首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
已知鸢尾属(Iris)植物约有280种且花部特征多变,具有较高的科研和观赏价值。尽管该属植物具备一定的克隆和自交繁殖能力,但传粉者介导的异交仍在其物种和遗传多样性的维持中发挥重要作用,然而目前仍缺乏对该属植物传粉者吸引及异交策略的系统性总结。本文首先简述了鸢尾属植物的传粉者种类及其适应动物传粉的花部构造,以明确其动物传粉概况。在此基础上,详细论述了该属植物如何通过视觉和嗅觉信号呈现花粉、花蜜和热量报酬供给等策略,实现对传粉者的有效吸引。在传粉者访问前后,鸢尾属植物还可通过合理的花展示、单花内雌雄功能的时空隔离以及传粉后的调控以实现最大程度的异交。此外,影响其传粉者吸引及异交的第三方生物和非生物因素,如食花者和资源配置,也应受到重视。今后随着相关研究的深入和技术手段的革新,研究者应针对鸢尾属植物传粉的热点或有争议的问题,采用花信号定量测定及异交率分子检测等先进技术,通过大范围的对比研究,深入揭示鸢尾属植物与传粉者的互作模式及其繁殖策略。  相似文献   

2.
气味腺是花器官上能够产生和释放花气味的特殊腺体结构,在传粉过程中与其他花部性状结合能够吸引传粉者访花,气味腺的研究有助于揭示动物与植物之间的协同进化机制,此外,气味腺外部形态特征及细胞微形态可作为分类依据之一。对气味腺的结构、类型和检测方法,及其在植物科属中的分布情况进行了归纳总结,并对气味腺在传粉过程中和分类学上的意义进行了分析。最后提出只有结合分子实验技术手段,全面综合考虑繁殖生物学和植物化学的分析方法,才能深入理解气味腺的多样性与演化。  相似文献   

3.
橙花瑞香的繁殖特性研究   总被引:1,自引:0,他引:1  
瑞香属植物具有重要的药用和观赏价值,在中国资源丰富,但自然条件下低坐果率限制了该属植物的进一步开发和利用。该研究以橙花瑞香为对象,通过对其有性繁殖及传粉特性的研究,探索其自然坐果率低的原因,内容包括花部特征的测量分析,MTT染色法测定花粉活性,联苯胺-过氧化氢法测定柱头可授性,扫描电镜观察柱头、花粉的形态,传粉者观察,通过花粉胚珠比(P/O)和人工授粉实验推测橙花瑞香的繁育系统类型。结果表明:橙花瑞香的花部结构特殊,管状小花,花药两轮,雌雄蕊分离。花开后的花粉具有活性,柱头具有可授性,扫描电镜下,柱头和花粉的结构没有发育异常,且柱头上有花粉落置。橙花瑞香的传粉者主要是夜间访花的蛾类,访花频率低。P/O及人工授粉实验表明橙花瑞香的繁育系统为专性异交。橙花瑞香的坐果率非常低,自然坐果率为1.4%,人工异花授粉为23.3%,低坐果率可能是受其开花量大、异花花粉限制、资源限制以及花部结构等因素的影响。  相似文献   

4.
草乌传粉过程中的广告效应与回报物质研究   总被引:2,自引:0,他引:2  
虫媒传粉植物与其传粉者之间的相互作用被认为是被子植物花多样性的一个重要选择压力。这种相互作用体现在植物对传粉者的吸引以及传粉者行为对花粉的转运两个方面。本项研究通过去除不同的花部器官研究了草乌(Aconitum kusnezoffii)对其传粉者的吸引, 并结合传粉者的访问行为和草乌花的生物学特性探讨了传粉过程与交配系统的适应。红光熊蜂(Bombus ignites)是草乌的有效传粉者。去除花萼片显著降低了红光熊蜂的访问频率, 但去除特化成蜜腺叶的花瓣并没有显著改变红光熊蜂的访问频率, 这表明草乌吸引红光熊蜂的主要结构是由5枚萼片组成的花部外观形态, 而非花瓣。花蜜是草乌提供给红光熊蜂的回报物质, 糖浓度为39.23%, 组氨酸浓度为0.25 μg/μL。草乌花较大、单花花期长、雌雄异熟、花粉寿命长, 是一个自交亲和但需传粉者传粉完成繁殖过程的异交物种。草乌花序是无限花序, 当上部的花处于雄性阶段时, 下部的花正好处于雌性阶段。而红光熊蜂在草乌花序上的访问顺序通常自下而上, 带来异交花粉为下部的花进行异花授精, 同时又带走上部花的花粉, 这就很好地促进了草乌的异交。草乌雄蕊自外向内逐渐成熟, 是一种有效的限制传粉者单次访问浪费大量花粉的花粉装配策略, 能提高植物通过花粉散布获得的雄性适合度。  相似文献   

