首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of apoptotic cells is essential for maintenance of tissue homeostasis. Chemotactic cues termed “find-me” signals attract phagocytes toward apoptotic cells, which selectively expose the anionic phospholipid phosphatidylserine (PS) and other “eat-me” signals to distinguish healthy from apoptotic cells for phagocytosis. Blebs released by apoptotic cells can deliver find-me signals; however, the mechanism is poorly understood. Here, we demonstrate that apoptotic blebs generated in vivo from mouse thymus attract phagocytes using endogenous chemokines bound to the bleb surface. We show that chemokine binding to apoptotic cells is mediated by PS and that high affinity binding of PS and other anionic phospholipids is a general property of many but not all chemokines. Chemokines are positively charged proteins that also bind to anionic glycosaminoglycans (GAGs) on cell surfaces for presentation to leukocyte G protein–coupled receptors (GPCRs). We found that apoptotic cells down-regulate GAGs as they up-regulate PS on the cell surface and that PS-bound chemokines, unlike GAG-bound chemokines, are able to directly activate chemokine receptors. Thus, we conclude that PS-bound chemokines may serve as find-me signals on apoptotic vesicles acting at cognate chemokine receptors on leukocytes.

Chemokines attract leukocytes by activating chemokine receptors, but many also bind anionic phospholipids. This study shows that phosphatidylserine-binding chemokines endow extracellular apoptotic bodies with “find-me” signals that trigger phagocyte migration for potential apoptotic cell clearance.  相似文献   

2.
Efficient elimination of cells undergoing programmed cell death is crucial for normal tissue homeostasis and for the regulation of immune responses. This review examines unique signals presented by apoptotic cells and the mechanisms by which phagocytes recognize and respond to these signals to orchestrate the selective and rapid removal of apoptotic cells. Such unique signals include direct and indirect ‘eat-me’ markers on the apoptotic cell surface, the absence of ‘don't eat-me’ markers normally found on living cells and soluble ‘come-get-me’ signals secreted by apoptotic cells to attract phagocytes to sites of apoptotic cell death. Once apoptotic cells are identified, their uptake by phagocytes further depends on the molecular machinery highly conserved from Caenorhabditis elegans to mammals.  相似文献   

3.
Clearance of apoptotic cells is the final stage of programmed cell death. Uncleared corpses can become secondarily necrotic, promoting inflammation and autoimmunity. Remarkably, even in tissues with high cellular turnover, apoptotic cells are rarely seen because of efficient clearance mechanisms in healthy individuals. Recently, significant progress has been made in understanding the steps involved in prompt cell clearance in vivo. These include the sensing of corpses via “find me” signals, the recognition of corpses via “eat me” signals and their cognate receptors, the signaling pathways that regulate cytoskeletal rearrangement necessary for engulfment, and the responses of the phagocyte that keep cell clearance events “immunologically silent.” This study focuses on our understanding of these steps.Multicellular organisms execute the majority of unwanted cell populations in a regulated fashion via the process of apoptosis (Henson and Hume 2006; Nagata et al. 2010). Examples of unwanted cells include excess cells generated during development, cells infected with intracellular bacteria or viruses, transformed or malignant cells capable of tumorigenesis, and cells irreparably damaged by cytotoxic agents. Swift removal of these cells is necessary for maintenance of overall health and homeostasis and prevention of autoimmunity, pathogen burden, or cancer. Quick removal of dying cells is a key final step, if not the ultimate goal of the apoptotic program.The term “phagocytosis” refers to an internalization process by which larger particles, such as bacteria and dead/dying cells, are engulfed and processed within a membrane-bound vesicle called the phagosome (Ravichandran and Lorenz 2007). A phagocyte is any cell that is capable of engulfment, including “professional” phagocytes such as macrophages, immature dendritic cells, and neutrophils. Metazoa have multiple mechanisms for clearing apoptotic cells, often depending on the tissue and apoptotic cell type (Gregory 2009). Macrophages and immature dendritic cells readily engulf dead or dying cells in tissues such as bone marrow (where a large number of new hematopoietic cells are generated), spleen (during or after an immune response), and the thymus (in young animals during T-lymphocyte development). In other tissues, neighboring “nonprofessional” phagocytes can also mediate the clearance of apoptotic targets. For example, in the mammary epithelium, viable mammary epithelial cells engulf apoptotic mammary epithelial cells after cessation of lactation (Monks et al. 2005, 2008). What distinguishes the phagocytosis of apoptotic cells from the phagocytosis of most bacteria or necrotic cells is the lack of a pro-inflammatory immune response (Henson 2005). This article discusses apoptotic cell engulfment, specifically the recruitment of phagocytes, through “find me” signals, the recognition of apoptotic cells by phagocytes via “eat me” signals, the internalization process and signaling pathways used for cytoskeletal rearrangement, and finally the digestion of apoptotic cells and phagocytic response to this process (Fig. 1).Open in a separate windowFigure 1.The steps of efficient apoptotic cell clearance. First, “find me” signals released by apoptotic cells are recognized via their cognate receptors on the surface of phagocytes. This is the sensing stage and stimulates phagocyte migration to the location of apoptotic cells. Second, phagocytes recognize exposed “eat me” signals on the surface of apoptotic cells via their phagocytic receptors, which leads to downstream signaling events culminating in Rac activation. Finally, further signaling events within the phagocyte regulate the digestion and processing of the apoptotic cell meal and the secretion of anti-inflammatory cytokines.  相似文献   

