首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The non-covalent binding of [(en)Pt(mu-dpzm)2Pt(en)]4+ to the dodecanucleotides d(CGCGAATTCGCG)2 and d(CAATCCGGATTG)2 has been studied by 1H NMR spectroscopy in order to gain a greater understanding of the pre-covalent binding association of cationic dinuclear platinum(II) anti-cancer drugs. NOESY experiments showed that the metal complex bound in the minor groove at the A/T rich regions of both dodecanucleotides. The metal complex did not induce any major DNA conformational changes. However, given the relative dimensions of the DNA minor groove and the metal complex, it is reasonable to expect that the metal complex binding significantly widens the minor groove at the A/T rich binding sites. The results of this study suggest that although dinuclear platinum(II) anti-cancer drugs covalently bind at GC sequences in the DNA major groove, they will preferentially associate with AT sequences in the minor groove before the covalent binding.  相似文献   

2.
DNA strand breaks were observed in bacteria treated with Pt(IV) but not Pt(II) antitumor compounds by two methods. First, compounds which cause DNA strand breaks produced an SOS induction signal which was detected by a rapid bacterial assay. In addition, the capacity of these compounds to cut DNA in vivo was directly measured by agarose gel electrophoresis of pBR322 DNA extracted from bacteria treated with these drugs. cis-Diamminetetrachloroplatinum(IV) (cis-DTP) and cis-dichloro-trans-dihydroxo-cis-bis(isopropylamine)-platinum(IV) (iproplatin) produced strand breaks in both assays while cis-diamminedichloroplatinum(II) (cisplatin) did not. These results indicate that Pt(IV) antitumor complexes may cause DNA damage in vivo which is not produced by Pt(II) compounds.  相似文献   

3.
The binding of transition metal compounds to nucleic acids is discussed in the perspectives of kinetics and their anticancer activity. Kinetics of ligand exchange is primarily determined by the intrinsic properties of the metal ions, and to a lesser degree by the ligands coordinated already to the metal ion. Metal compounds having ligand-exchange rates of the same order of magnitude as cell-division processes, e.g. many Pt(iIIi), Ru(II) and Ru(III) compounds, are in use as chemotherapeutic drugs. Detailed knowledge of ligand exchange in such compounds is important for design of derivative and entirely new compounds. Metal coordination compounds of metal ions with much faster ligand-exchange reactions interact with DNA in a quite different way, namely primarily by compensation of negative charge of the polyanionic chain and are usually not active as anticancer agents. Examples of our recent work are presented in relation with experiments performed by others on new generations of platinum anti-cancer drugs.  相似文献   

4.
Polynuclear platinum compounds demonstrate many novel phenomena in their interactions with DNA and proteins as well as novel anti-cancer activities. Previous studies indicated that the high positive charge and the non-coordinated "central linker" of the polynuclear compounds could have major contributions to these features. Therefore, a series of non-covalent polynuclear platinum complexes, [[Pt(NH(3))(3)](2)-mu-Y](n+) (Y=polyamine linker or [trans-Pt(NH(3))(2)(H(2)N(CH(2))(6)NH(2))(2)]) was synthesized and the DNA interactions of these platinum complexes were investigated. The conformational changes induced by these compounds in polymer DNA were studied by circular dichroism and the reversibility of the transition was tested by subsequent titration with the DNA intercalating agent ethidium bromide (EtBr). Fluorescent quenching was also used to assess the ability of EtBr to intercalate into A and Z-DNA induced by the compounds. The non-covalent polynuclear platinum complexes induced both B-->A and B-->Z conformational changes in polymer DNA. These conformational changes were partially irreversible. The platinum compound with the spermidine linker, [[Pt(NH(3))(3)](2)-mu-spermidine-N(1),N(8)]Cl(5).2H(2)O, is more efficient in inducing the conformational changes of DNA and it is less reversible than complexes with other linkers. The melting point study showed that the non-covalent polynuclear platinum complexes stabilized the duplex DNA and the higher the electrical charge of the complexes the greater the stabilization observed.  相似文献   

