CFU-s, an activity which coincides with an increased CFU-s maintenance and causes a three- to four-fold increase in CFU-c number. It is apparent from this study that HLCM, in addition to stimulating colony formation in cultures of human bone marrow cells, has a profound in vitro effect on primitive haemopoietic progenitor cells of the mouse, which cannot be attributed to CSF.  相似文献   

2.
The in vitro proliferation and differentiation of myeloid progenitor cells (CFU-c) in agar culture from CBA/Ca mouse bone marrow cells was studied. Density sub-populations of marrow cells were obtained by equilibrium centrifugation in continuous albumin density gradients. The formation of colonies of granulocytes and/or macrophages was studied under the influence of three types of colony-stimulating factor (CSF) from mouse lung conditioned medium CSFMLCM), post-endotoxin mouse serum (CSFES) and from human urine (CSFHu). The effect of the sulphydryl reagent mercaptoethanol on colony development was also examined. The density distribution of CFU-c was dependent on the type of CSF. Functional heterogeneity was found among CFU-c with partial discrimination between progenitor cells forming pure granulocytic colonies and those forming pure macro-phage colonies. Mercaptoethanol increased colony incidence but had no apparent effect on colony morphology or the density distribution of CFU-c.  相似文献   

3.
ABSTRACT Supernatants of murine bone-marrow cultures contain a colony-promoting factor (CPF) which increases the number of granulocyte and macrophage colonies in semi-solid agar cultures in the presence of colony-stimulating factor (CSF). Incubation of bone-marrow cells with CPF results in an increase in the number of granulocyte/macrophage progenitor cells (CFU-c) and the CPF-responsive cells may be younger than the CFU-c. We have investigated the radiosensitivity and the pattern of the recovery after irradiation of CPF-responsive cells. We found that the radiosensitivity of CPF-responsive cells was significantly lower than those of CFU-c. burst-forming units-erythroid (BFU-e) and pluripotent stem cells in vivo (CFU-s) and in vitro (CFU-mix). the CPF-responsive cells remained subnormal even at 28 days after irradiation of the mice, a time when the CFU-s and CFU-c had recovered completely. Therefore the CPF-responsive cells may constitute a separate compartment, namely ‘pre-CFU-c’, in the maturation sequence of granulopoiesis, and this maturation of the ‘pre-CFU-c’ to CFU-c seems to be highly stimulated after irradiation to counterbalance the influx from CFU-s.  相似文献   

4.
The in vitro proliferation and differentiation of myeloid progenitor cells (CFU-c) in agar culture from CBA/Ca mouse bone marrow cells was studied. Density subpopulations of marrow cells were obtained by equilibrium centrifugation in continuous albumin density gradients. The formation of colonies of granulocytes and/or macrophages was studied under the influence of three types of colony-stimulating factor (CSF) from mouse lung conditioned medium CSFMLCM), post-endotoxin mouse serum (CSFES) and from human urine (CSFHu). The effect of the sulphydryl reagent mercaptoethanol on colony development was also examined. The density distribution of CFU-c was dependent on the type of CSF. Functional heterogeneity was found among CFU-c with partial discrimination between progenitor cells forming pure granulocytic colonies and those forming pure macrophage colonies. Mercaptoethanol increased colony incidence but had no apparent effect on colony morphology or the density distribution of CFU-c.  相似文献   

5.
Functional properties of mouse haemopoietic spleen colony-forming cells, enriched 40- to 80-fold, from normal bone marrow were studied. It was found that: (1) the number of partially purified CFU-s (colony forming unit-spleen) required to rescue lethally irradiated mice was similar to the number of normal unfractionated bone marrow CFU-s giving the same level of protection; (2) the homing of partially purified CFU-s was similar to that of CFU-s from unfractionated bone marrow; (3) the regeneration of CFU-s in spleen was similar for enriched and unfractionated cell populations between 4 and 11 days after transplantation. In contrast, the rate of regeneration of CFU-s in femur was slower with enriched progenitor cells than with unfractionated bone marrow. The growth rate in femur, however, could be restored to normal by injecting freshly isolated syngeneic thymocytes with the enriched CFU-s population. The results indicate that the partially purified CFU-s are by themselves functionally normal and show that the rate of CFU-s repopulation in bone marrow can be affected by cell types other than spleen colony-forming cells.  相似文献   

