首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flexor tendon repair in zone II is complicated by adhesions that impair normal postoperative gliding. Transforming growth factor-beta (TGF-beta) is a family of growth factors that has been implicated in scar formation. The TGF-beta family of proteins binds to three distinct classes of membrane receptors, termed RI, RII, and RIII. In this study, we analyzed the temporal and spatial distribution of TGF-beta receptor isoforms (RI, RII, and RIII) in a rabbit zone II flexor tendon wound healing model.Twenty-eight adult New Zealand White rabbit forepaws underwent isolation of the middle digit flexor digitorum profundus tendon in zone II. The tendons underwent transection in zone II and immediate repair. The tendons were harvested at increasing time points: 1, 3, 7, 14, 28, and 56 days postoperatively (n = 4 at each time point). The control flexor tendons were harvested without transection and repair (n = 4). Immunohistochemical analysis was used to detect the expression patterns for TGF-beta receptors RI, RII, and RIII.Immunohistochemical staining of the transected and repaired tendons demonstrated up-regulation of TGF-beta RI, RII, and RIII protein levels. TGF-beta receptor production in the experimental group (transection and repair) was concentrated in the epitenon and along the repair site. Furthermore, the TGF-beta receptor expression levels peaked at day 14 and decreased by day 56 postoperatively. In contrast, minimal receptor expression was observed in the untransected and unrepaired control tendons.These data provide evidence that (1) TGF-beta receptors are up-regulated after injury and repair; (2) peak levels of TGF-beta receptor expression occurred at day 14 and decreased by day 56 after wounding and repair; and (3) both the tendon sheath and epitenon have the highest receptor expression, and both may play critical roles in flexor tendon wound healing. Understanding the up-regulation of TGF-beta isoforms and the up-regulation of their corresponding receptors during flexor tendon wound healing provides new targets for biomolecular modulation of postoperative scar formation.  相似文献   

2.
The locking loop tendon suture is suggested as an effective method for suturing tendons where tension is likely during the early post-operative period. The relationship of the intratendinous parts of the suture to each other is critical to the resultant tensile strength. Experimental work has confirmed its strength and its lack of interference with the intrinsic vasculature of the tendons. Our results from this clinical repair of 72 tendons by this method have been better, in general, than we obtained with other currently popular methods.  相似文献   

3.
Conservative treatment (non-operative) of Achilles tendon ruptures is suggested to produce equivalent capacity for return to function; however, long term results and the role of return to activity (RTA) for this treatment paradigm remain unclear. Therefore, the objective of this study was to evaluate the long term response of conservatively treated Achilles tendons in rodents with varied RTA. Sprague Dawley rats (n = 32) received unilateral blunt transection of the Achilles tendon followed by randomization into groups that returned to activity after 1-week (RTA1) or 3-weeks (RTA3) of limb casting in plantarflexion, before being euthanized at 16-weeks post-injury. Uninjured age-matched control animals were used as a control group (n = 10). Limb function, passive joint mechanics, tendon properties (mechanical, histological), and muscle properties (histological, immunohistochemical) were evaluated. Results showed that although hindlimb ground reaction forces and range of motion returned to baseline levels by 16-weeks post-injury regardless of RTA, ankle joint stiffness remained altered. RTA1 and RTA3 groups both exhibited no differences in fatigue properties; however, the secant modulus, hysteresis, and laxity were inferior compared to uninjured age-matched control tendons. Despite these changes, tendons 16-weeks post-injury achieved secant stiffness levels of uninjured tendons. RTA1 and RTA3 groups had no differences in histological properties, but had higher cell numbers compared to control tendons. No changes in gastrocnemius fiber size or type in the superficial or deep regions were detected, except for type 2x fiber fraction. Together, this work highlights RTA-dependent deficits in limb function and tissue-level properties in long-term Achilles tendon and muscle healing.  相似文献   

