首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resveratrol, a polyphenol found in grapes and other fruit and vegetables, is a powerful chemopreventive and chemotherapeutic molecule potentially of interest for the treatment of breast cancer. The human breast cancer cell line MCF-7, which is devoid of caspase-3 activity, is refractory to apoptotic cell death after incubation with resveratrol. Here we show that resveratrol arrests cell proliferation, triggers death and decreases the number of colonies of cells that are sensitive to caspase-3-dependent apoptosis (MCF-7 casp-3) and also those that are unresponsive to it (MCF-7vc). We demonstrate that resveratrol (i) acts via multiple pathways to trigger cell death, (ii) induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, (iii) induces only caspase-independent cell death in MCF-7vc cells and (iv) stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, we demonstrate that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. We also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cells.  相似文献   

2.
3.
Despite the improvements in cancer treatment, breast cancer still remains the second most common cause of death from cancer in women. Doxorubicin (DOXO) is widely used for cancer treatment. However, drug resistance limits the treatment outcome. Here, we investigated the toxicity of DOXO in combination with an antifungal agent amphotericin B (AmB) against the MCF-7 breast cancer cell line. The cell viability was measured using MTT assay. The apoptosis was studied by caspase-8 and caspase-9 activity measurements and DNA fragmentation was investigated by TUNEL assay. The combination of two drugs significantly increased the apoptotic index and the caspase-8 and caspase-9 activities in comparison to DOXO-treated cells. Our finding showed that pre-treatment of MCF-7 cells with AmB synergistically exerted the anticancer effect of DOXO through the caspase-dependent apoptosis manner.  相似文献   

4.
Metadherin (MTDH), the newly discovered gene, is overexpressed in more than 40% of breast cancers. Recent studies have revealed that MTDH favors an oncogenic course and chemoresistance. With a number of breast cancer cell lines and breast tumor samples, we found that the relative expression of MTDH correlated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity in breast cancer. In this study, we found that knockdown of endogenous MTDH cells sensitized the MDA-MB-231 cells to TRAIL-induced apoptosis both in vitro and in vivo. Conversely, stable overexpression of MTDH in MCF-7 cells enhanced cell survival with TRAIL treatment. Mechanically, MTDH down-regulated caspase-8, decreased caspase-8 recruitment into the TRAIL death-inducing signaling complex, decreased caspase-3 and poly(ADP-ribose) polymerase-2 processing, increased Bcl-2 expression, and stimulated TRAIL-induced Akt phosphorylation, without altering death receptor status. In MDA-MB-231 breast cancer cells, sensitization to TRAIL upon MTDH down-regulation was inhibited by the caspase inhibitor Z-VAD-fmk (benzyloxycarbonyl-VAD-fluoromethyl ketone), suggesting that MTDH depletion stimulates activation of caspases. In MCF-7 breast cancer cells, resistance to TRAIL upon MTDH overexpression was abrogated by depletion of Bcl-2, suggesting that MTDH-induced Bcl-2 expression contributes to TRAIL resistance. We further confirmed that MTDH may control Bcl-2 expression partly by suppressing miR-16. Collectively, our results point to a protective function of MTDH against TRAIL-induced death, whereby it inhibits the intrinsic apoptosis pathway through miR-16-mediated Bcl-2 up-regulation and the extrinsic apoptosis pathway through caspase-8 down-regulation.  相似文献   

5.
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been considered for use in the prevention and treatment of cancer malignancy. FR122047 (FR) is known to have an anti-inflammatory effect, but the anticancer activity of the chemical has not yet been identified. In the present study, we could find that treatment of breast cancer MCF-7 cells with FR led to apoptosis accompanying with apparent activation of caspases. Treatment of caspase-specific inhibitors revealed that FR-induced apoptosis was caspase-8-dependent and inhibition of caspase-9 activity resulted in unexpected, marked enhancement of cell death. Knockdown of caspase-9 expression by specific siRNA caused increased susceptibility to FR-induced cell death, consistent with the results obtained with treatment of caspase-9 inhibitor. Inhibition of caspase-9 blocked the autophagic process by modulating lysosomal pH and acid-dependent cathepsin activities and augmented cell death due to blockage of cytoprotective autophagy. MCF-7 cells treated with sulforaphane, an autophagy-inducing drug, also showed marked accumulation of LC3-II, and co-treatment with caspase-9 inhibitor brought about increased susceptibility to sulforaphane-induced cell death. Different from the cases with FR or sulforaphane, etoposide- or doxorubicin-induced cell death was suppressed with co-treatment of caspase-9 inhibitor, and the drugs failed to induce significant autophagy in MCF-7 cells. Taken together, our data originally suggest that inhibition of caspase-9 may block the autophagic flux and enhance cell death due to blockage of cytoprotective autophagy.  相似文献   