5.
Complexes of the positively charged, nuclear staining, quinone-imine dyes Nile Blue and Neutral Red with negatively charged tetrachloroplatinum (II) have been prepared in an effort to form neutral drugs which could gain ready access to the cellular nucleus and deliver significant quantities of the reactive tetrachloroplatinum anion to the vicinity of the DNA. Elemental analysis showed that both the Nile Blue and Neutral Red complexes with tetrachloroplatinum (II) comprised 2 mol of dye and 1 mol of tetrachloroplatinum, forming Pt(Nile Blue)2 and Pt(Neutral Red)2. Exposure of superhelical pBR322 DNA to the complexes or the dyes for 24 h followed by agarose gel electrophoresis showed that Neutral Red and Pt(Neutral Red)2 had little effect on DNA conformation, but that both Nile Blue and Pt(Nile Blue)2 could produce single-strand DNA breaks in a dose-dependent fashion. Studies in exponentially growing asynchronous, hypoxic, and normally oxygenated EMT6 cells at normal pH (7.40) and pH 6.45 demonstrated that neither dye was highly toxic, but that both complexes were capable of producing significant cytotoxicity. Both complexes killed normally oxygenated cells more efficiently than hypoxic cells, but Pt(Neutral Red)2 was more cytotoxic at pH 6.45, while Pt(Nile Blue)2 killed significantly more cells at normal pH. Both complexes decreased the survival of hypoxic EMT6 cells as indicated by the slope of the radiation survival curve [dose modifying factor (DMF) 2.90 for Pt(Nile Blue)2 and 1.45 for Pt(Neutral Red)2]. Studies with the FSaIIC murine tumor showed that both complexes were active radiosensitizing agents in vivo [DMF 1.76 for Pt(Nile Blue)2 and 1.25 for Pt(Neutral Red)2]. These results indicate that these new platinum complexes have characteristics which may make them and similar complexes effective radiosensitizing agents in humans.  相似文献   

6.
The interactions of DNA with oxaliplatin (Pt(R,R-DACH)) or its enantiomer (Pt(S,S-DACH)) were investigated using magnetic tweezers and atomic force microscope. In the process of DNA condensation induced by Pt-DACH, only diadducts and micro-loops are formed at low Pt-DACH concentrations, while at high Pt-DACH concentrations, besides the diadducts and micro-loops, long-range cross-links are also formed. The diadduct formation rate of Pt(R,R-DACH) is higher than that of Pt(S,S-DACH). However, the proportions of micro-loops and long-range cross-links for Pt(S,S-DACH) are higher than those for Pt(R,R-DACH). We propose a model to explain these differences between the effect of Pt(R,R-DACH) and that of Pt(S,S-DACH) on DNA condensation. The study has strong implications for the understanding of the effect of chirality on the interaction between Pt-DACH and DNA and the kinetics of DNA condensation induced by platinum complexes.  相似文献   

7.
Multinuclear platinum compounds have been designed to circumvent the cellular resistance to conventional mononuclear platinum-based drugs. In this study we performed a comparative study of cisplatin and of the triplatinum complex BBR 3464 in a human osteosarcoma cell system (U2-OS) including an in vitro selected cisplatin-resistant subline (U2-OS/Pt). BBR 3464 was extremely potent in comparison with cisplatin in U2-OS cells and completely overcame resistance of U2-OS/Pt cells. In both cell lines, BBR 3464 accumulation and DNA-bound platinum were higher than those observed for cisplatin. On the contrary, a low frequency of interstrand cross-links after exposure to BBR 3464 was found. Differently from the increase of DNA lesions induced by cisplatin, kinetics studies indicated a low persistence of interstrand cross-link formation for BBR 3464. Western blot analysis of DNA mismatch repair proteins revealed a marked decrease of expression of PMS2 in U2-OS/Pt cells, which also exhibited microsatellite instability. Studies on DNA mismatch repair deficient and proficient colon carcinoma cells were consistent with a lack of influence of the DNA mismatch repair status on BBR 3464 cytotoxicity. In conclusion, the cytotoxic potency and the ability of the triplatinum complex to overcome cisplatin resistance appear to be related to a different mechanism of DNA interaction (formation of different types of drug-induced DNA lesions) as compared to conventional mononuclear complexes.  相似文献   