4.
Cells dying by apoptosis are normally cleared by phagocytes through mechanisms that can suppress inflammation and immunity. Molecules of the innate immune system, the pattern recognition receptors (PRRs), are able to interact not only with conserved structures on microbes (pathogen-associated molecular patterns, PAMPs) but also with ligands displayed by apoptotic cells. We reasoned that PRRs might therefore interact with structures on apoptotic cells – apoptotic cell-associated molecular patterns (ACAMPs) – that are analogous to PAMPs. Here we show that certain monoclonal antibodies raised against the prototypic PAMP, lipopolysaccharide (LPS), can crossreact with apoptotic cells. We demonstrate that one such antibody interacts with a constitutively expressed intracellular protein, laminin-binding protein, which translocates to the cell surface during apoptosis and can interact with cells expressing the prototypic PRR, mCD14 as well as with CD14-negative cells. Anti-LPS cross reactive epitopes on apoptotic cells colocalised with annexin V- and C1q-binding sites on vesicular regions of apoptotic cell surfaces and were released associated with apoptotic cell-derived microvesicles (MVs). These results confirm that apoptotic cells and microbes can interact with the immune system through common elements and suggest that anti-PAMP antibodies could be used strategically to characterise novel ACAMPs associated not only with apoptotic cells but also with derived MVs.  相似文献   

5.
Phagocytes have long been known to engulf and degrade apoptotic cells. Recent studies in mammals and the nematode Caenorhabditis elegans have shed some light on the conserved molecular mechanisms involved in this process. A series of results now challenge the traditional view of phagocytes as simply scavengers, 'cleaning up' after apoptosis to prevent inflammatory responses, and hence tissue damage. Instead, they suggest that phagocytes are active in the induction and/or execution of apoptosis in target cells.  相似文献   

6.
The apoptosis program of physiological cell death elicits a range of non-phlogistic homeostatic mechanisms—“recognition, response and removal”—that regulate the microenvironments of normal and diseased tissues via multiple modalities operating over short and long distances. The molecular mechanisms mediate intercellular signaling through direct contact with neighboring cells, release of soluble factors and production of membrane-delimited fragments (apoptotic bodies, blebs and microparticles) that allow for interaction with host cells over long distances. These processes effect the selective recruitment of mononuclear phagocytes and the specific activation of both phagocytic and non-phagocytic cells. While much evidence is available concerning the mechanisms underlying the recognition and responses of phagocytes that culminate in the engulfment and removal of apoptotic cell bodies, relatively little is yet known about the non-phagocytic cellular responses to the apoptosis program. These responses regulate inflammatory and immune cell activation as well as cell fate decisions of proliferation, differentiation and death. Here, we review current knowledge of these processes, considering especially how apoptotic cells condition the microenvironments of normal and malignant tissues. We also discuss how apoptotic cells that persist in the absence of phagocytic clearance exert inhibitory effects over their viable neighbors, paying particular attention to the specific case of cell cultures and highlighting how new cell-corpse-clearance devices—Dead-Cert® Nanoparticles—can significantly improve the efficacy of cell cultures through effective removal of non-viable cells in the absence of phagocytes in vitro.  相似文献   