4.
In order to maintain their native properties, cryopreserved tendons are usually used in biomechanical research and in transplantation of allogenic tendon grafts. The use of different study protocols leads to controversy in literature and thus complicates the evaluation of the current literature. The aim of this study consisted in examining the influence of different freezing and thawing temperatures on the mechanical properties of tendons. 60 porcine tendons were frozen at either −80 °C or −20 °C for 7 days and thawed at room or body temperature for 240 or 30 min, respectively. A subgroup of ten tendons was quick-frozen with liquid nitrogen (−196 °C) for 2 s before cryopreservation. Biomechanical testing was performed with a material testing machine and included creep, cyclic and load-to-failure tests. The results showed that freezing leads to a reduced creep strain after constant loading and to an increased secant modulus. Freezing temperature of −80 °C increased the secant modulus and decreased the strain at maximum stress, whereas thawing at room temperature reduced the maximum stress, the strain at initial tendon failure and the Young’s Modulus. Quick-freezing led to increased creep strain after constant loading, increased strain at initial failure in the load-to-failure test, and decreased strain at maximum stress. When cryopreserving, tendons for scientific or medical reasons, freezing temperature of −20 °C and thawing temperature of 37.5 °C are recommended to maintain the native properties of tendons. A treatment with liquid nitrogen in the sterilization process of tendon allografts is inadvisable because it alters the tendon properties negatively.  相似文献   

5.
Ectopic tendon mineralization can develop following tendon rupture or trauma surgery. The pathogenesis of ectopic tendon mineralization and its clinical impact have not been fully elucidated yet. In this study, we utilized a mouse Achilles tendon injury model to determine whether ectopic tendon mineralization alters the biomechanical properties of the tendon and whether BMP signaling is involved in this condition. A complete transverse incision was made at the midpoint of the right Achilles tendon in 8-week-old CD1 mice and the gap was left open. Ectopic cartilaginous mass formation was found in the injured tendon by 4 weeks post-surgery and ectopic mineralization was detected at 8 to 10 weeks post-surgery. Ectopic mineralization grew over time and volume of the mineralized materials of 25-weeks samples was about 2.5 fold bigger than that of 10-weeks samples, indicating that injury-induced ectopic tendon mineralization is progressive. In vitro mechanical testing showed that max force, max stress and mid-substance modulus in the 25-weeks samples were significantly lower than the 10-weeks samples. We observed substantial increases in expression of bone morphogenetic protein family genes in injured tendons 1 week post-surgery. Immunohistochemical analysis showed that phosphorylation of both Smad1 and Smad3 was highly increased in injured tendons as early as 1 week post-injury and remained high in ectopic chondrogenic lesions 4-weeks post-injury. Treatment with the BMP receptor kinase inhibitor (LDN193189) significantly inhibited injury-induced tendon mineralization. These findings indicate that injury-induced ectopic tendon mineralization is progressive, involves BMP signaling and associated with deterioration of tendon biomechanical properties.  相似文献   

6.
In tendon lesions, inflammation indicates the beginning of tissue repair and influences cell proliferation and the remodeling of the extracellular matrix (ECM). Low level laser (LLL) therapy has been an important method to induce tissue repair, and several studies have sought to better understand the therapeutic possibilities of this modality. This study analyzed the effect of LLL on the ECM of rat tendons during the early phase of the inflammatory process. Wistar rats received an intratendinous application of carrageenan adjacent to the osteotendinous region in the right paw. The animals were divided into the following groups: G1—intact, G2—animals with no treatment after the inflammation induction, G3—animals treated with LLL 1 and 3 h after induction of inflammation (4 J/cm2 continuous). After 4 h of application, the animals of the two groups were euthanized with isoflurane overdose. Our results demonstrate that LLL therapy can promote decrease in non-collagenous protein and glycosaminoglycans content, as well as an increase in metalloproteinases ?9, which proved, for the first time, that LLL therapy promotes alterations in the inflamed tendons even when analyzed only four hours after this process occur and could be a useful tool to improve the balance in inflamed tissues.  相似文献   