5.
新疆党参的花部综合征与次级花粉呈现   总被引:2,自引:0,他引:2  
次级花粉呈现是植物提高花粉输出和接受的效率与准确性以及促进异交的一种繁殖策略.新疆党参(Codonopsis clematidea)具有典型的次级花粉呈现特性.本文采用野外观测、授粉实验与室内显微观测等方法,对该物种的花部综合征及其次级花粉呈现过程进行了详细观测,并对这些特征的适应意义进行了探讨.结果表明:新疆党参钟状下垂的蓝色花冠及黑黄色蜜腺,不仅避免了雨水冲刷雌雄蕊、稀释花蜜以及风移出花粉等不利影响,还增加了对传粉者的吸引,延长了花粉活力及柱头可授性持续时间.次级花粉呈现属于亚顶端花柱呈现者,呈现机制为沉积机制.该特性限制了单个传粉者带走的花粉量,延长了花粉呈现时间,使更多传粉者参与传粉过程,增加了雄性适合度.其雄性先熟及雌雄蕊空间位置变化,避免了雌雄功能干扰,为传粉者取食花蜜、输出花粉以及柱头接受异源花粉提供了通道和机会.其泛化传粉系统的主要传粉昆虫为林野熊蜂(Bombus silvarum)、草地熊蜂(B.paradoxus)和树长黄胡蜂(Dolichovespula sylvestris),其较长的单花花期(6 d左右),昆虫访花高峰期与花粉活力最高时期及柱头最佳授粉期相吻合,以及较大的泌蜜量、较高的花蜜糖浓度和较长的泌蜜时间等特征,可提高传粉者的访花频率,增加成功传粉的机会和传粉效率.在气候多变的天山山区,该物种特殊的花部综合征和次级花粉呈现机制对提高其传粉效率并促进异交繁殖成功具有重要意义.  相似文献   

6.
火把花(Colquhounia coccinea?)表现出典型的鸟媒综合征,因此具有作为引鸟景观植物的开发潜力。以自然、人工生境的火把花居群为研究对象,通过观察和试验对其开花物候、花部综合特征、访花动物及其行为、繁育系统、种子萌发特性进行研究,以明确火把花的繁殖特性及对不同访花动物的吸引潜力。结果显示,火把花的整体花期持续约3个月,单花花期为9.6±0.6 d;花蜜较丰富且稀薄,具有较短的花冠管和己糖为主的花蜜糖组成;访花动物主要是中华蜜蜂和多种食蜜鸟类,尤其是短喙的泛化鸟类,且在非自然生境中仍然能吸引鸟类访花;完全自交亲和但需要传粉者才能完成授粉,不存在花粉限制;不同授粉处理种子的发芽能力无显著差异;中华蜜蜂能有效传粉,鸟类的传粉作用需进一步验证。综上所述,火把花可供观赏的时间很长,具有明显的吸引鸟类访花的能力,容易通过有性繁殖途径快速获得大量幼苗。  相似文献   