7.
Apoptotic cells are rapidly engulfed and removed by phagocytes after displaying cell surface eat-me signals. Among many phospholipids, only phosphatidylserine (PS) is known to act as an eat-me signal on apoptotic cells. Using unbiased proteomics, we identified externalized phosphatidylinositides (PIPs) as apoptotic eat-me signals recognized by CD14+ phagocytes. Exofacial PIPs on the surfaces of early and late-apoptotic cells were observed in patches and blebs using anti-PI(3,4,5)P3 antibody, AKT- and PLCδ PH-domains, and CD14 protein. Phagocytosis of apoptotic cells was blocked either by masking exofacial PIPs or by CD14 knockout in phagocytes. We further confirmed that exofacial PIP+ thymocytes increased dramatically after in vivo irradiation and that exofacial PIP+ cells represented more significant populations in tissues of Cd14−/− than WT mice, especially after induction of apoptosis. Our findings reveal exofacial PIPs to be previously unknown cell death signals recognized by CD14+ phagocytes.Subject terms: Phospholipids, Cell death and immune response  相似文献   

8.
Phagocytosis of apoptotic cells and the resolution of inflammation   总被引:10,自引:0,他引:10  
Clearance of apoptotic cells by phagocytic cells plays a significant role in the resolution of inflammation, protecting tissue from harmful exposure to the inflammatory and immunogenic contents of dying cells. Apoptosis induces cell surface changes that are important for recognition and engulfment of cells by phagocytes. These changes include alterations in surface sugars, externalization of phosphatidylserine and qualitative changes in the adhesion molecule ICAM-3. Several studies have contributed to clarify the role of the receptors on the surface of phagocytes that are involved in apoptotic cell clearance. The phagocytic removal of apoptotic cells does not elicit pro-inflammatory responses; in contrast, apoptotic cell engulfment appears to activate signals that suppress release of pro-inflammatory cytokines. Therefore, clearance of apoptotic leucocytes is implicated in the resolution of inflammation and mounting evidence suggests that defective clearance of apoptotic cells contributes to inflammatory and autoimmune diseases. Defining the ligands on apoptotic cells and the corresponding receptors on phagocytes with which they engage, is likely to lead to the development of novel anti-inflammatory pro-resolution drugs. In this article, we will review the recognition and signaling mechanisms involved in the phagocytosis of apoptotic cells as well as the role of endogenous compounds that play a relevant role in the modulation of inflammation. We will also discuss what is currently known about diseases that may reflect impaired phagocytosis and the consequences on inflammation and immune responses.  相似文献   

9.
Clearance of apoptotic cells by phagocytes   总被引:3,自引:0,他引:3  
Phagocytic clearance of apoptotic cells may be considered to consist of four distinct steps: accumulation of phagocytes at the site where apoptotic cells are located; recognition of dying cells through a number of bridge molecules and receptors; engulfment by a unique uptake process; and processing of engulfed cells within phagocytes. Here, we will discuss these individual steps that collectively are essential for the effective removal of apoptotic cells. This will illustrate our relative lack of knowledge about the initial attraction signals, the specific mechanisms of engulfment and processing in comparison to the extensive literature on recognition mechanisms. There is now mounting evidence that clearance defects are responsible for chronic inflammatory disease and contribute to autoimmunity. Therefore, a better understanding of all aspects of the clearance process is required before it can truly be manipulated for therapeutic gain.  相似文献   

