首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Semaphorins are cell surface and secreted proteins that provide axonal guidance in neuronal tissues and regulate cell motility in many cell types. They act by binding a family of transmembrane receptors known as plexins, which belong to the c-Met family of scatter factor receptors but lack an intrinsic tyrosine kinase domain. Interestingly, we have recently shown that Plexin-B1 is highly expressed in endothelial cells and that its activation by Semaphorin 4D elicits a potent proangiogenic response (J. R. Basile, A. Barac, T. Zhu, K. L. Guan, and J. S. Gutkind, Cancer Res. 64:5212-5224, 2004). In searches for the underlying molecular mechanism, we observed that Semaphorin 4D-stimulated endothelial cell migration requires the activation of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway. Surprisingly, we found that Plexin-B1 stimulates PI3K-Akt through the activation of an intracellular tyrosine kinase cascade that involves the sequential activation of PYK2 and Src. This results in the tyrosine phosphorylation of Plexin-B1, the rapid recruitment of a multimeric signaling complex that includes PYK2, Src, and PI3K to Plexin-B1 and the activation of Akt. These findings suggest that Plexin-B1 may achieve its numerous physiological functions through the direct activation of intracellular tyrosine kinase cascades.  相似文献   

4.
The angiopoietin family of secreted factors is functionally defined by the C-terminal fibrinogen (FBN)-like domain, which mediates binding to the Tie2 receptor and thereby facilitates a cascade of events ultimately regulating blood vessel formation. By screening expressed sequence tag data bases for homologies to a consensus FBN-like motive, we have identified ANGPTL3, a liver-specific, secreted factor consisting of an N-terminal coiled-coil domain and the C-terminal FBN-like domain. Co-immunoprecipitation experiments, however, failed to detect binding of ANGPTL3 to the Tie2 receptor. A molecular model of the FBN-like domain of ANGPTL3 was generated and predicted potential binding to integrins. This hypothesis was experimentally confirmed by the finding that recombinant ANGPTL3 bound to alpha(v)beta(3) and induced integrin alpha(v)beta(3)-dependent haptotactic endothelial cell adhesion and migration and stimulated signal transduction pathways characteristic for integrin activation, including phosphorylation of Akt, mitogen-activated protein kinase, and focal adhesion kinase. When tested in the rat corneal assay, ANGPTL3 strongly induced angiogenesis with comparable magnitude as observed for vascular endothelial growth factor-A. Moreover, the C-terminal FBN-like domain alone was sufficient to induce endothelial cell adhesion and in vivo angiogenesis. Taken together, our data demonstrate that ANGPTL3 is the first member of the angiopoietin-like family of secreted factors binding to integrin alpha(v)beta(3) and suggest a possible role in the regulation of angiogenesis.  相似文献   

5.
Neuropilin in the midst of cell migration and retraction   总被引:4,自引:0,他引:4  
Neuropilin (NRP) is a 140 kDa membrane protein, with a large extracellular domain and a short cytoplasmic tail, that was isolated in 1987 from the optic tactum of Xenopus laevis. About 10 years after its isolation, NRP was identified as a receptor for semaphorin, a family of axonal chemorepellent proteins and for vascular endothelial growth factor (VEGF), a family of potent angiogenic factors. In the nervous system, NRP forms a high affinity semaphorin-binding complex with a receptor tyrosine kinase, plexin, that mediates semaphorin-induced growth cone collapse. On the endothelium, NRP is expressed together with KDR, a VEGF receptor tyrosine kinase. We have shown that NRP potentiated KDR-mediated endothelial cell migration and proliferation. Some tumor cells can express high levels of NRP, which is typically their only VEGF receptor, but do not seem to respond to VEGF directly. Possible use of NRP as a target for VEGF antagonists, in the context of antiangiogenic therapy, are described.  相似文献   