7.
天南星科植物具有特殊的佛焰苞花序及多样化的传粉策略, 是研究被子植物花的分化与动植物之间进化生态学联系的理想材料。本文简述了天南星科不同类型的花序结构及其传粉适应意义, 总结了天南星科传粉策略的基本类型与演化历史。天南星科的苞片结构主要包括原始型、外展平面型、直立宽佛焰苞型和直立狭佛焰苞4种类型, 呈现出从简单的片状与外展平面状结构向复杂的立体包裹状的佛焰苞结构演化的趋势。肉穗花序可分为两性花花序、单性花雌雄同序和单性花雌雄异序3种类型, 演化路线为两性花花序→单性花雌雄同序→单性花雌雄异序。天南星科的传粉者主要有鞘翅目、双翅目、膜翅目昆虫, 表现出5种主要传粉策略: 食物报酬型互利传粉、气味吸引型欺骗性传粉、交配场所型互利传粉、产卵场所型互利传粉和致死陷阱型欺骗性传粉。天南星科植物通过花序的形状、颜色、产热以及花部挥发物来吸引传粉者, 其中最主要的挥发物有二甲基硫化物、甲基吲哚化合物、萜类和苯类化合物, 模拟食物或产卵场所信号吸引鞘翅目甲虫和双翅目昆虫为其传粉。天南星科植物的佛焰苞被认为是促进该科物种分化的一个重要结构, 但该性状的演化历史及其与传粉系统分化之间的内在联系尚不明确。利用现代分子生物学技术以及模型模拟等手段, 结合生理生态学方法深入探究传粉事件与天南星科植物的花多样性以及物种分化之间的联系, 有望提升关于植物-传粉者互作与植物的花多样性分化之间关系的认识, 并丰富对被子植物多样性演化相关研究的理解。  相似文献   

8.
青藏高原及周边高山地区孕育了极为丰富的植物多样性资源, 研究该地区植物如何顺利完成繁殖过程有助于我们理解植物对典型高山环境的进化和适应机制。该文综述了青藏高原地区高山植物在资源分配、繁殖方式、花部特征演化等方面的研究进展, 包括全球气候变化对植物繁殖特征的影响, 以及一些新技术和新方法在本研究领域的应用。在高山地区限制性环境中, 随海拔升高, 繁殖分配通常表现出增大的趋势, 其中投入到雄性资源的比例上升, 但具体的资源分配模式还要取决于植株的交配系统、个体大小、生活史特征、遗传特性以及环境中的资源有效性等。面对资源和传粉的双重限制, 植物在不同繁殖方式之间存在权衡, 当传粉者稀少时, 克隆繁殖和自交有利于繁殖保障; 而有性繁殖和异交能够提高种子的质量和后代的遗传多样性, 从而在复杂多变的气候条件下有利于种群的维持。因此, 不同繁殖方式的结合以及泛化的传粉互作网络可能是应对高山限制性环境的最优选择。花部特征的演化主要受到当地传粉者的选择压力, 但是外来传粉者、植食者、盗蜜者以及非生物环境(如温度、雨水和紫外辐射等)对花部性状的影响越来越受到重视。近年来, 青藏高原因其脆弱性和对气候变化的高度敏感性而在全球气候变化研究中备受关注, 以全球变暖和氮沉降增加为显著特征的全球气候变化正在直接或间接地影响着该地区高山植物的繁殖特征。气候变化影响植物和传粉者的物候并引起物种的迁移, 最终将导致植物与传粉者的时空不匹配。植物通过改变花部特征(花展示、花冠结构、花报酬的数量和质量)来响应气候变化, 这可能会改变其传粉者的类型、数量和访花行为, 从而最终影响植物的繁殖成功。3D打印和高通量测序等新技术和新方法的应用有助于促进植物繁殖生态学研究的进一步发展。3D打印的花能够精确控制其形态构造, 可以用于研究精细的花部特征变化对于传粉者行为的影响, 在此基础上与人工饲养的传粉者结合使用, 有助于进一步研究传粉者介导的花部特征演化。随着高通量测序技术的发展, 植物繁殖生态学领域, 尤其是花部特征演化的许多重要问题的潜在机制得以深入研究。该文最后提出了目前研究中需要注意的问题以及值得深入研究的发展方向。  相似文献   