10.
Regulation of cell migration/invasion is important for embryonic development, immune function, and angiogenesis. However, migratory cells must also coordinately activate survival mechanisms to invade the extracellular matrix and colonize foreign sites in the body. Although invasive cells activate protective programs to survive under diverse and sometimes hostile conditions, the molecular signals that regulate these processes are poorly understood. Evidence is provided that signals that induce cell invasion also promote cell survival by suppressing apoptosis of migratory cells. Extracellular-regulated kinase (ERK) activation and molecular coupling of the adaptor proteins p130 Crk-associated substrate (CAS) and c-CrkII (Crk) represent two distinct pathways that induce cell invasion and protect cells from apoptosis in a three-dimensional collagen matrix. CAS/Crk-mediated cell invasion and survival requires activation of the small GTPase Rac, whereas ERK-induced cell invasion, but not survival requires myosin light chain kinase activation and myosin light chain phosphorylation. Uncoupling CAS from Crk or inhibition of ERK activity prevents migration and induces apoptosis of invasive cells. These findings provide molecular evidence that during invasion of the extracellular matrix, cells coordinately regulate migration and survival mechanisms through ERK activation and CAS/Crk coupling.  相似文献   

11.
Apoptosis: the importance of being eaten   总被引:11,自引:0,他引:11  
In vivo, cells undergoing apoptosis are usually recognised and swiftly ingested by macrophages or neighbouring cells acting as semi-professional phagocytes. This review debates evidence that the contents of apoptotic cells represent a danger to the organism, being capable of injuring tissue directly or triggering autoimmune responses, concluding that phagocytic clearance of intact apoptotic cells is a safe disposal route. Indeed, new data suggest that, in certain circumstances, phagocytes ingesting apoptotic cells may actively downregulate inflammatory and immune responses. Consequently, increasing evidence that there may be factors capable of perturbing safe clearance of apoptotic cells in vivo suggests that failure of this process may be a hitherto unrecognised pathogenetic factor in inflammatory and autoimmune diseases. New treatments designed to promote safe phagocytic clearance of dying cells can be anticipated, and it may even prove possible to eliminate unwanted cells by inducing appearance of cell surface 'eat me' signals.  相似文献   

12.
Zhou Z  Yu X 《Trends in cell biology》2008,18(10):474-485
In metazoan organisms, cells undergoing apoptosis are rapidly engulfed and degraded by phagocytes. Defects in apoptotic-cell clearance result in inflammatory and autoimmune responses. However, little is known about how apoptotic-cell degradation is initiated and regulated and how different phagocytic targets induce different immune responses from their phagocytes. Recent studies in mammalian systems and invertebrate model organisms have led to major progress in identifying new factors involved in the maturation of phagosomes containing apoptotic cells. These studies have delineated signaling pathways that promote the sequential incorporation of intracellular organelles to phagosomes and have also discovered that phagocytic receptors produce the signals that initiate phagosome maturation. Here, we discuss these exciting new findings, focusing on the mechanisms that regulate the interactions between intracellular organelles and phagosomes.  相似文献   

13.
Necrosis, a kind of cell death closely associated with pathogenesis and genetic programs, is distinct from apoptosis in both morphology and mechanism. Like apoptotic cells, necrotic cells are swiftly removed from animal bodies to prevent harmful inflammatory and autoimmune responses. In the nematode Caenorhabditis elegans, gain-of-function mutations in certain ion channel subunits result in the excitotoxic necrosis of six touch neurons and their subsequent engulfment and degradation inside engulfing cells. How necrotic cells are recognized by engulfing cells is unclear. Phosphatidylserine (PS) is an important apoptotic-cell surface signal that attracts engulfing cells. Here we observed PS exposure on the surface of necrotic touch neurons. In addition, the phagocytic receptor CED-1 clusters around necrotic cells and promotes their engulfment. The extracellular domain of CED-1 associates with PS in vitro. We further identified a necrotic cell-specific function of CED-7, a member of the ATP-binding cassette (ABC) transporter family, in promoting PS exposure. In addition to CED-7, anoctamin homolog-1 (ANOH-1), the C. elegans homolog of the mammalian Ca2+-dependent phospholipid scramblase TMEM16F, plays an independent role in promoting PS exposure on necrotic cells. The combined activities from CED-7 and ANOH-1 ensure efficient exposure of PS on necrotic cells to attract their phagocytes. In addition, CED-8, the C. elegans homolog of mammalian Xk-related protein 8 also makes a contribution to necrotic cell-removal at the first larval stage. Our work indicates that cells killed by different mechanisms (necrosis or apoptosis) expose a common “eat me” signal to attract their phagocytic receptor(s); furthermore, unlike what was previously believed, necrotic cells actively present PS on their outer surfaces through at least two distinct molecular mechanisms rather than leaking out PS passively.  相似文献   