6.
The in vivo diffusion chamber (DC) technique for mouse marrow culture was used to determine the effect of a granulocyte inhibitor on the proliferation of the pluri-potent stem cell (CFU-s) and the granulocyte progenitor cell (CFU-c). Granulocyte conditioned medium was injected intraperitoneally into mice bearing DCs during the initial 48 hr of culture. The early injection of inhibitor resulted in a significantly reduced number of granulocytic progeny formed within the DCs while there was no growth inhibition of mouse fibroblasts cultured under identical conditions. The reduced cell production was due in part to a significant reduction in the self-renewal rate of the CFU-c while no apparent direct effect was observed upon the growth of the CFU-s within the same cultures. These data suggest that the granulocytic inhibitor(s) acted to reduce proliferation within the CFU-c population and thereby diminished the amplification potential inherent in the initial cell inoculum.  相似文献   

7.
Equilibrium density centrifugation was used to characterise and separate subpopulations of mouse haemopoietic progenitor cells capable of producing colonies of granulocytes and macrophages in vitro. The material used to induce colony formation (CSF) was prepared from an extract of pregnant mouse uteri. This CSF preparation was found to be free of factors modifying the response. Under these culture conditions, in vitro colony forming cells (CFU-c) were found to be relatively homogeneous in their buoyant density. This homogeneity was independent of CSF concentration. A heterogeneous density profile of CFU-c was obtained when various cell fractions were cultured in the presence of CSF and rat blood lysate. The majority of the additional cells which responded to erythrocyte lysate were dense (modal density 1.080 g/cm3) compared to CFU-c which respond to CSF alone (modal density 1.074 g/cm3). It is concluded that in vitro colonies induced by CSF and in vitro colonies grown in the presence of CSF and erythrocyte lysate reflect two different populations of CFU-c.  相似文献   

8.
Antisera to mouse brain reacts with hematopoietic stem cells in the mouse bone marrow. We have examined the effect of anti-mouse brain serum (AMBS) on the development of in vitro colonies from mouse bone marrow cells. The addition of 5% AMBS to the cultures markedly decreased the numbers of colonies formed to an average of 10% of the number obtained with normal rabbit serum. AMBS suppressed formation induced by colony stimulating factors (CSF) derived from three different sources; serum from endotoxin treated mice, mouse L-cell conditioned media, and human peripheral mononuclear cell conditioned media. The suppressive activity was quantitatively recovered in the IgG fraction of AMBS. Divalent F(ab')2 fragments were as effective as the intact IgG in decreasing colony formation. Fab fragments were not suppressive. These results suggest that colony formation is induced via a dynamic interaction between CSF and the progenitor cell membrane, and that antibody directed at cell membrane antigen(s) interferes with the generation of the induction signal.  相似文献   

9.
Supernatants of murine bone-marrow cultures contain a colony-promoting factor (CPF) which increases the number of granulocyte and macrophage colonies in semi-solid agar cultures in the presence of colony-stimulating factor (CSF). Incubation of bone-marrow cells with CPF results in an increase in the number of granulocyte/macrophage progenitor cells (CFU-c) and the CPF-responsive cells may be younger than the CFU-c. We have investigated the radiosensitivity and the pattern of the recovery after irradiation of CPF-responsive cells. We found that the radiosensitivity of CPF-responsive cells was significantly lower than those of CFU-c, burst-forming units-erythroid (BFU-e) and pluripotent stem cells in vivo (CFU-s) and in vitro (CFU-mix). The CPF-responsive cells remained subnormal even at 28 days after irradiation of the mice, a time when the CFU-s and CFU-c had recovered completely. Therefore the CPF-responsive cells may constitute a separate compartment, namely 'pre-CFU-c', in the maturation sequence of granulopoiesis, and this maturation of the 'pre-CFU-c' to CFU-c seems to be highly stimulated after irradiation to counterbalance the influx from CFU-s.  相似文献   