9.
青藏高原及周边高山地区孕育了极为丰富的植物多样性资源,研究该地区植物如何顺利完成繁殖过程有助于我们理解植物对典型高山环境的进化和适应机制。该文综述了青藏高原地区高山植物在资源分配、繁殖方式、花部特征演化等方面的研究进展,包括全球气候变化对植物繁殖特征的影响,以及一些新技术和新方法在本研究领域的应用。在高山地区限制性环境中,随海拔升高,繁殖分配通常表现出增大的趋势,其中投入到雄性资源的比例上升,但具体的资源分配模式还要取决于植株的交配系统、个体大小、生活史特征、遗传特性以及环境中的资源有效性等。面对资源和传粉的双重限制,植物在不同繁殖方式之间存在权衡,当传粉者稀少时,克隆繁殖和自交有利于繁殖保障;而有性繁殖和异交能够提高种子的质量和后代的遗传多样性,从而在复杂多变的气候条件下有利于种群的维持。因此,不同繁殖方式的结合以及泛化的传粉互作网络可能是应对高山限制性环境的最优选择。花部特征的演化主要受到当地传粉者的选择压力,但是外来传粉者、植食者、盗蜜者以及非生物环境(如温度、雨水和紫外辐射等)对花部性状的影响越来越受到重视。近年来,青藏高原因其脆弱性和对气候变化的高度敏感性而在全球气候变化研究中备受关注,以全球变暖和氮沉降增加为显著特征的全球气候变化正在直接或间接地影响着该地区高山植物的繁殖特征。气候变化影响植物和传粉者的物候并引起物种的迁移,最终将导致植物与传粉者的时空不匹配。植物通过改变花部特征(花展示、花冠结构、花报酬的数量和质量)来响应气候变化,这可能会改变其传粉者的类型、数量和访花行为,从而最终影响植物的繁殖成功。3D打印和高通量测序等新技术和新方法的应用有助于促进植物繁殖生态学研究的进一步发展。3D打印的花能够精确控制其形态构造,可以用于研究精细的花部特征变化对于传粉者行为的影响,在此基础上与人工饲养的传粉者结合使用,有助于进一步研究传粉者介导的花部特征演化。随着高通量测序技术的发展,植物繁殖生态学领域,尤其是花部特征演化的许多重要问题的潜在机制得以深入研究。该文最后提出了目前研究中需要注意的问题以及值得深入研究的发展方向。  相似文献   

10.
以分布于秦岭的金花忍冬(Lonicera chrysantha Turcz.)、忍冬(L.japonica Thunb.)、葱皮忍冬(L.ferdinandii Franch.)和金银忍冬(L.maackii(Rupr.)Maxim.)为对象,通过定位观察、人工授粉实验、人为设置实验斑块的方法对忍冬属4种植物的开花生物学特性、繁育系统、花色变化现象、传粉过程进行了研究。结果表明,4种植物的单花花期、花部特征存在差异。人工授粉实验显示,4种植物均存在一定的花粉限制,自交不亲和。除葱皮忍冬外,其余3种植物随着花色由白变黄,花粉和花蜜报酬减少、雌雄生殖能力逐渐降低;葱皮忍冬花变色后花蜜量变化不显著,且仍保留较强的雌性生殖能力。变色花的保留被认为是植物的一种生殖策略,通过增大植物的花展示来扩大自身的吸引力,以吸引更多远距传粉者访花。人为控制白、黄花不同数量比的实验结果表明,大多数传粉者偏向访问白花(变色前的花),且白花提供的报酬量和黄花(变色后的花)数量显著影响传粉者的访花频率,即当花蜜量减少或黄花数量增多时,传粉者访花频率随之降低。因此,我们认为忍冬属4种植物的花色变化可能除了增大植物对远距传粉者的吸引力外,对近距传粉者的访花行为也可能具有一定的影响。当传粉者接近植株时,变色后的花可能暗示其花蜜(花粉)报酬已经发生变化,并驱使昆虫离开并飞向同株或异株植物新开放的报酬丰富的白花,这既有利于提高传粉者的觅食效率,又能降低植物同株异花授粉的几率,对忍冬属植物及传粉者都具有重要意义,是植物长期与授粉昆虫相互适应的反映。  相似文献   

11.
Plant–pollinator interactions are believed to play a major role in the evolution of floral traits. Flower colour and flower size are important for attracting pollinators, directly influencing reproduction, and thus expected to be under pollinator‐mediated selection. Pollinator‐mediated selection is also proposed to play a role in maintaining flower colour polymorphism within populations. However, pigment concentrations, and thus flower colour, are also under selective pressures independent of pollinators. We quantified phenotypic pollinator‐mediated selection on flower colour and size in two colour polymorphic Iris species. Using female fitness, we estimated phenotypic selection on flower colour and size, and tested for pollinator‐mediated selection by comparing selection gradients between flowers open to natural pollination and supplementary pollinated flowers. In both species, we found evidence for pollen limitation, which set the base for pollinator‐mediated selection. In the colour dimorphic Iris lutescens, while pigment concentration and flower size were found to be under selection, this was independent of pollinators. For the polymorphic Iris pumila, pigment concentration is under selective pressure by pollinators, but only for one colour morph. Our results suggest that pollinators are not the main agents of selection on floral traits in these irises, as opposed to the accepted paradigm on floral evolution. This study provides an opposing example to the largely‐accepted theory that pollinators are the major agent of selection on floral traits.  相似文献   