7.
Connective tissue aging and diabetes related comorbidity are associated with compromised tissue function, increased susceptibility to injury, and reduced healing capacity. This has been partly attributed to collagen cross-linking by advanced glycation end-products (AGEs) that accumulate with both age and disease. While such cross-links are believed to alter the physical properties of collagen structures and tissue behavior, existing data relating AGEs to tendon mechanics is contradictory. In this study, we utilized a rat tail tendon model to quantify the micro-mechanical repercussion of AGEs at the collagen fiber-level. Individual tendon fascicles were incubated with methylglyoxal (MGO), a naturally occurring metabolite known to form AGEs. After incubation in MGO solution or buffer only, tendons were stretched on the stage of a multiphoton confocal microscope and individual collagen fiber stretch and relative fiber sliding were quantified. Treatment by MGO yielded increased fluorescence and elevated denaturation temperatures as found in normally aged tissue, confirming formation of AGEs and related cross-links. No apparent ultrastructural changes were noted in transmission electron micrographs of cross-linked fibrils. MGO treatment strongly reduced tissue stress relaxation (p < 0.01), with concomitantly increased tissue yield stress (p < 0.01) and ultimate failure stress (p = 0.036). MGO did not affect tangential modulus in the linear part of the stress–strain curve (p = 0.46). Microscopic analysis of collagen fiber kinematics yielded striking results, with MGO treatment drastically reducing fiber-sliding (p < 0.01) with a compensatory increase in fiber-stretch (p < 0.01). We thus conclude that the main mechanical effect of AGEs is a loss of tissue viscoelasticity driven by matrix-level loss of fiber–fiber sliding. This has potentially important implications to tissue damage accumulation, mechanically regulated cell signaling, and matrix remodeling. It further highlights the importance of assessing viscoelasticity – not only elastic response – when considering age-related changes in the tendon matrix and connective tissue in general.  相似文献   

8.
A non-invasive ultrasonic (US) technique of tendon force measurement has been recently developed. It is based on the relationship demonstrated between the speed of sound (SOS) in a tendon and the traction force applied to it. The objectives of the present study were to evaluate the variability of this non-linear relationship among 7 equine superficial digital flexor (SDF) tendons, and the reproducibility of SOS measurements in these tendons over successive loading cycles and tests. Seven SDF tendons were equipped with an US probe (1 MHz), secured in contact with the skin overlying the tendon metacarpal part. The tendons were submitted to a traction test consisting in 5 cycles of loading/unloading between 50 and 4050 N. Four tendons out of the 7 were submitted to 5 additional cycles up to 5550 N. The SOS-tendon force relationships appeared similar in shape, although large differences in SOS levels were observed among the tendons. Reproducibility between cycles was evaluated from the root mean square of the standard deviations (RMS-SD) of SOS values observed every 100 N, and of force values every 2 m/s. Reproducibility of SOS measurements revealed high between successive cycles: above 500 N the RMS-SD was less than 2% of the corresponding traction force. Reproducibility between tests was lower, partly due to the experimental set-up; above 500 N the difference between the two tests stayed nevertheless below 15% of the corresponding mean traction force. The reproducibility of the US technique here demonstrated in vitro has now to be confirmed in vivo.  相似文献   

9.
Diabetes is characterized by poor wound healing which currently lacks an efficacious treatment. The innate repair receptor (IRR) is a master regulator of tissue protection and repair which is expressed as a response injury or metabolic stress, including in diabetes. Activation of the IRR might provide benefit for diabetic wound healing. A specific IRR agonist cibinetide was administered in an incisional wound healing model performed mice with genetic diabetes (db+/db+) and compared to the normal wild-type. Animals were treated daily with cibinetide (30 μg/kg/s.c.) or vehicle and euthanized 3, 7, and 14 days after the injury to quantitate vascular endothelial growth factor (VEGF), malondialdehyde (MAL), phospho-Akt (pAkt), phospho e-NOS (p-eNOS), and nitrite/nitrate content within the wound. Additional evaluations included quantification of skin histological change, angiogenesis, scar strength, and time to complete wound closure. Throughout the wound healing process diabetic animals treated with vehicle exhibited increased wound MAL with reduced VEGF, pAkt, peNOS and nitrite/nitrate, all associated with poor re-epitheliziation, angiogenesis, and wound breaking strength. Cibenitide administration significantly improved these abnormalities. The results suggest that cibinetide-mediated IRR activation may represent an interesting strategy to treat diabetes-associated wound healing.  相似文献   

10.
BackgroundThe delay of dermal burn wound healing caused by vascular disorders is a critical problem for many diabetic patients. Thymosin β4 (Tβ4), identified by subtractive cloning of endothelial cells on plastic versus basement membrane substrates, has been found to promote angiogenesis and dermal wound repair in rats, aged mice, and db/db diabetic mice. However, previous studies involving the role of Tβ4 in wound repair were limited to mechanical damage and dermal impairment. Thus, this study aimed to evaluate the improvement of healing of burn wounds by Tβ4 in relation to advanced glycation end products (AGE), which are pathological factors in diabetes.MethodsWe adapted a dermal burn wound in vivo model in which the dorsal skin of db/db mice was exposed for 10 s to 100 °C heated water to produce a deep second-degree burn 10 mm in diameter. Five mg/kg of Tβ4 was then injected intradermally near the burn wound twice a week for 2 weeks.ResultsAfter treatment, Tβ4 improved wound healing markers such as wound closure, granulation, and vascularization. Interestingly, Tβ4 reduced levels of receptor of AGE (RAGE) during the wound healing period.Conclusions4 exerts effects to remedy burn wounds via downregulation of RAGE.General significanceOur results suggest the potential importance of Tβ4 as a new therapy for impaired burn wound healing that is associated with diabetes.  相似文献   