6.
In this study, an in vitro model of the blood-brain barrier,consisting of porcine brain-derived microvascular endothelial cells(BMEC), was used to evaluate the mechanism of hypoxia-induced hyperpermeability. We show that hypoxia-induced permeability in BMECwas completely abolished by a neutralizing antibody to vascular endothelial growth factor (VEGF). In contrast, under normoxic conditions, addition of VEGF up to 100 ng/ml did not alter monolayer barrier function. Treatment with either hypoxia or VEGF under normoxicconditions induced a twofold increase in VEGF binding sites and VEGFreceptor 1 (Flt-1) mRNA expression in BMEC. Hypoxia-induced permeability also was prevented by the nitric oxide (NO) synthase inhibitor NG-monomethyl-L-arginine,suggesting that NO is involved in hypoxia-induced permeability changes,which was confirmed by measurements of the cGMP level. During normoxia,treatment with VEGF (5 ng/ml) increased permeability as well as cGMPcontent in the presence of several antioxidants. These results suggestthat hypoxia-induced permeability in vitro is mediated by the VEGF/VEGFreceptor system in an autocrine manner and is essentially dependent onreducing conditions stabilizing the second messenger NO as the mediatorof changes in barrier function of BMEC.  相似文献   

7.
8.
Prostaglandin E2 (PGE(2)), a major product of cyclooxygenase, exerts its functions by binding to four G protein-coupled receptors (EP1-4) and has been implicated in modulating angiogenesis. The present study examined the role of the EP4 receptor in regulating endothelial cell proliferation, migration, and tubulogenesis. Primary pulmonary microvascular endothelial cells were isolated from EP4(flox/flox) mice and were rendered null for the EP4 receptor with adenoCre virus. Whereas treatment with PGE(2) or the EP4 selective agonists PGE(1)-OH and ONO-AE1-329 induced migration, tubulogenesis, ERK activation and cAMP production in control adenovirus-transduced endothelial EP4(flox/flox) cells, no effects were seen in adenoCre-transduced EP4(flox/flox) cells. The EP4 agonist-induced endothelial cell migration was inhibited by ERK, but not PKA inhibitors, defining a functional link between PGE(2)-induced endothelial cell migration and EP4-mediated ERK signaling. Finally, PGE(2), as well as PGE(1)-OH and ONO-AE1-329, also promoted angiogenesis in an in vivo sponge assay providing evidence that the EP4 receptor mediates de novo vascularization in vivo.  相似文献   

9.
Migratory capacity and resistance to apoptosis are crucial for proper endothelial function. In a screen for anti-apoptotic genes in a breast cancer cell line, we identified Grainyhead like 3 (GRHL3). Therefore, the aim of our study was to investigate whether GRHL3 is expressed in endothelial cells and moreover, to determine its role in migration, apoptosis and senescence. GRHL3 is expressed in human endothelial cells. GRHL3 is required for endothelial cell migration. The underlying mechanism is independent of vascular endothelial growth factor. GRHL3 induces Akt and endothelial nitric oxide synthase phosphorylation and its expression is increased by physiological concentrations of nitric oxide. Nitric oxide dependent migration is completely dependent on GRHL3 expression. Moreover, GRHL3 inhibits apoptosis of endothelial cells in an eNOS-dependent manner. Thus, loss of GRHL3 may result in endothelial dysfunction in vivo. One may consider new therapeutic strategies with the aim to conserve GRHL3 expression in the vasculature.  相似文献   

10.
11.
Signals via FGF receptor 2 regulate migration of endothelial cells.   总被引:3,自引:0,他引:3  
Fibroblast growth factors (FGFs) stimulate angiogenesis, of which signals are transduced via FGF receptor (FGFR) tyrosine kinases. Although FGFR1 is a major receptor in endothelial cells, FGFR2 is frequently detectable in endothelial cells. We have previously demonstrated that the intracellular domain of FGFR1 sufficiently transduced signals leading to proliferation, migration, urokinase secretion, and tube formation. However, little is known about the roles of signaling via FGFR2 alone in endothelial cells. Murine brain capillary endothelial cells, denoted IBE cells, express small amounts of IIIc FGFR2, which is not activated by keratinocyte growth factor (KGF). We then transfected the IIIb FGFR2 in these cells. Three stable cell lines expressing IIIb FGFR2 demonstrated chemotaxis toward KGF, but never proliferated, secreted urokinase, or formed tube-like structure by KGF treatment. Weak but sustained activation of mitogen-activated protein kinase (MAPK) was observed in these cells. Chemotaxis toward KGF was significantly attenuated by treatment with PD98059. This is the first demonstration that signaling solely via FGFR2 in endothelial cells only contributes to motility through MAPK.  相似文献   