12.
The diversity of angiosperm flowers is astounding. The conventional explanation for this diversity is that it represents the great variety of ways in which flowers have adapted to attract an even greater diversity of animal pollinators. Many animal behaviourists are therefore interested in how changes in floral morphology affect pollinator behaviour. The establishment of well-characterised model plant species has greatly furthered our understanding of how floral morphology is generated and varied. Many of these model species are pollinated by animals and attract their pollinators through the production of colour, shape, scent, size and rewards. An understanding of the developmental plasticity of floral morphology, and the constraints upon it, should inform research into animal responses to flowers. The use of genetically characterised model species, and the isogenic and near-isogenic lines available in them, will allow dissection of the different components of floral attraction and reward in natural systems. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: Heikki Hokkanen  相似文献   

13.
Plant mating systems are driven by several pre‐pollination factors, including pollinator availability, mate availability and reproductive traits. We investigated the relative contributions of these factors to pollination and to realized outcrossing rates in the patchily distributed mass‐flowering shrub Rhododendron ferrugineum. We jointly monitored pollen limitation (comparing seed set from intact and pollen‐supplemented flowers), reproductive traits (herkogamy, flower size and autofertility) and mating patterns (progeny array analysis) in 28 natural patches varying in the level of pollinator availability (flower visitation rates) and of mate availability (patch floral display estimated as the total number of inflorescences per patch). Our results showed that patch floral display was the strongest determinant of pollination and of the realized outcrossing rates in this mass‐flowering species. We found an increase in pollen limitation and in outcrossing rates with increasing patch floral display. Reproductive traits were not significantly related to patch floral display, while autofertility was negatively correlated to outcrossing rates. These findings suggest that mate limitation, arising from high flower visitation rates in small plant patches, resulted in low pollen limitation and high selfing rates, while pollinator limitation, arising from low flower visitation rates in large plant patches, resulted in higher pollen limitation and outcrossing rates. Pollinator‐mediated selfing and geitonogamy likely alleviates pollen limitation in the case of reduced mate availability, while reduced pollinator availability (intraspecific competition for pollinator services) may result in the maintenance of high outcrossing rates despite reduced seed production.  相似文献   

14.
For alpine plant species, patterns of resource allocation to functional floral traits for pollinator attraction can be highly significant in adaptation to low pollinator abundance and consequent pollen limitation. Increased pollination can be achieved either through a larger floral display or production of more pollen rewards. In this study, variation in resource allocation to different components for pollinator attraction was studied along an altitudinal gradient in Trollius ranunculoides, an obligate self‐incompatible out‐crosser of the Qinghai–Tibet Plateau. We compared resource allocation to conspicuous yellow sepals (which mainly provide visual attraction) and degenerate petals (which provide the major nectar reward) between populations at four altitudes. Furthermore, we investigated the contribution of sepals and petals to pollinator attraction and female reproductive success in an experiment with sepal or petal removal at sites at different altitudes. At the level of single flowers, resource allocation increased to sepals but decreased to petals with increasing altitude. Consistent with these results, sepals contributed much more to visitation rate and seed set than petals, as confirmed in the sepal or petal removal experiment. Sepals and petals contributed to female reproductive success by ensuring visitation rate rather than visitation duration. To alleviate increasing pollen limitation with increasing altitude, resource allocation patterns of T. ranunculoides altered to favour development of sepals rather than petals. This strategy may improve pollination and reproductive success through visual attraction (sepal) rather than nectar reward (petal) over a gradient of decreasing pollinator abundance.  相似文献   