11.
In the present study effect of asiaticoside, on healing of skin wounds in Cirrhinus mrigala is reported. Skin wound, approx. 2 mm in diameter was excised using sterile disposable biopsy punch. Immediately after infliction of the wound, epidermis from wound edge starts migrating as thin sheet toward wound gap. Fronts of migrating epidermis gradually advance, and results in complete epithelialization of wound. Experiments were conducted for 30 days and fishes were divided into control, sham, vehicle control and asiaticoside treated groups. Immunohistochemical localization of proliferating cell nuclear antigen positive cells indicating cellular proliferation and caspase 3 positive cells reflecting apoptosis was carried out and their density at different post wound intervals in each fish group was analyzed. Significant increase in cellular proliferation as well as decrease in apoptosis in both epidermis and dermis in fish treated with asiaticoside compared to sham and vehicle control fish is observed at different intervals of wound repair. This suggests that in treated group healing of skin wounds in fish is enhanced than in sham and vehicle control groups. Asiaticoside treatment in healing of skin wounds would greatly be beneficial to fish farmers as it could protect fish from invasion of pathogens and check fish mortality.  相似文献   

12.
Decellularised porcine super flexor tendon (pSFT) offers a promising solution to the replacement of damaged anterior cruciate ligament. It is desirable to package and terminally sterilise the acellular grafts to eliminate any possible harmful pathogens. However, irradiation techniques can damage the collagen structure and consequently reduce the mechanical properties. The aims of this study were to investigate the effects of irradiation sterilisation of varying dosages on the viscoelastic properties of the decellularised pSFT.Decellularised pSFT tendons were subjected to irradiation sterilisation using either 30 kGy gamma, 55 kGy gamma, 34 kGy E-beam, 15 kGy gamma, 15 kGy E-beam and (15 + 15) kGy E-beam (fractionated dose). Specimens then underwent stress relaxation testing at 0 and 12 months post sterilisation to determine whether any effect on the viscoelastic properties was progressive.Significant differences were found which demonstrated that all irradiation treatments had an effect on the time-independent and time-dependent viscoelastic properties of irradiated tendons compared to peracetic acid only treated controls. No significant differences were found between the irradiated groups and no significant differences were found between groups at 0 and 12 months. These results indicate the decellularised pSFT graft has a stable shelf-life.  相似文献   

13.
Background aimsIn recent years, stem cells from human exfoliated deciduous teeth (SHED) have received attention as a novel stem cell source with multipotent potential. We examined the effect on wound-healing promotion with unique stem cells from deciduous teeth as a medical waste.MethodsAn excisional wound-splinting mouse model was used and the effect of wound healing among SHED, human mesenchymal stromal cells (hMSCs), human fibroblasts (hFibro) and a control (phosphate-buffered saline; PBS) was evaluated by macroscopy, histology and enzyme-linked immunosorbent assay (ELISA), and the expression of hyaluronan (HA), which is related to wound healing, investigated.ResultsSHED and hMSCs accelerated wound healing compared with hFibro and the control. There was a statistically significant difference in wound healing area among hFibro, hMSCs and SHED compared with the control after day 5. At days 7 and 14 after cell transplantation, the histologic observation showed that transplanted PKH26-positive cells were surrounded by human HA binding protein, especially in hMSCs and SHED. HA expression volume values were 1558.41 ± 60.33 (control), 2092.75 ± 42.56 (hFibro), 2342.07 ± 188.10 (hMSCs) and 2314.85 ± 164.91 (SHED) ng/mg, respectively, and significantly higher in hMSCs and SHED compared with hFibro and control at days 7 and 14 (P < 0.05).ConclusionsOur results show that SHED hMSCs have similar effects of wound-healing promotion as hFibro and controls. This implies that SHED might offer a unique stem cell resource and the possibility of novel cell therapies for wound healing in the future.  相似文献   