10.
An analysis was made of some of the processes involved in the stimulation by colony stimulating factor (CSF) of cluster and colony formation by mouse bone marrow cells in agar cultures in vitro. Colony formation was shown to be related to the concentration and not the total amount of CSF. The concentration of CSF determined the rate of new cluster initiation in cultures and the rate of growth of individual clusters. Colony growth depleted the medium of CSF suggesting that colony cells may utilise CSF during proliferation. Bone marrow cells incubated in agar in the absence of CSF rapidly died or lost their capacity to proliferate and form clusters or colonies. CSF appears (a) to be necessary for survival of cluster-and colony-forming cells or for survival of their proliferative potential, (b) to shorten the lag period before individual cells commence proliferation and (c) to increase the growth rate of individual clusters and colonies.  相似文献   

11.
A dose-related increase in the number of in vitro colony-forming units. CFU-c, was observed in mouse bone marrow cell suspensions following the administration of the sulfhydryl inhibitor, sodium iodoacetate. No effect on CFU-s was observed at the dosages and the periods selected for examination. Direct exposure of marrow cells in vitro to various concentrations of iodoacetate did not influence colony formation.  相似文献   

12.
Agar cultures of C57BL bone marrow cells were used to determine colony stimulating factor (CSF) and serum CSF-inhibitor levels in C57BL and BALB/c mice following irradiation. Whole-body irradiation caused an acute, dose-dependent, rise in serum CSF levels and fall in CSF-inhibitor levels. The regeneration of granulocytic and macrophage progenitor cells ( in vitro CFCs) in the femur after 250 rads whole-body irradiation was preceded or paralleled by a fall in serum CSF-inhibitors and a dramatic rise in the capacity of bone-adherent cells in the marrow ('stromal cells') to produce material with colony-stimulating activity. No comparable changes were observed in the activity of marrow haemopoietic cells during regeneration or in the lungs or spleen. A similar rise in the activity of bone-adherent cells was observed in shielded femurs during regeneration of in vitro CFCs.
Regeneration of granulocytic and macrophage progenitor cells following irradiation may be regulated by fluctuations in circulating CSF-inhibitor levels and local production of CSF within the marrow cavity.  相似文献   

13.
Hemopoietic colony formation in agar occurred spontaneously in mass cultures of marrow cells obtained from a number of species (guinea pig, rat, lamb, rabbit, pig, calf, human and Rhesus monkey). This contrasted with the observation that colony formation by mouse bone marrow exhibited an absolute requirement for an exogenous source of a colony stimulating factor. Analysis of spontaneous colony formation in Rhesus monkey marrow cultures revealed the presence of a cell type in hemopoietic tissue, capable of elaborating colony stimulating factor when used to condition media or as feeder layers. Equilibrium density gradient centrifugation separated colony stimulating cells from in vitro colony forming cells in monkey bone marrow. Separation studies on spleen, blood and marrow characterized the stimulating cells as of intermediate density, depleted or absent in fractions enriched for cells of the granulocytic series and localized in regions containing lymphocytes and monocytes. Adherence column separation of peripheral blood leukocytes showed the stimulating cells to be actively adherent, unlike the majority of lymphocytes, and combined adherence column and density separation indicated that stimulating cells were present in hemopoietic tissue within the population of adherent lymphocytes or monocytes.  相似文献   