15.
Chemical signals emitted by plants are crucial to understand the ecology and evolution of plant–animal interactions. Scent is an important component of floral phenotype and represents a decisive communication channel between plants and floral visitors. Floral volatiles promote attraction of mutualistic pollinators and, in some cases, serve to prevent flower visitation by antagonists such as ants. Despite ant visits to flowers have been suggested to be detrimental to plant fitness, in recent years there has been a growing recognition of the positive role of ants in pollination. Nevertheless, the question of whether floral volatiles mediate mutualisms between ants and ant-pollinated plants still remains largely unexplored. Here we review the documented cases of ant pollination and investigate the chemical composition of the floral scent in the ant-pollinated plant Cytinus hypocistis. By using chemical-electrophysiological analyses and field behavioural assays, we examine the importance of olfactory cues for ants, identify compounds that stimulate antennal responses, and evaluate whether these compounds elicit behavioural responses. Our findings reveal that floral scent plays a crucial role in this mutualistic ant–flower interaction, and that only ant species that provide pollination services and not others occurring in the habitat are efficiently attracted by floral volatiles. 4-oxoisophorone, (E)-cinnamaldehyde, and (E)-cinnamyl alcohol were the most abundant compounds in Cytinus flowers, and ant antennae responded to all of them. Four ant pollinator species were significantly attracted to volatiles emitted by Cytinus inflorescences as well as to synthetic mixtures and single antennal-active compounds. The small amount of available data so far suggest that there is broad interspecific variation in floral scent composition among ant-pollinated plants, which could reflect differential responses and olfactory preferences among different ant species. Many exciting discoveries will be made as we enter into further research on chemical communication between ants and plants.  相似文献   

16.
Background and AimsOrnamental flowering plant species are often used in managed greenspaces to attract and support pollinator populations. In natural systems, selection by pollinators is hypothesized to result in convergent multimodal floral phenotypes that are more attractive to specific pollinator taxa. In contrast, ornamental cultivars are bred via artificial selection by humans, and exhibit diverse and distinct phenotypes. Despite their prevalence in managed habitats, the influence of cultivar phenotypic variation on plant attractiveness to pollinator taxa is not well resolved.MethodsWe used a combination of field and behavioural assays to evaluate how variation in floral visual, chemical and nutritional traits impacted overall attractiveness and visitation by pollinator taxonomic groups and bee species to 25 cultivars of five herbaceous perennial ornamental plant genera.Key resultsDespite significant phenotypic variation, cultivars tended to attract a broad range of pollinator species. Nonetheless, at the level of insect order (bee, fly, butterfly, beetle), attraction was generally modulated by traits consistent with the pollination syndrome hypothesis. At the level of bee species, the relative influence of traits on visitation varied across plant genera, with some floral phenotypes leading to a broadening of the visitor community, and others leading to exclusion of visitation by certain bee species.ConclusionsOur results demonstrate how pollinator choice is mediated by complex multimodal floral signals. Importantly, the traits that had the greatest and most consistent effect on regulating pollinator attraction were those that are commonly selected for in cultivar development. Though variation among cultivars in floral traits may limit the pollinator community by excluding certain species, it may also encourage interactions with generalist taxa to support pollinator diversity in managed landscapes.  相似文献   