8.
9.
Previous studies on copper(II) complexes with oxindole-Schiff base ligands have shown their potential antitumor activity towards different cells, inducing apoptosis through a preferential attack to DNA and/or mitochondria. Herein, we better characterize the interactions between some of these copper(II) complexes and DNA. Investigations on its binding ability to DNA were carried out by fluorescence measurements in competitive experiments with ethidium bromide, using plasmidial or calf-thymus DNA. These results indicated an efficient binding process similar to that observed with copper(II)-phenanthroline species, [Cu(o-phen)2]2+, with binding constants in the range 3 to 9 × 102 M− 1. DNA cleavage experiments in the presence and absence of distamycin, a recognized binder of DNA, indicated that this binding probably occurs at major or minor groove, leading to double-strand DNA cleavage, and being modulated by the imine ligand. Corroborating these data, discrete changes in EPR spectra of the studied complexes were observed in the presence of DNA, while more remarkable changes were observed in the presence of nucleotides (AMP, GMP, CMP or UMP). Additional evidence for preferential coordination of the copper centers to the bases guanine or cytosine was obtained from titrations of these complexes with each nucleotide, monitored by absorption spectral changes. Therefore, the obtained data point out to their action as groove binders to DNA bases, rather than as intercalators or covalent cross-linkers. Further investigations by SDS PAGE using 32P-ATP or 32P-oligonucleotides attested that no hydrolysis of phosphate linkage in DNA or RNA occurs, in the presence of such complexes, confirming their main oxidative mechanism of action.  相似文献   

10.
The interaction of the anticancer antibiotic altromycin B and its isostructrural Pt(II) and Pd(II) metal complexes with native calf thymus (CT) DNA was studied using UV-thermal denaturation experiments, circular dichroism spectroscopy and temperature controlled spectrophotometric titrations. Altromycin B stabilizes the double helix by raising the T(m), mainly by intercalation of its chromophore between the base pairs and interacting electrostatically via its sugar moieties with the edges of the DNA helix. Moreover, altromycin B induces a B-->A structural transition of CT DNA. The effect on DNA stability and conformation depends on the metal ion. Pt(II) and Pd(II) complexes induce the B-->A structural transition and stabilize the double helix similarly but they present lower final hyperchromicity due to premelting effects which were caused by intra- and interstrand crosslinking. Thus, a synergic effect of the metal ions to altromycin B-CT DNA interaction is observed in both cases. Altromycin B interacts with 5'-GMP, 5'-AMP and 5'-CMP by electrophilic attack of the opened epoxide ring to the N(7)G, N(1)/N(7)A and N(3)C. Thus, covalent binding between these nucleotides and altromycin B takes place and explain the multiple binding mode suggested by the studies of the interaction of altromycin B and its complexes with DNA. The [Pd(II)-altroB] complex dissociates in the presence of the nucleotides, and various species of Pd(II)-nucleotide complexes, especially with 5'-GMP, are formed. The [Pt(II)-altroB] complex dissociates too, but only one or two species of Pt(II)-nucleotide complexes are formed, and in the case of 5'-AMP interaction the formation of a tertiary altroB-Pt(II)-5'AMP complex is proposed. 5'-TMP reacts very weakly in comparison with the other three nucleotides. These interactions were followed by 1H-NMR.  相似文献   

11.
Our purpose was to better understand the mutual influence of cis-diamminedichloroplatinum (II) (cis-DDP) and intercalating drugs in their interactions with DNA. The present study deals with the intercalating drug N-methyl-2,7-diazapyrenium (MDAP). Two sets of experiments have been performed. In one set, the reaction between cis-DDP and nucleic acid was carried out in the presence of MDAP. The main adduct is a guanine residue chelated by platinum to a MDAP residue. It has the same spectroscopic properties as the synthesized compound cis-[Pt (NH3)2 (N7-d-guanosine) (N7-MDAP)] , the structure of which has been determined by 1H NMR. This adduct was only formed with double-stranded nucleic acids which reveals the importance of DNA matrix in orienting favorably the reactants. In the second set of experiments, the triamine complex cis-[Pt(NH3)2 (MDAP)CI]++ was reacted with the nucleic acids. At molar ratios drug over nucleotide residue equal or less than 0.10, all the added triamine complexes bind by covalent coordination to double-stranded nucleic acids. With natural DNA, the major adduct is cis-[Pt(NH3)2(d-guanosine) (MDAP)] . Thus the same adduct is formed on one hand in the reaction between DNA, MDAP and cis-DDP and on the other hand in the reaction between the triamine complex and DNA. The triamine complex offers the possibility to study the biological role of the new adduct.  相似文献   