14.
This study used subject-specific measures of three-dimensional (3D) free Achilles tendon geometry in conjunction with a finite element method to investigate the effect of variation in subject-specific geometry and subject-specific material properties on tendon stress during submaximal isometric loading. Achilles tendons of eight participants (Aged 25–35 years) were scanned with freehand 3D ultrasound at rest and during a 70% maximum voluntary isometric contraction. Ultrasound images were segmented, volume rendered and transformed into subject-specific 3D finite element meshes. The mean (±SD) lengths, volumes and cross-sectional areas of the tendons at rest were 62 ± 13 mm, 3617 ± 984 mm3 and 58 ± 11 mm2 respectively. The measured tendon strain at 70% MVIC was 5.9 ± 1.3%. Subject-specific material properties were obtained using an optimisation approach that minimised the difference between measured and modelled longitudinal free tendon strain. Generic geometry was represented by the average mesh and generic material properties were taken from the literature. Local stresses were subsequently computed for combinations of subject-specific and generic geometry and material properties. For a given geometry, changing from generic to subject-specific material properties had little effect on the stress distribution in the tendon. In contrast, changing from generic to subject-specific geometry had a 26-fold greater effect on tendon stress distribution. Overall, these findings indicate that the stress distribution experienced by the living free Achilles tendon of a young and healthy population during voluntary loading are more sensitive to variation in tendon geometry than variation in tendon material properties.  相似文献   

15.
Changes in extracellular matrix (ECM) are one of many components that contribute to impaired wound healing in aging. This study examined the effect of age on the glycosaminoglycan hyaluronan (HA) in normal and wounded dermis from young (4–6 month-old) and aged (22–24 month-old) mice. HA content and size were similar in the normal dermis of young and aged mice. Dermal explants labeled with [3H]-glucosamine showed decreased generation of smaller forms of HA in aged explants relative to young explants. Aged mice exhibited delayed wound repair compared with young mice with the greatest differential at 5 days. Expression of hyaluronan synthase (HAS) 2 and 3, and hyaluronidase (HYAL) 1–3 mRNA in wounds of young and aged mice was similar. There was a trend toward a decreased HYAL protein expression in aged wound dermis, which was accompanied by changes in detectable HYAL activity. Total HA content was similar in young and aged wound dermis. There was significantly less HA in the lower MW range (~ 250 kDa and smaller) in 5-day wound dermis, but not in 9-day wound dermis, from aged mice relative to young mice. We propose that decreased cleavage of HA is an additional component of impaired dermal wound healing in aging.  相似文献   

16.
Impaired wound healing is an important clinical problem in diabetes mellitus and results in failure to completely heal diabetic foot ulcers (DFUs), which may lead to lower extremity amputations. In the present study, collagen based dressings were prepared to be applied as support for the delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. The performance of NT alone and NT–loaded collagen matrices to treat wounds in streptozotocin (STZ) diabetic induced mice was evaluated. Results showed that the prepared dressings were not-cytotoxic up to 72 h after contact with macrophages (Raw 264.7) and human keratinocyte (HaCaT) cell lines. Moreover, those cells were shown to adhere to the collagen matrices without noticeable change in their morphology. NT–loaded collagen dressings induced faster healing (17% wound area reduction) in the early phases of wound healing in diabetic wounded mice. In addition, they also significantly reduced inflammatory cytokine expression namely, TNF-α (p < 0.01) and IL-1β (p < 0.01) and decreased the inflammatory infiltrate at day 3 post-wounding (inflammatory phase). After complete healing, metalloproteinase 9 (MMP-9) is reduced in diabetic skin (p < 0.05) which significantly increased fibroblast migration and collagen (collagen type I, alpha 2 (COL1A2) and collagen type III, alpha 1 (COL3A1)) expression and deposition. These results suggest that collagen-based dressings can be an effective support for NT release into diabetic wound enhancing the healing process. Nevertheless, a more prominent scar is observed in diabetic wounds treated with collagen when compared to the treatment with NT alone.  相似文献   

17.
Laminar shear stress (LSS) due to blood flow contributes to the maintenance of endothelial health by multiple mechanisms including promotion of wound healing. The present study examined the hypothesis that the induction of water channel aquaporin 1 (AQP1) expression by LSS might be functionally associated with endothelial wound healing. When human umbilical vein endothelial cells were exposed to LSS at 12 dyn cm?2 for 24 h, significant increases in AQP1 expression were observed at the mRNA and protein levels as compared with static control. In the in vitro scratch wound healing assay, LSS treatments before and after wound creation enhanced endothelial wound healing and this effect was significantly attenuated by selective suppression of AQP1 expression using small interfering RNA. Ectopic expression of AQP1 enhanced wound healing in the absence of LSS. This study demonstrated that LSS stimulates the endothelial expression of AQP1 that plays a role in wound healing.  相似文献   