14.
To preserve epithelial barrier function, dying cells are squeezed out of an epithelium by “apoptotic cell extrusion.” Specifically, a cell destined for apoptosis signals its live neighboring epithelial cells to form and contract a ring of actin and myosin II that squeezes the dying cell out of the epithelial sheet. Although most apoptotic cells extrude apically, we find that some exit basally. Localization of actin and myosin IIA contraction dictates the extrusion direction: basal extrusion requires circumferential contraction of neighboring cells at their apices, whereas apical extrusion also requires downward contraction along the basolateral surfaces. To activate actin/myosin basolaterally, microtubules in neighboring cells reorient and target p115 RhoGEF to this site. Preventing microtubule reorientation restricts contraction to the apex, driving extrusion basally. Extrusion polarity has important implications for tumors where apoptosis is blocked but extrusion is not, as basal extrusion could enable these cells to initiate metastasis.  相似文献   

15.
Cells undergoing apoptosis in vivo are rapidly detected and cleared by phagocytes. Swift recognition and removal of apoptotic cells is important for normal tissue homeostasis and failure in the underlying clearance mechanisms has pathological consequences associated with inflammatory and auto-immune diseases. Cell cultures in vitro usually lack the capacity for removal of nonviable cells because of the absence of phagocytes and, as such, fail to emulate the healthy in vivo micro-environment from which dead cells are absent. While a key objective in cell culture is to maintain viability at maximal levels, cell death is unavoidable and non-viable cells frequently contaminate cultures in significant numbers. Here we show that the presence of apoptotic cells in monoclonal antibody-producing hybridoma cultures has markedly detrimental effects on antibody productivity. Removal of apoptotic hybridoma cells by macrophages at the time of seeding resulted in 100% improved antibody productivity that was, surprisingly to us, most pronounced late on in the cultures. Furthermore, we were able to recapitulate this effect using novel super-paramagnetic Dead-Cert™ Nanoparticles to remove non-viable cells simply and effectively at culture seeding. These results (1) provide direct evidence that apoptotic cells have a profound influence on their non-phagocytic neighbors in culture and (2) demonstrate the effectiveness of a simple dead-cell removal strategy for improving antibody manufacture in vitro.Key words: apoptosis, hybridoma, phagocytosis, viability, cell-culture, cell-death, antibody, nanoparticles  相似文献   

16.
Clearance of apoptotic cells by phagocytes avoids triggering an inflammatory response. A new study reveals that phagocytes dissipate their mitochondrial proton electrochemical gradient to allow for the ingestion of more apoptotic corpses. Mitochondria are therefore involved in all aspects of apoptosis, from its activation through to the phagocytosis of dead cells.  相似文献   

17.
Granulocytes undergoing apoptosis are recognized and removed by phagocytes before their lysis. The release of their formidable arsenal of proteases and other toxic intracellular contents into tissues can create significant damage, prolonging the inflammatory response. Binding and/or uptake of apoptotic cells by macrophages inhibits release of proinflammatory cytokines by mechanisms that involve anti-inflammatory mediators, including TGF-beta. To model the direct effects of necrotic cells on macrophage cytokine production, we added lysed or apoptotic neutrophils and lymphocytes to mouse and human macrophages in the absence of serum to avoid complement activation. The results confirmed the ability of lysed neutrophils, but not lymphocytes, to significantly stimulate production of macrophage-inflammatory protein 2 or IL-8, TNF-alpha, and IL-10. Concomitantly, induction of TGF-beta1 by lysed neutrophils was significantly lower than that observed for apoptotic cells. The addition of selected serine protease inhibitors and anti-human elastase Ab markedly reduced the proinflammatory effects, the lysed neutrophils then behaving as an anti-inflammatory stimulus similar to intact apoptotic cells. Separation of lysed neutrophils into membrane and soluble fractions showed that the neutrophil membranes behaved like apoptotic cells. Thus, the cytokine response seen when macrophages were exposed to lysed neutrophils was largely due to liberated proteases. Therefore, we suggest that anti-inflammatory signals can be given by PtdSer-containing cell membranes, whether from early apoptotic, late apoptotic, or lysed cells, but can be overcome by proteases liberated during lysis. Therefore, the outcome of an inflammatory reaction and the potential immunogenicity of Ags within the damaged cell will be determined by which signals predominate.  相似文献   