12.
Investigation of side effects and solubility of anticancer drugs is a major challenge in chemotherapy science. Thus, design and synthesis of cisplatin analogs with higher lipophilicity as novel water-soluble anticancer drugs is valuable. In this work, two new Pt(II) complexes were synthesized with formula cis-[Pt(NH3)2(amylgly)]NO3 and cis-[Pt(amylamine)2(amylgly)]NO3, where gly is penthyl glycine as an amino acid. The new compounds were synthesized and extensively characterized using analytical techniques; spectroscopic methods, and conductivity measurement. The anticancer activity of synthesized complexes was investigated against colon cancer cell line HCT116 using MTT assay and results showed excellent anticancer activity with Cc50 values of 36 and 270 M after 24-h incubation time for cis-[Pt(NH3)2(amylgly)]NO3 and cis-[Pt(NH2-amyl)2(amylgly)]NO3, respectively; which is lower than that for cisplatin. These complexes were also interacted with highly polymerized calf thymus DNA and the binding mode of the complexes to CT-DNA was evaluated by fluorescence, circular dichroism, and UV spectroscopy. The calculation of binding and thermodynamic of Pt(II) complexes with CT-DNA can provide deeper insight into mechanism of the action of these types of complexes with nucleic acids. So, thermodynamic parameters were also determined according to isothermal titration. In comparison with cis-[Pt(NH3)2(amylgly)]NO3 in DNA interaction, the result show that cis-[Pt(NH2-amyl)2(amylgly)]NO3 has higher affinity with binding constant Kf = 8.72 mM to CT-DNA. The results indicate that cis-[Pt(amylamine)2(amylgly)]NO3 with large and bulky aliphatic group bind to CT-DNA by different modes and covalent and groove bindings were preferred mode of interaction with DNA.  相似文献   