6.
Taxanes remain first line chemotherapy in management of metastatic breast cancer and have a key role in epithelial ovarian cancer, with increasingly common use of weekly paclitaxel dosing regimens. However, their clinical utility is limited by the development of chemoresistance. To address this, we modelled in vitro paclitaxel resistance in MCF-7 cells. We show that at clinically relevant drug doses, emerging paclitaxel resistance is associated with profound changes in cell death responses and a switch from apoptosis to autophagy as the principal mechanism of drug-induced cytotoxicity. This was characterised by a complete absence of caspase-mediated apoptotic cell death (using the pan-caspase-inhibitor Z-VAD) in paclitaxel-resistant MCF-7TaxR cells, compared with parent MCF-7 or MDA-MB-231 cell lines on paclitaxel challenge, downregulation of caspase-7, caspase-9 and BCl2-interacting mediator of cell death (BIM) expression. Silencing with small interfering RNA to BIM in MCF-7 parental cells was sufficient to confer paclitaxel resistance, inferring the significance in downregulation of this protein in contributing to the resistant phenotype of the MCF-7TaxR cell line. Conversely, there was an increased autophagic response in the MCF-7TaxR cell line with reduced phospho-mTOR and relative resistance to the mTOR inhibitors rapamycin and RAD001. In conclusion, we show for the first time that paclitaxel resistance is associated with profound changes in cell death response with deletion of multiple apoptotic factors balanced by upregulation of the autophagic pathway and collateral sensitivity to platinum.  相似文献   

7.
The analgesic buprenorphine hydrochloride (Bph) induced apoptosis-like cell death in the caspase-3-deficient human breast cancer cell line, MCF-7. This apoptosis-like cell death activated key molecules in the mitochondrial apoptotic pathway: cytochrome c, caspase-9, caspase-7, and caspase-6. Bph caused the release of fluorescent protein from the mitochondria of MCF-7 cells transfected with the pDsRed2-Mito-vector in a time-dependent manner, suggesting disruption of the mitochondrial membrane. Zn(2+) as high as 2 mM did not inhibit the DNase that took part in this apoptosis. Thus, this unidentified DNase might resemble other DNases involved in apoptosis-like cell death whose activity is not inhibited by zinc ion.  相似文献   

8.
《Autophagy》2013,9(4):435-441
The elimination of tumour cells by apoptosis is the main mechanism of action of chemotherapeutic drugs. More recently, autophagic cell death has been shown to trigger a nonapoptotic cell death program in cancer cells displying functional defects of caspases. Fenretinide (FenR), a synthetic derivative of retinoic acid, promotes growth inhibition and induces apoptosis in a wide range of tumour cell types. The present study was designed to evaluate the ability of fenretinide to induce caspase-independent cell death and to this aim we used the human mammary carcinoma cell line MCF-7, lacking functional caspase-3 activity. We demonstrated that in these cells fenretinide is able to trigger an autophagic cell death pathway. In particular we found that fenretinide treatment resulted in the increase in Beclin 1 expression, the conversion of the soluble form of LC3 to the autophagic vesicle-associated form LC3-II and its shift from diffuse to punctate staining and finally the increase in lysosomes/autophagosomes. By contrast, caspase-3 reconstituted MCF-7 cell line showed apoptotic cell death features in response to fenretinide treatment. These data strongly suggest that fenretinide does not invariably elicit an apoptotic response but it is able to induce autophagy when apoptotic pathway is deregulated. The understanding of the molecular mechanisms involved in fenretinide action is important for the future design of therapies employing this retinoid in breast cancer treatment.  相似文献   