14.
Granulocyte-Macrophage colony stimulating factor (GM-CSF) and Granulocyte colony stimulating factor (G-CSF) are cytokines involved in the differentiation of bone marrow progenitor cells into myeloid cells. They also activate mature myeloid cells to mediate a variety of antimicrobial activities and inflammatory responses. Recombinant GM-CSF and G-CSF proteins have been used to treat various diseases including cancer and hematopoietic diseases and to isolate peripheral blood progenitor cells for bone marrow transplantation. A plasmid construct expressing recombinant human G-CSF/GM-CSF fusion protein has now been prepared by linking the human G-CSF and GM-CSF coding regions and the recombinant fusion protein has been successfully expressed in E. coli. The recombinant human G-CSF/GM-CSF fusion protein was extracted and purified from the cellular inclusion and refolded into the biologically active form to show colony stimulating activity. The recombinant fusion protein exhibited colony stimulating activity on human bone marrow cell cultures, indicating that the linkage of GM-CSF and G-CSF by a linker peptide may not interrupt activities of the cytokines in the fusion protein. The colony forming unit of the fusion protein was also higher than those of the cultures treated with the same molar numbers of the recombinant human GM-CSF and G-CSF separately, which suggests that the fusion protein presumably retains both G-CSF and GM-CSF activities.  相似文献   

15.
Abstract. Conditioned media (CM) were prepared according to previously published techniques from the bone marrow of dogs with cyclic haematopoiesis (CH). CM prepared from day 9 marrows inhibited mouse bone marrow CFU-s proliferation rate while CM from day 10 marrows were stimulatory and also contained an erythroid stimulating factor which appeared to be erythropoietin. In addition a highly significant trend from CM containing CFU-s inhibitory materials to media with CFU-s stimulatory activity was observed through cycles day 1 to 8. These studies further support the concept that CH is due to a defect in factors controlling stem cell proliferation and suggest that a major event occurs in CH dog marrow on days 9 and/or 10 of the cycle. Bone marrow transplantation studies (Dale & Graw, 1974; Weiden et al., 1974; Jones et al., 1975b) have indicated that canine cyclic haematopoiesis (CH) is probably due to a disorder in the multipotential stem cells. Morphological evidence (Scott et al., 1973) and the almost synchronous cycling of CFU-e, CFU-c and diffusion chamber progenitor cells (DCPC) (DUM et al., 1977, 1978a, b) lend support to such a theory. However, efforts to identify the mechanisms controlliig multipotential stem cell proliferation in dogs have been handicapped by the lack of suitable techniques to study these cells in the canine. Recently, Wright and co-workers (Wright & Lord, 1978, 1979; Wright et al., 1979; Lord et al., 1979), on the basis of previous observations (Frindel et al., 1976; Frindel & Guigon, 1977), described the preparation of species non-specific, bone marrow conditioned media (CM) which are capable of influencing the proliferation rate of murine colony forming units-spleen (CFU-s). The studies now reported were designed to determine if CM prepared from canine CH marrow would influence the proliferation rate of murine bone marrow CFU-s. The results indicate that a major event, possibly related to the in vivo control of stem cell proliferation in dogs with CH, occurs on days 9–10 of the cycle; day 1 being the first day when the peripheral blood neutrophil count falls below-1600 mm3.  相似文献   

16.
Analysis of in vitro colony formation in agar cultures of foetal haemopoietic tissues of eight mammalian species has shown that granulocyte-macrophage progenitor cells are present in foetal liver, yolk sac, marrow and spleen in numbers approaching the incidence in adult marrow. Such characteristics as buoyant density, growth rate and differentiation served to distinguish foetal from adult colony forming cells (CFCs). Cell cycle analysis performed by exposing haemopoietic cells to high doses of tritiated thymidine in vitro showed that foetal CFC proliferation in species of short gestation (rabbit, rat, mouse) approached or exceeded that observed in adult marrow. In contrast, in species of long gestation (human, monkey, calf, lamb, guinea-pig) a period of variable duration was observed when foetal liver CFCs entered a non-cycling G0 or blocked G1 phase. In these species foetal liver CFCs were found to be proliferating actively early in gestation and following the non-cycling phase again re-entered a proliferative state associated with onset of active granulopoiesis in foetal marrow and possible migration of CFC from liver to marrow. These results indicate the existence of granulocyte-macrophage progenitor populations displaying foetal characteristics and adapted to particular stages of haemopoietic development, a situation which closely parallels that reported for erythropoiesis.  相似文献   