18.
The technique of surgical repair for zone two flexor tendon injuries has been debated extensively throughout the years, yet adhesion formation, suture rupture, and suture locking on the pulley edge remain possible consequences of a poor repair. The partially lacerated tendon is especially challenging to treat since there can be justification for not intervening surgically. In a partial laceration canine model we measured failure load and suture gap formation for tendons repaired with the Lee, modified four-strand Savage, Kessler, modified Kessler, and Augmented Becker core suture techniques and with a simple running peripheral suture. The modified Kessler (106.3 N, SD 18.8 N) and modified Savage (108.2 N, SD 19.9 N) repair techniques had a significantly higher failure load than the Lee (85.0 N, SD 20.6 N) suture method (P < 0.05), while there were no differences among the other techniques. There were no significant differences in resistance to gap formation among the repair techniques, with the mean values ranging from 38.9 N/mm (SD 15.7 N/mm) using the simple running suture to 53.2 N/mm (SD 25.8 N/mm) with the Kessler repair. The mean load to produce a 1.5 mm repair site gap ranged from 71.1 N (SD 21.5 N) in the Lee repair to 91.3 N (SD 22.2 N) in the Augmented Becker repair although there were no significant differences among repair methods. All repair methods were much weaker than tendons left unrepaired (184.7 N, SD 41.3 N).  相似文献   

19.
BackgroundTransforming growth factor beta inducible early gene-1 (TIEG-1), a member of the Krüppel-like factor, was identified as a primary response gene for TGF-β. The role of TIEG-1 in skin repair has been mainly addressed in vivo on TIEG-1 null mice model and the mechanism remains unexplored.MethodsWe investigated the modulation of TIEG-1 expression in normal human skin fibroblasts by either down-expressing or overexpressing the gene. We evaluated reactive oxygen species production and the cell viability of treated cells. The effect of TIEG-1 overexpression was monitored by wound healing assay and immunofluorescence staining of actin fibers organization and alpha-smooth muscle actin (α-SMA). Western blots were carried out to identify the level of expression or phosphorylation of key proteins such as cofilin, Rho GTPases, and p38 mitogen-activated protein kinase (p38 MAPK).ResultsTIEG-1 down-regulation had a deleterious effect on the cell viability. It was significantly reduced (65 ± 5%) and exposure to ultraviolet further increased this effect (47 ± 3%). By contrast, cells overexpressing TIEG-1 had a reduced reactive oxygen species production (75%) compared to control and mock-transfected cells. This overexpression also resulted in formation of actin stress fibers and increased α-SMA expression and an enhanced wound healing feature. RhoB GTPase was upregulated and phosphorylation of cofilin and p38 MAPK was observed.ConclusionTIEG-1 overexpression in normal human skin fibroblasts results in improved resistance to oxidative stress, myofibroblast-like conversion that involved RhoB signaling pathway with cofilin and p38 MAPK proteins activation.General significanceThis study enlightens the role of TIEG-1 role in skin biology.  相似文献   

20.
Extensive clinical and laboratory studies have demonstrated that growth factors accelerate and modulate the wound-healing process. The purpose of this experiment was to apply the principles of growth factor-enhanced wound healing to an in vitro rat tendon model. A method was developed for covalently binding a biologically active peptide to nonabsorbable braided polyester suture (Mersilene). Sutures were treated with various growth factors, which included epidermal growth factor, platelet-derived growth factor, and keratinocyte growth factor, and bovine serum albumin was the control. Spectrophotometric assessment was used to verify the peptide's activity. The suture was subsequently placed through individual harvested rat flexor tendons, which were arranged in standard tissue culture conditions. Markedly increased cellular proliferation along the suture was appreciated on the tendons treated with epidermal growth factor-bound suture. Platelet-derived growth factor was shown to have a lesser effect, whereas keratinocyte growth factor had no visible effect on cellular proliferation. This preliminary study describes a new technique of binding growth factors to suture. It also demonstrates that the presence of growth factors may help facilitate flexor tendon healing and allow early postoperative rehabilitation to decrease adhesion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号