9.
The elimination of tumor cells by apoptosis is the main mechanism of action of chemotherapeutic drugs. More recently, autophagic cell death has been shown to trigger a nonapoptotic cell death program in cancer cells displaying functional defects of caspases. Fenretinide (FenR), a synthetic derivative of retinoic acid, promotes growth inhibition and induces apoptosis in a wide range of tumor cell types. The present study was designed to evaluate the ability of fenretinide to induce caspase-independent cell death and to this aim we used the human mammary carcinoma cell line MCF-7, lacking functional caspase-3 activity. We demonstrated that in these cells fenretinide is able to trigger an autophagic cell death pathway. In particular we found that fenretinide treatment resulted in the increase in Beclin 1 expression, the conversion of the soluble form of LC3 to the autophagic vesicle-associated form LC3-II and its shift from diffuse to punctate staining and finally the increase in lysosomes/autophagosomes. By contrast, caspase-3 reconstituted MCF-7 cell line showed apoptotic cell death features in response to fenretinide treatment. These data strongly suggest that fenretinide does not invariably elicit an apoptotic response but it is able to induce autophagy when apoptotic pathway is deregulated. The understanding of the molecular mechanisms involved in fenretinide action is important for the future design of therapies employing this retinoid in breast cancer treatment.  相似文献   

10.

Background

In previous study we showed that caspase-2 plays the role of an apical caspase in cell death induction by taxanes in breast cancer cells. This study deals with the role of other caspases. We tested breast cancer cell lines SK-BR-3 (functional caspase-3) and MCF-7 (nonfunctional caspase-3).

Methods and results

Using western blot analysis we demonstrated the activation of initiator caspase-8 and -9 as well as executioner caspase-6 and -7 in both tested cell lines after application of taxanes (paclitaxel, SB-T-1216) at death-inducing concentrations. Caspase-3 activation was also found in SK-BR-3 cells. Employing specific siRNAs after taxane application, suppression of caspase-3 expression significantly increased the number of surviving SK-BR-3 cells. Inhibition of caspase-7 expression also increased the number of surviving SK-BR-3 and MCF-7 cells. On the other hand, suppression of caspase-8 and caspase-9 expression had no significant effect on cell survival. However, caspase-9 seemed to be involved in the activation of caspase-3 and caspase-7. Caspase-3 and caspase-7 appeared to activate mutually. Furthermore, we observed a significant decrease in mitochondrial membrane potential (flow cytometric analysis) and cytochrome c release (confocal microscopy, western blot after cell fractionation) from mitochondria in SK-BR-3 cells. No such changes were observed in MCF-7 cells after taxane treatment.

Conclusion

We conclude that the activation of apical caspase-2 results in the activation of caspase-3 and -7 without the involvement of mitochondria. Caspase-9 can be activated directly via caspase-2 or alternatively after cytochrome c release from mitochondria. Subsequently, caspase-9 activation can also lead to caspase-3 and -7 activations. Caspase-3 and caspase-7 activate mutually. It seems that there is also a parallel pathway involving mitochondria that can cooperate in taxane-induced cell death in breast cancer cells.  相似文献   

11.
The aerial parts of Saururus chinensis (SC) have been used for the treatment of edema, fever, jaundice, and inflammatory diseases in Korean folk medicine for centuries. However, the mechanism by which SC exerts these anti-tumorigenic activities in human prostate and breast cancer cells has not yet been fully understood. In this study, we report on the methylene chloride fraction from SC exerting cytotoxicity against prostate and breast cancer cells in a dose-dependent manner. Specifically, SC exerted the most potent cytotoxicity in LNCaP and MCF-7 cells. SC was shown to down-regulate various angiogenetic (VEGF), proliferative (Cyclin D1), anti-apoptotic (Bcl-2) gene products in these cells. SC also increased the number of annexin V-positive apoptotic bodies and the sub-G1 DNA contents of the cell cycle undergoing apoptosis through caspase-3 activation in both LNCaP and MCF-7 cells. We further confirmed that caspase-3 plays an important role in SC-induced apoptosis in LNCaP and MCF-7 cells through the use of the caspase-3 inhibitor. Moreover, we observed that SC potentiated paclitaxel-induced apoptosis in MCF-7 cells and sauchinone is a major active constituent of SC, which could induce apoptosis in the cells. Taken together, our data provide the evidence that SC induces apoptosis depending on caspase-3 activation and overcomes the natural biological resistance to chemotherapy found in human prostate and breast cancer cells.  相似文献   