13.
Complexes of the platinum(II) tetrachlorodianion with positively charged nuclear dyes have been prepared in an effort to produce neutral molecules which could gain ready access to the nuclear DNA where the platinum(II) tetrachlorodianion could function as a radiosensitizing and a bifunctional alkylating agent. The thiazin dyes Thionin, Azure B, and Methylene Blue, the aminoxanthene dye Pyronin Y, and the thiazole dye Thioflavin have each been complexed to the platinum(II) tetrachlorodianion(PtCl4) in a ratio of 2:1(dye:PtCl4). Studies of the interaction of these complexes and of the dyes with the pBR322 plasmid superhelical DNA demonstrated that while each complex and dye readily associated with the DNA in a dose-dependent manner, only Pt(Thioflavin)2 and Thioflavin produced irreversible DNA changes (single-strand breaks). In exponentially growing EMT6 cells the cytotoxicity of these drugs was assessed in normally oxygenated and hypoxic cells at both pH 7.4 and 6.45. At concentrations ranging from 1 to 500 microM, Pt(Methylene Blue)2 was significantly more cytotoxic than the other thiazin dye complexes Pt(Thionin)2 and Pt(Azure B)2. The cytotoxicity of Pt(Thionin)2 and Pt(Methylene Blue)2 was increased in normally oxygenated and hypoxic cells at low pH. Both Pt(Pyronin Y)2 and Pt(Thioflavin)2 were more toxic than the thiazin complexes. Pt(Pyronin Y)2 was most cytotoxic to normally oxygenated cells at normal pH and hypoxic cells at low pH, while Pt(Thioflavin)2 was most cytotoxic to cells at low pH under both oxygenation conditions. In vitro studies of the radiosensitizing properties of these agents in EMT6 cells demonstrated that exposure to 100 microM for 1 h before and during irradiation (except for Pt[Thioflavin]2, which was assayed at 25 microM) resulted in enhancement rations of 2.5, 1.9, 1.5, and 1.5 for Pt(Azure B)2, Pt(Thionin)2, Pt(Pyronin Y)2, and Pt(Thioflavin)2, respectively, in hypoxic cells. In contrast, Pt(Methylene Blue)2 (and Methylene Blue) proved to be a radioprotector of normally oxygenated cells and did not sensitize hypoxic cells to the cytotoxic effects of radiation. In the FSaIIC fibrosarcoma in vivo administration of each drug at 100 mg/kg intraperitoneally (ip) 15 min prior to irradiation (except for Pt[Thioflavin]2, which was given at 1 mg/kg ip) showed that, with single radiation fractions of 10 and 20 Gy, dose-modifying factors of 2.1, 1.8, 1.5, and 1.2 were produced by Pt(Azure B)2, Pt(Thionin)2, Pt(Pyronin Y), and Pt(Methylene Blue)2, respectively, after correcting for growth delays induced by the drug alone. In comparison, misonidazole at 1 g/kg ip produced a dose-modifying factor of 1.4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
15.
Structural properties of single λ DNA treated with anti-cancer drug cisplatin were studied with magnetic tweezers and AFM. Under the effect of low-concentration cisplatin, the DNA became more flexible, with the persistence length decreased significantly from ~52 to 15 nm. At a high drug concentration, a DNA condensation phenomenon was observed. Based on experimental results from both single-molecule and AFM studies, we propose a model to explain this kind of DNA condensation by cisplatin: first, di-adducts induce local distortions of DNA. Next, micro-loops of ~20 nm appear through distant crosslinks. Then, large aggregates are formed through further crosslinks. Finally, DNA is condensed into a compact globule. Experiments with Pt(dach)Cl2 indicate that oxaliplatin may modify the DNA structures in the same way as cisplatin. The observed loop structure formation of DNA may be an important feature of the effect of platinum anti-cancer drugs that are analogous to cisplatin in structure.  相似文献   

16.
Programmed cell death or apoptosis is a mechanism for the elimination of cells that occurs not only in physiological processes but also in drug-induced tumor cell death. Thus, because cisplatin, cis-diamminechloroplatinum (II), produces important damages on the DNA inducing apoptosis in several cell lines it has become a widely used antitumor drug. However, cisplatin possesses some dose-limiting toxicities mainly nephrotoxicity. Pt(IV) complexes, such as iproplatin, ormaplatin, and JM216 are a new class of platinum complexes that exhibits less toxicity than cisplatin. Some of these complexes have shown significant antitumor activity and a low cross-resistance to cisplatin. In the present paper, we have analyzed the DNA binding mode and the cytotoxicity of a novel Pt(IV)-bis (monoglutarate) complex. The data show that this novel complex produces DNA interstrand cross-links to a higher extent and with a faster kinetics than cisplatin. Also the Pt(IV)-bis (monoglutarate) complex kills glioma cells at drug concentrations significantly lower than those of cisplatin. Interestingly, this Pt(IV) complex produces in the glioma cells characteristic features of apoptosis such as 'DNA laddering' and fragmented nuclei. Moreover, the p53 protein accumulates early in glioma cells as a result of Pt(IV)-bis (monoglutarate) treatment. These data indicate that the Pt(IV)-bis (monoglutarate) complex induces apoptosis in glioma cells through a p53-dependent pathway.  相似文献   

17.
A series of Pt(II) complexes containing 1,2-diphenylethylenediamine (stien) isomers were synthesized and tested for their antitumor activity against leukemia L1210. Among the Pt(II) complexes examined water-soluble Pt(II) complexes with sulfate, nitrate and D-glucuronate ions as leaving groups exhibited relatively high antitumor activity. Furthermore, the interactions between calf-thymus DNA and Pt(SO4) (stein) complexes were investigated by means of circular dichroism spectrometry. Dichroism enhancements observed in the interaction between DNA and Pt(SO4) (stien) complexes were analysed to be contributable to two factors: (1) vicinal effects of DNA on the d-d transitions of Pt(II) ions and (2) conformational changes of DNA caused by the coordination of cis-configurational Pt(II) complexes.  相似文献   