18.
The disposal of dying cells in living tissues   总被引:2,自引:0,他引:2  
Cells continuously die and disappear from the midst of living tissues. However, some of their constituents survive. DNA is horizontally transferred to phagocytic cells, and apoptotic cell antigens shape the immune repertoire. When massive apoptosis occurs, which overwhelms tissue scavenger cells, or when the function of phagocytes abates, dying cells escape clearance in vivo. Remnant dying cells come to phagocytes disguised: factors capable to envelop their membranes pervade the entire organism, or are generated in given tissues. Some are constitutively present, while other are generated during early or late phases of the inflammatory response, possibly to face the further burden of the dead inflammatory cells. This camouflage influences the disposal of the corpses: decoying molecules either bridge the corpse to the phagocyte or hide it. Furthermore, factors associated to the plasma membrane of the apoptotic cell shape the signals the phagocyte releases in situ. Finally, molecules contained or released by the dying cell alter the apprehension by the phagocyte of its prey, influencing its immunogenicity.  相似文献   

19.
In higher vertebrates, phagocytosis plays a critical role in development and immunity, based on the internalization and removal of apoptotic cells and invading pathogens, respectively. Previous studies describe the effective uptake of these particles by lower vertebrate and invertebrate phagocytes, and identify important molecular players that contribute to this internalization. However, it remains unclear if individual phagocytes mediate internalization processes in these ancient organisms, and how this impacts the balance of pro-inflammatory and homeostatic events within their infection sites. Herein we show that individual phagocytes of the jawless vertebrate Petromyzon marinus (sea lamprey), like those of teleost fish and mice, display the capacity for divergent pro-inflammatory and homeostatic responses following internalization of zymosan and apoptotic cells, respectively. Professional phagocytes (macrophages, monocytes, neutrophils) were the primary contributors to the internalization of pro-inflammatory particles among goldfish (C. auratus) and lamprey (P. marinus) hematopoietic leukocytes. However, goldfish showed a greater ability for zymosan phagocytosis when compared to their jawless counterparts. Coupled to this increase was a significantly lower sensitivity of goldfish phagocytes to homeostatic signals derived from apoptotic cell internalization. Together, this translated into a significantly greater capacity for induction of antimicrobial respiratory burst responses compared to lamprey phagocytes, but also a decreased efficacy in apoptotic cell-driven leukocyte homeostatic mechanisms that attenuate this pro-inflammatory process. Overall, our results show the long-standing evolutionary contribution of intrinsic phagocyte mechanisms for the control of inflammation, and illustrate one effective evolutionary strategy for increased responsiveness against invading pathogens. In addition, they highlight the need for development of complementary regulatory mechanisms of inflammation to ensure continued maintenance of host integrity amidst increasing challenges from invading pathogens.  相似文献   

20.
It is widely accepted that the growth and regeneration of tissues and organs is tightly controlled. Although experimental studies are beginning to reveal molecular mechanisms underlying such control, there is still very little known about the control strategies themselves. Here, we consider how secreted negative feedback factors (“chalones”) may be used to control the output of multistage cell lineages, as exemplified by the actions of GDF11 and activin in a self-renewing neural tissue, the mammalian olfactory epithelium (OE). We begin by specifying performance objectives—what, precisely, is being controlled, and to what degree—and go on to calculate how well different types of feedback configurations, feedback sensitivities, and tissue architectures achieve control. Ultimately, we show that many features of the OE—the number of feedback loops, the cellular processes targeted by feedback, even the location of progenitor cells within the tissue—fit with expectations for the best possible control. In so doing, we also show that certain distinctions that are commonly drawn among cells and molecules—such as whether a cell is a stem cell or transit-amplifying cell, or whether a molecule is a growth inhibitor or stimulator—may be the consequences of control, and not a reflection of intrinsic differences in cellular or molecular character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号