12.
The contribution of Fas-mediated death pathway to doxorubicin-induced death of MCF-7 cells is not unambiguously elucidated. Thus, this study was conducted to explore doxorubicin-induced Fas/FasL signaling pathway activation in MCF-7 cells and doxorubicin-resistant MCF-7 (MCF-7/Dox) cells. Doxorubicin-induced caspase-8 activation was found to be mediated through Akt/ERK inactivation and FasL-independent Fas pathway in MCF-7 cells, while caspase-8 activation in MCF-7/Dox cells depended exclusively on FasL-stimulated Fas pathway. Suppression of caspase-8 activation restored the viability of doxorubicin-treated MCF-7 cells and MCF-7/Dox cells. Contrary to FasL surface expression exclusively detected in MCF-7/Dox cells, intracellular FasL expression was noted with MCF-7 cells. Promotion of FasL translocation to the cell surface by lysophosphatidic acid evoked a FasL-activated Fas death pathway in MCF-7 cells. Doxorubixin-evoked β-TrCP up-regulation promoted Sp1 degradation, which subsequently suppressed ADAM10 expression in MCF-7 and MCF-7/Dox cells. Doxorubicin-induced down-regulation of ADAM10 reduced FasL shedding, leading to Fas pathway activation in MCF-7/Dox cells. Knock-down of ADAM10 induced death in MCF-7/Dox cells, but marginally reduced the viability of MCF-7 cells. Taken together, our data indicate that Akt/ERK-mediated caspase-8 activation and Fas/FasL-mediated caspase-8 activation mostly elucidate doxorubicin-induced death in MCF-7 cells and MCF-7/Dox cells, respectively. These observations suggest a promising therapeutic modality for overcoming doxorubicin-resistant breast cancer by targeting ADAM10 sheddase activity.  相似文献   

13.
Tamoxifen (Tam) is widely used in chemotherapy of estrogen receptor-positive breast cancer. It inhibits proliferation and induces apoptosis of breast cancer cells by estrogen receptor-dependent modulation of gene expression, but recent reports have shown that Tam (especially at pharmacological concentrations) has also rapid nongenomic effects. Here we studied the mechanisms by which Tam exerts rapid effects on breast cancer cell viability. In serum-free medium 5–7 μM Tam induced death of MCF-7 and MDA-MB-231 cells in a time-dependent manner in less than 60 min. This was associated with release of mitochondrial cytochrome c, a decrease of mitochondrial membrane potential and an increase in production of reactive oxygen species (ROS). This suggests that disruption of mitochondrial function has a primary role in the acute death response of the cells. Accordingly, bongkrekic acid, an inhibitor of mitochondrial permeability transition, was able to protect MCF-7 cells against Tam. Rapid cell death induction by Tam was not associated with immediate activation of caspase-9 or cleavage of poly (ADP-ribose) polymerase. It was not blocked by the caspase inhibitor z-Val-Ala-Asp-fluoromethylketone either. Diphenylene ionodium (DPI), an inhibitor of NADPH oxidase, was able to prevent Tam-induced cell death but not cytochrome c release, which suggests that ROS act distal to cytochrome c. The pure antiestrogen ICI 182780 (1 μM) could partly oppose the effect of Tam in estrogen receptor positive MCF-7 cells, but not in estrogen receptor negative MDA-MB-231 cells. Pre-culturing MCF-7 cells in the absence of 17β-estradiol (E2) or in the presence of a low Tam concentration (1 μM) made the cells even more susceptible to rapid death induction by 5 or 7 μM Tam. This effect was associated with decreased levels of the anti-apoptotic proteins Bcl-XL and Bcl-2. In conclusion, our results demonstrate induction of a rapid mitochondrial cell death program in breast cancer cells at pharmacological concentrations of Tam, which are achievable in tumor tissue of Tam-treated breast cancer patients. These mechanisms may contribute to the ability of Tam therapy to induce death of breast cancer cells.  相似文献   