18.
Platinum(II)-based anticancer drugs play an essential role in the clinic today, and a number of coordination compounds with other metals are in current development as promising antitumor drugs. Probably the most prominent non-platinum metal-based drugs are those of ruthenium. Various strategies have been applied for the design of novel drugs with an improved toxicological profile, and one of them involves the preparation of metal complexes in inert high oxidation states [e.g. Pt(IV), Ru(III)]. Three platinum(IV) and two ruthenium(III) drugs have already reached clinical trials. Ideally, hypoxia-selective drugs are delivered to the target environment without prior reduction or major transformation via substitution reactions at the metal center. A (selective) reduction has been proposed to activate the prodrugs by formation of active species, which react with the target more readily and lead ultimately to apoptosis. Investigations on the electrochemical behavior of platinum(IV) and ruthenium(III) cytotoxins and the establishment of preliminary structure-property relationships are therefore of current importance. Herein, we present recent results in the field of metal-centered electron-transfer activated Ru(III), Pt(IV) and Co(III) drugs with regard to design and targeting strategies, prediction of redox potentials in aqueous medium, labilization and enhanced reactivity with potential biological targets upon reduction, and correlations between electrochemical parameters and anticancer activity.  相似文献   

19.
Ring-substituted diaqua(1,2-diphenylethylenediamine)platinum(II) sulfate shows unusual kinetics in its reaction with salmon testis DNA. The mechanism for diaqua[meso-1,2-bis(2,6-dichloro-4- hydroxyphenyl)ethylenediamine]platinum(II) sulfate, [Pt(H2O)2(meso-6)]2+SO4(2-), a representative of this series, has been investigated and compared with that for cis-[Pt(NH3)2(H2O)2]2+. Reactions were followed by atomic absorption, analytical HPLC of Pt-DNA digests, arrest of enzymatic DNA synthesis/degradation, ultraviolet and fluorescence spectrophotometry. Except for the formation of monofunctional DNA adducts, the kinetics of the platinum(II) complexes are comparable. The pseudo-first-order rate constant for the attack of DNA by [Pt(H2O)2(meso-6)]2+ follows the concentration of DNA in a hyperbolic fashion, which is in contrast to the linear dependence for cis-[Pt(NH3)2(H2O)2]2+. The hyperbolic dependence is typical for a dissociable DNA/drug complex preceding the coordination reaction. By studying the binding of free ligand to DNA, and by correlating ligand structures and electrostatic charges with effects on adduct formation, both the phenyl residues and the positive charge of the platinum(II) complex are shown to be crucial for the stability of the dissociable complex. A non-intercalative mode of binding to the DNA backbone is suggested. At the high concentrations of DNA found in cell nuclei, the reaction of the dissociable complex can, principally, become rate-limiting in the attack of DNA and thus reduce the cytotoxic efficiency of a drug.  相似文献   

20.
Butyldithiocarbamate sodium salt (Bu-dtcNa) and its two complexes, [M(bpy)(Bu-dtc)]NO3 (M=Pt(II) or Pd(II) and bpy=2,2'-bipyridine), have been synthesized and characterized on the basis of elemental analysis, molar conductivities, IR, 1H NMR, and UV-vis spectra. In these complexes, the dithiocarbamato ligand coordinates to Pt(II) or Pd(II) center as bidentate with two sulfur atoms. These complexes show 50% cytotoxic concentration (Cc(50)) values against chronic myelogenous leukemia cell line, K562, much lower than that of cisplatin. The interaction of these complexes with calf thymus DNA was extensively investigated by a variety of spectroscopic techniques. These studies showed that both complexes presumably intercalate in DNA. UV-vis studies imply that they cooperatively bind with DNA and unexpectedly denature the DNA at very low concentrations (approximately 100 microL). Palladium complex breaks the DNA into two unequal fragments and binds stronger to the lighter fragment than to the heavier one. In the interaction studies between the Pt(II) and Pd(II) complexes with DNA, several binding and thermodynamic parameters have been determined, which may provide deeper insights into the mechanism of action of these types of complexes with nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号