12.
PIAS3 induces SUMO-1 modification and transcriptional repression of IRF-1   总被引:2,自引:0,他引:2  
Nakagawa K  Yokosawa H 《FEBS letters》2002,530(1-3):204-208
  相似文献   

13.
The goals of this study were 2-fold: 1) to determine whether stimulation of Eph B4 receptors promotes microvascular endothelial cell migration and/or proliferation, and 2) to elucidate signaling pathways involved in these responses. The human endothelial cells used possessed abundant Eph B4 receptors with no endogenous ephrin B2 expression. Stimulation of these receptors with ephrin B2/Fc chimera resulted in dose- and time-dependent phosphorylation of Akt. These responses were inhibited by LY294002 and ML-9, blockers of phosphatidylinositol 3-kinase (PI3K) and Akt, respectively. Eph B4 receptor activation increased proliferation by 38%, which was prevented by prior blockade with LY294002, ML-9, and inhibitors of protein kinase G (KT5823) and MEK (PD98059). Nitrite levels increased over 170% after Eph B4 stimulation, indicating increased nitric oxide production. Signaling of endothelial cell proliferation appears to be mediated by a PI3K/Akt/endothelial nitric-oxide synthase/protein kinase G/mitogen-activated protein kinase cascade. Stimulation with ephrin B2 also increased migration by 63% versus controls. This effect was inhibited by blockade with PP2 (Src inhibitor), LY294002 or ML-9 but was unaffected by the PKG and MEK blockers. Eph B4 receptor stimulation increased activation of both matrix metalloproteinase-2 and -9. The results from these studies indicate that Eph B4 stimulates migration and proliferation and may play a role in angiogenesis.  相似文献   

14.
15.
16.
Pan S  An P  Zhang R  He X  Yin G  Min W 《Molecular and cellular biology》2002,22(21):7512-7523
Tumor necrosis factor (TNF) is a cytokine that mediates many pathophysiologial processes, including angiogenesis. However, the molecular signaling involved in TNF-induced angiogenesis has not been determined. In this study, we examined the role of Etk/Bmx, an endothelial/epithelial tyrosine kinase involved in cell adhesion, migration, and survival in TNF-induced angiogenesis. We show that TNF activates Etk specifically through TNF receptor type 2 (TNFR2) as demonstrated by studies using a specific agonist to TNFR2 and TNFR2-deficient cells. Etk forms a preexisting complex with TNFR2 in a ligand-independent manner, and the association is through multiple domains (pleckstrin homology domain, TEC homology domain, and SH2 domain) of Etk and the C-terminal domain of TNFR2. The C-terminal 16-amino-acid residues of TNFR2 are critical for Etk association and activation, and this Etk-binding and activating motif in TNFR2 is not overlapped with the TNFR-associated factor type 2 (TRAF2)-binding sequence. Thus, TRAF2 is not involved in TNF-induced Etk activation, suggesting a novel mechanism for Etk activation by cytokine receptors. Moreover, a constitutively active form of Etk enhanced, whereas a dominant-negative Etk blocked, TNF-induced endothelial cell migration and tube formation. While most TNF actions have been attributed to TNFR1, our studies demonstrate that Etk is a TNFR2-specific kinase involved in TNF-induced angiogenic events.  相似文献   

17.
18.
19.
20.
Eotaxin is a potent chemokine that acts via CC chemokine receptor 3 (CCR3) to induce chemotaxis, mainly on eosinophils. Here we show that eotaxin also induces chemotactic migration in rat basophilic leukemia (RBL-2H3) mast cells. This effect was dose-dependently inhibited by compound X, a selective CCR3 antagonist, indicating that, as in eosinophils, the effect was mediated by CCR3. Eotaxin-induced cell migration was completely blocked in RBL-RacN17 cells expressing a dominant negative Rac1 mutant, suggesting a crucial role for Rac1 in eotaxin signaling to chemotactic migration. ERK activation also proved essential for eotaxin signaling and it too was absent in RBL-RacN17 cells. Finally, we found that activation of Rac and ERK was correlated with eotaxin-induced actin reorganization known to be necessary for cell motility. It thus appears that Rac1 acts upstream of ERK to signal chemotaxis in these cells, and that a Rac-ERK-dependent cascade mediates the eotaxin-induced chemotactic motility of RBL-2H3 mast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号