14.
The correlation between diet and variation in gene-expression is an important field which could be considered to approach cancer pathways comprehension. We examined the effects of lycopene on breast cancer cell lines using pangenomic arrays. Lycopene is derived predominantly from tomatoes and tomato products and there is some epidemiologic evidence for a preventive role in breast cancer. Previously, we investigated lycopene in breast cancer using a dedicated breast cancer microarray. To confirm these results and explore pathways other than those implicated in breast cancer, for this study we used pangenomic arrays containing 25,000 oligonucleotides. This in vitro study assayed two human mammary cancer cell lines (MCF-7 and MDA-MB-231), and a fibrocystic breast cell line (MCF-10a) treated or not with 10 microM lycopene for 48 h. A competitive hybridization was performed between Cy3-labeled lycopene treated RNA and Cy5-labeled untreated RNA to define differentially expressed genes. Using t-test analysis, a subset of 391 genes was found to be differentially modulated by lycopene between estrogen-positive cells (MCF-7) and estrogen-negative cells (MDA-MB-231, MCF-10a). Hierarchical clustering revealed 726 discriminatory genes between breast cancer cell lines (MCF-7, MDA-MB-231) and the fibrocystic breast cell line (MCF-10a). Modified gene expression was observed in various molecular pathways, such as apoptosis, cell communication, MAPK and cell cycle as well as xenobiotic metabolism, fatty acid biosynthesis and gap junctional intercellular communication.  相似文献   

15.
Summary Chemotherapy has been used for treatment of breast cancer but with limited success. We characterized the effects of bcl-2 antisense and cisplatin combination therapy in two human isogenic breast carcinoma cells p53(+)MCF-7 and p53(−)MCF-7/E6. The transferrin-facilitated lipofection strategy we have developed yielded same transfection efficiency in both cells. Bcl-2 antisense delivered with this strategy significantly induced more cell death, apoptosis, and cytochrome c release in MCF-7/E6 than in MCF-7, but did not affect Fas level in both cells and activated caspase-8 equally. Cisplatin exerted same effects on cell viability and apoptosis in both cells, but released smaller amounts of cytochrome c while activated more caspase-8 in MCF-7/E6. The combination treatment yielded greater effects on cell viability, apoptosis, cytochrome c release, and caspase-8 activation than individual treatments in both cells although p53(−) cells were more sensitive. The potentiated activation of caspase-8 in the combination treatment suggested that caspase-8-mediated (but cytochrome c-independent) apoptotic pathway is the major contributor of the enhanced cell killing. Thus, bcl-2 antisense delivered with transferrin-facilitated lipofection can achieve the efficacy of killing breast cancer cells and sensitizing them to chemotherapy. Bcl-2 antisense and cisplatin combination treatment is a potentially useful therapeutic strategy for breast cancer irrespective of p53 status. Hesham Basma and Hesham El-Refaey contributed equally  相似文献   

16.
Human MCF-7 breast cancer cells are resistant to pro-apoptotic stimuli due to caspase-3 inactivation. On the other hand, they should be sensitive to agents like selective pharmacological inhibitors of cyclin-dependent kinases (CDKs) that (re)activate p53 tumor suppressor protein because they harbor intact p53 pathways. In this study we examined whether reconstitution of caspase-3 in MCF-7 cells sensitizes them to inhibitors of CDKs, by analyzing the effects of roscovitine (ROSC) and olomoucine (OLO), two closely related selective pharmacological CDK inhibitors, on both mother MCF-7 cells and a secondary mutant line, MCF-7.3.28 that stably expresses human caspase-3. The results show that ROSC is, as expected, much more potent than OLO. Surprisingly; however, ROSC and OLO reduced proliferation of parental MCF-7 cells more strongly than caspase-3-proficient counterparts. Both inhibitors arrest human breast cancer cells at the G(2)-phase of the cell cycle. Analysis of cell-cycle regulators by immunoblotting revealed that ROSC strongly induces p53 protein activity by inducing its phosphorylation at Ser46 in the MCF-7 cells lacking caspase-3, but not in caspase-3-proficient cells. Furthermore, reconstitution of caspase-3 in MCF-7 cells neither elevates the mitochondrial apoptosis rate nor significantly increases caspases activity upon ROSC treatment. However, the stabilization of p53 in response to DNA damaging agents is the same in both caspase negative and positive MCF-7 cells. Cytotoxic agents induce caspase-3-dependent apoptosis in caspase-3-proficient cells. These results indicate that reconstitution of MCF-7 cancer cells with caspase-3 sensitize them to the action of DNA damaging agents but not to ATP-like pharmacological inhibitors of CDKs.  相似文献   