17.
Plant–pollinator interactions provide ideal frameworks for studying interactions in plant communities. Despite the large potential influence of such interactions on plant community structure, biodiversity and evolutionary processes, we know surprisingly little about the relative importance of positive and negative interactions among plant species for pollinator attraction. Therefore, we explored the relationships between conspecific and heterospecific floral densities and the flower visitation rates of nine plant species mainly visited by bumble bees, and six plant species mainly visited by flies, in a temperate grassland, through stepwise multiple regressions. Significant relationships were interpreted as interactions for pollinator attraction. Our results revealed that positive intra- and interspecific interactions for pollinator attraction were far more frequent than negative ones. Seventeen interspecific interactions were revealed of which 14 were significantly positive, whereas three of four significant intraspecific interactions were positive. Seven species experienced only positive interactions and two species experienced only negative interactions. The results presented here indicate that negative interactions are not necessarily the dominant ecological interaction for pollination among plants within a community, and the study represents a straightforward approach to study intra- and interspecific interactions among multiple species within a community. We discuss which mechanisms may drive the positive interactions for pollinator attraction and whether this may result in facilitative effects on reproductive success. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Floral traits and sexual systems in angiosperms are strategies that enhance outcrossing within hermaphrodite flowers and among individuals in a population. Sexual systems with unisexual flowers have also evolved among angiosperms, resulting in sex specialization. Furthermore, the interaction of floral traits and floral visitors determines successful plant reproduction. Globose cacti are bee pollinated, and variation in the diversity of their pollinator assemblages is strongly associated with floral phenotype. Our objective was to describe the floral biology of the cactus Coryphantha elephantidens and to determine its relationship with pollinators. Floral traits were studied by direct observations in live and fixed flowers. The breeding system was determined using two estimators based on floral morphology: pollen grains to ovules per flower (P/O) ratio and outcrossing index. Pollination treatments were conducted to determine the mating system. Floral visitors were recorded using direct observation. Flowers of C. elephantidens are variable in color, protandric, herkogamous and nectarless. Estimators of the breeding system indicated xenogamy, which is consistent with the obligate outcrossing revealed by the pollination experiment. Thirty-seven percent of the plants have female flowers that do not produce pollen, making this population functionally gynodioecious. Both fruit and seed set were high compared to other globose cacti. Pollinators included eight species of native bees, a more diverse pollinator assemblage than other globose cacti. Given the high pressure on pollen due to functional gynodioecy, nectarless flowers, an outcrossing mating system, and the necessity of pollinators to set seeds, we concluded that native bees are highly efficient pollinators that play a crucial role in the sexual reproduction of C. elephantidens.  相似文献   

19.
Ayasse M  Stökl J  Francke W 《Phytochemistry》2011,72(13):1667-1677
Sexually deceptive orchids mimic females of their pollinator species to attract male insects for pollination. Pollination by sexual deception has independently evolved in European, Australian, South African, and South American orchid taxa. Reproductive isolation is mainly based on pre-mating isolation barriers, the specific attraction of males of a single pollinator species, mostly bees, by mimicking the female species-specific sex-pheromone. However, in rare cases post-mating barriers have been found. Sexually deceptive orchids are ideal candidates for studies of sympatric speciation, because key adaptive traits such as the pollinator-attracting scent are associated with their reproductive success and with pre-mating isolation.During the last two decades several investigations studied processes of ecological speciation in sexually deceptive orchids of Europe and Australia. Using various methods like behavioural experiments, chemical, electrophysiological, and population-genetic analyses it was shown that minor changes in floral odour bouquets might be the driving force for pollinator shifts and speciation events. New pollinators act as an isolation barrier towards other sympatrically occurring species. Hybridization occurs because of similar odour bouquets of species and the overlap of flowering periods. Hybrid speciation can also lead to the displacement of species by the hybrid population, if its reproductive success is higher than that in the parental species.  相似文献   

20.
  • ● Many angiosperms are hermaphroditic and produce bisexual flowers in which male (pollen export) and female (stigma receptivity) functions are separated temporally. This sequential hermaphroditism may be associated with variation in flower size, color, or pattern, all of which may influence pollinator attraction. In this study, we describe variation in these traits across discrete functional sex stages within and between 225 greenhouse‐grown individuals of Clarkia unguiculata (Onagraceae). In addition, to identify the effects of floral phenotype on pollinator attraction in this species, we examine the effects of these floral traits on pollen receipt in ~180 individuals in an experimental field array.
  • ● Petal area, ultraviolet (UV)‐absorbing nectar guide area, and blue and green mean petal reflectance differ significantly across the functional sex stages of C. unguiculata. Male‐ and female‐phase flowers display significantly different pollinator attraction traits. Petal and UV nectar guide area increase as flowers progress from male phase to female phase, while blue reflectance and green reflectance peak during anther maturation.
  • ● In field arrays of C. unguiculata, female‐phase flowers with large UV nectar guides receive more pollen than those with small nectar guides, and female‐phase flowers with high mean blue reflectance values are more likely to receive pollen than those with low blue reflectance. Female‐phase flowers with green mean reflectance values that differ most from background foliage also receive more pollen than those that are more similar to foliage. These findings indicate that components of flower color and pattern influence pollen receipt, independent of other plant attributes that may covary with floral traits. We discuss these results in the context of hypotheses that have been proposed to explain sex‐specific floral attraction traits, and we suggest future research that could improve our understanding of sexual dimorphism in sequentially hermaphroditic species and the evolution of features that promote outcrossing.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号