17.
Isolation of colony stimulating factor from human milk   总被引:1,自引:0,他引:1  
Human milk contains colony stimulating factor (CSF), a polypeptide growth factor, which stimulates in in vitro bone marrow culture proliferation and differentiation of colony forming granulocytic macrophage progenitor cells (CFU-GM) to form colonies. This activity was not found in either bovine milk or colostrum when assayed in human or mouse bone marrow cells. The human milk CSF activity is destroyed by treatment with proteases. However, neither 6M urea, 4M guanidine hydrochloride, 5 mM dithiothreitol, nor exposure to pH 2 will inactivate the milk derived CSF. Gel filtration and isoelectric focusing indicate that human milk CSF differs biochemically from the other CSFs isolated from various sources and has a molecular weight between 250,000 and 240,000 and an isoelectric point between 4.4 and 4.9.  相似文献   

18.
The in vivo diffusion chamber (DC) technique for mouse marrow culture was used to determine the effect of a granulocyte inhibitor on the proliferation of the pluripotent stem cell(CFU-s) and the granulocyte progenitor cell (CFU-c). Granulocyte conditioned medium was injected intraperitoneally into mice bearing DCs during the initial 48 hr of culture. The early injections of inhibitor resulted in a significantly reduced number of granulocytic progeny formed within the DCs while there was no growth inhibition of mouse fibroblasts cultured under identical conditions. The reduced cell production was due in part to a significant reduction in the self-renewal rate of the CFU-c while no apparent direct effect was observed upon the growth of the CFU-s within the same cultures. These data suggest that the granulocytic inhibitor(s) acted to reduce the proliferation within the CFU-c population and thereby diminished the amplification potential inherent in the initial cell inoculum.  相似文献   

19.
The effects of L-cell conditioned medium which contains granulocyte/macrophage colony stimulating factor (CSF); of highly purified L-cell CSF; and the antiserum directed against L-cell CSF, have been investigated in long-term murine bone marrow cultures. Treatment of cultures with CSF containing conditioned medium led to a rapid decline in haemopoiesis. However, this inhibition of in vitro haemopoiesis is probably caused by materials other than CSF, since the addition of highly purified L-cell CSF had no appreciable effect upon long-term haemopoietic cell proliferation or differentiation. Furthermore, the inhibitory activity of L-cell conditioned medium was not abrogated following neutralization of the CSF activity by CSF antiserum. The direct addition of CSF antiserum did not inhibit granulocyte or macrophage formation. These results suggest that long-term cultures of murine marrow cells may show extensive interactions with stromal cells which are not influenced by exogenous stimulatory or inhibitory factors.  相似文献   

20.
Both murine and human bone marrow cells were cultured in plasma clots which were formed inside diffusion chambers implanted into cyclophosphamide- and saline-treated mice. After an initial fall, the number of mouse bone marrow cells and numbers of mouse myeloid stem cells (CFU-C) and agar cluster-forming units rose faster in the cyclophosphamide-treated animals. These hosts also favored formation of myeloid (CFU-D-G) and erythroid (CFU-D-E) colonies and myeloid clusters in the plasma clot. The number and growth rate of mouse CFU-D-G were higher than those of CFU-C from the same marrow population. These observations suggest the existence of humoral factors stimulating granulocyte progenitor cell replication and differentiation. At its best the increment of CFU-D-E number was equivalent to that caused by a single 0·1 unit erythropoietin dose. Culture of normal human marrow cells resulted in colonies in the plasma clot containing only granulocytes and macrophages. Cyclophosphamide-treated host animals were essential for human CFU-D-G development. Plating efficiency for human marrow myeloid colonies was better in the conventional in vitro agar cultures than in diffusion chambers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号