17.
18.
《Phytomedicine》2014,21(12):1658-1665
Polygonatum odoratum lectin (POL), a mannose-binding GNA-related lectin, has been reported to display remarkable anti-proliferative and apoptosis-inducing activities toward a variety of cancer cells; however, the precise molecular mechanisms by which POL induces cancer cell death are still elusive. In the current study, we found that POL could induce both apoptosis and autophagy in human MCF-7 breast cancer cells. Subsequently, we found that POL induced MCF-7 cell apoptosis via the mitochondrial pathway. Additionally, we also found that POL induces MCF-7 cell apoptosis via EGFR-mediated Ras-Raf-MEK-ERK pathway, suggesting that POL may be a potential EGFR inhibitor. Finally, we used proteomics analyses for exploring more possible POL-induced pathways with EGFR, Ras, Raf, MEK and ERK, some of which were consistent with our in silico network prediction. Taken together, these results demonstrate that POL induces MCF-7 cell apoptosis and autophagy via targeting EGFR-mediated Ras-Raf-MEK-ERK signaling pathway, which would provide a new clue for exploiting POL as a potential anti-neoplastic drug for future cancer therapy.  相似文献   

19.
The role of autophagy in cell death is under considerable debate. The process of autophagy has been shown to lead to either cell survival or cell death depending on cell type and stimulus. In the present study, we determined the contribution of ERK1/2 signalling to autophagy and cell death induced by tumour necrosis factor-α (TNF) in MCF-7 breast cancer cells. Treatment of MCF-7 cells with TNF caused a time-dependent increase in ERK1/2 activity. There was an induction of autophagy and cleavage of caspase-7, -8, -9 and PARP. Pharmacological inhibition of ERK1/2 phosphorylation with U0126 or PD98059 resulted in a decrease in TNF-induced autophagy that was accompanied by an increase in cleavage of caspase-7, -8, -9 and PARP Furthermore, inhibition of ERK1/2 signalling resulted in decreased clonogenic capacity of MCF-7 cells. These data suggest that TNF-induces autophagy through ERK1/2 and that inhibition of autophagy increases cellular sensitivity to TNF.  相似文献   

20.
The correlation between diet and variation in gene-expression is an important field which could be considered to approach cancer pathways comprehension. We examined the effects of lycopene on breast cancer cell lines using pangenomic arrays. Lycopene is derived predominantly from tomatoes and tomato products and there is some epidemiologic evidence for a preventive role in breast cancer. Previously, we investigated lycopene in breast cancer using a dedicated breast cancer microarray. To confirm these results and explore pathways other than those implicated in breast cancer, for this study we used pangenomic arrays containing 25,000 oligonucleotides. This in vitro study assayed two human mammary cancer cell lines (MCF-7 and MDA-MB-231), and a fibrocystic breast cell line (MCF-10a) treated or not with 10 μM lycopene for 48 h. A competitive hybridization was performed between Cy3-labeled lycopene treated RNA and Cy5-labeled untreated RNA to define differentially expressed genes. Using t-test analysis, a subset of 391 genes was found to be differentially modulated by lycopene between estrogen-positive cells (MCF-7) and estrogen-negative cells (MDA-MB-231, MCF-10a). Hierarchical clustering revealed 726 discriminatory genes between breast cancer cell lines (MCF-7, MDA-MB-231) and the fibrocystic breast cell line (MCF-10a). Modified gene expression was observed in various molecular pathways, such as apoptosis, cell communication, MAPK and cell cycle as well as xenobiotic metabolism, fatty acid biosynthesis and gap junctional intercellular communication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号