首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
干细胞是一类具有特化为不同细胞类型能力的多能性细胞,他为多细胞生物的器官发生、损伤修复和再生源源不断提供新细胞。干细胞的特化和维持需要复杂的基因调控网络来有序调控。此外,表观遗传调控在包括干细胞命运决定在内的许多生物学过程中发挥极其重要的作用。本文归纳了近年来对植物,主要是模式植物拟南芥(Arabidopsis thaliana (L.) Heynh.)根尖干细胞表观遗传调控方面的研究进展,重点论述了表观调控因子与控制干细胞的关键转录因子之间如何互作、调控植物根尖干细胞的自我更新和分化,并对今后研究的突破方向进行了展望。  相似文献   

2.
植物干细胞调控的分子机制   总被引:3,自引:0,他引:3  
植物干细胞位于茎尖分生组织区和根尖分生组织区,是植物胚后发育中新的器官产生的源泉.近几年,在干细胞及其周围组织区发现了一些与干细胞稳态维持有关的基因,这些基因产物与外源性信号(如生长素)一起组成复杂的调控网络控制植物的生长和发育.表观遗传修饰作为控制基因表达的一种方式也对植物干细胞有重要的影响.该文介绍近几年植物干细胞分化调控的最新进展.  相似文献   

3.
张倩倩  郑童  予茜  葛磊 《植物学报》2018,53(1):126-138
干细胞巢的维持与后代细胞的分化是多细胞高等生物个体发育的基础。生长素对植物茎尖和根尖分生组织的形态建成, 尤其是对位于植物这2个末端的分生组织中心的干细胞巢的活性维持起着至关重要的作用。该文综述了近几年在植物根尖干细胞发育领域的研究进展, 主要阐释了PLT蛋白途径、SCR-SHR蛋白途径以及环境因子多信号调控模块维持植物根尖分生组织中干细胞巢稳定的机制, 揭示了生长素可以通过就近合成、极性运输以及信号转导3种方式参与这些信号模块的调控, 从而维持生长素在根尖静止中心细胞附近干细胞巢的浓度梯度, 精确地平衡植物干细胞巢中细胞的增殖与分化。  相似文献   

4.
李令杰  金颖 《生命科学》2009,(5):631-638
胚胎干细胞(embryonic stem cells,ES细胞)具有自我更新和发育多能性的特点,在再生医学研究中有着广泛的应用前景。ES细胞多能性和自我更新的维持受到复杂的调控,涉及到转录调控、信号转导以及表观遗传调控等多个方面。转录因子Oct4、Sox2、Nanog在其中扮演着非常重要的角色,对干细胞特性的维持必不可少。本文着重讨论了这些关键转录因子的研究进展。这些研究促进了对ES细胞自我更新机制的深入理解,并为进一步的临床研究提供了理论基础。  相似文献   

5.
植物干细胞是植物体内具有自我更新和多向分化潜能的细胞群体,主要位于植物体茎尖分生组织、根尖分生组织和维管形成层中.它们既可以通过细胞分裂维持自身细胞群体的大小,也可以分化成为各种不同的组织器官.维持干细胞的分裂与分化之间的平衡,是植物通过纵向伸长生长和径向增粗生长不断积累生物量的基础,这一过程受基因、microRNAs(miRNAs)及植物激素等因子共同调控.本文概述了近年来植物干细胞调控植物生长发育的研究进展,并对今后的研究方向进行了展望.  相似文献   

6.
干细胞具有自我更新和多种分化潜能的特性。干细胞向分化细胞的转变涉及到基因表达模式的改变,与自我更新有关的基因关闭.与细胞特化有关的基因激活。表观遗传调控机制,包括DNA甲基化、组蛋白修饰和微RNA(microRNA)介导的基因调控,在多个层面上控制发育过程中基因表达。近年研究表明,动态的表观遗传调控机制在干细胞自我更新和分化中起关键作用。  相似文献   

7.
表观遗传调控是细胞命运变化与决定的重要基础之一。2006年,日本科学家山中伸弥发现通过4个转录因子Oct4、Sox2、Klf4和c-Myc可以将已经分化的体细胞逆转回与胚胎干细胞相似的多能性状态,获得诱导多能干细胞(induced pluripotent stem cells,i PSCs)。这种诱导重编程技术不仅是干细胞技术的一大突破,也提供了关键的体外模型用于研究细胞重编程的表观遗传机制。对该机制的深入理解将推动人类自由操纵细胞命运的进程,从而有望治疗各种因功能细胞、组织、器官缺失退化引发的疾病。从诱导重编程的表观遗传调控方向的研究进展出发,阐述通过诱导重编程发现的关键细胞命运转变表观调控机制,展望未来的主要研究目标。  相似文献   

8.
肿瘤发生和恶化转化过程中导致细胞的异常编程,并由此产生了肿瘤干细胞。肿瘤干细胞具有自我更新和可塑性潜能,是肿瘤起始、转移、耐药和复发的根源。因此,对肿瘤重编程和肿瘤干细胞的研究具有重大科学价值和临床意义。表观遗传调控在肿瘤重编程中发挥重要作用。染色质重塑复合物、组蛋白修饰和非编码RNA等表观遗传机制都参与了癌变重编程。这些表观遗传调控可以调控肿瘤干细胞的自我更新和分化形成新肿瘤的能力。表观遗传调控癌变重编程、肿瘤干细胞自我更新的调控以及针对肿瘤干细胞表观调控机制的靶向治疗等问题,已成为肿瘤生物学研究的重点。现就染色质重塑复合物、组蛋白修饰和非编码RNA对癌变重编程和肿瘤干细胞调控的研究进展进行了综述。  相似文献   

9.
在植物发育过程中,除了遗传调控激活或抑制基因表达来促进植物发育过程中细胞分化外,表观遗传学是另外一个重要的、复杂的调控层面,在该过程中通过DNA特异位点的甲基化,组蛋白的翻译后修饰改变染色质的状态,进而时空性调控植物发育调控因子的表达。分化细胞提供了一个研究组蛋白密码如何影响细胞命运功能强大的系统。本研究重点综述了表观遗传调控中DNA甲基化、组蛋白甲基化及组蛋白乙酰化在植物细胞分化中的调控作用。  相似文献   

10.
PcG (polycomb group)蛋白作为一种表观遗传修饰系统,在动物和植物中具有 保守性.从功能上讲,PcG蛋白可以分为PRC1(polycomb repressive complex 1)和 PRC2(polycomb repressive complex 2)两个核心蛋白复合体. PRC2含有组蛋白甲 基化酶的活性,而PRC1在泛素连接酶E3介导的组蛋白泛素化中发挥作用,二者通过对 组蛋白的修饰控制靶基因转录. 近来研究表明,PcG蛋白对干细胞数量维持和命运转变 有重要的调控作用,其成员表达失调或缺失导致许多恶性肿瘤的发生或导致植物细胞 丧失分化能力、形成愈伤组织. 本文简要综述了PcG蛋白的组成及其在干细胞调控中 的作用.  相似文献   

11.
胚胎干细胞分化过程中的表观遗传调控   总被引:1,自引:0,他引:1  
作为一类既有自我更新能力,并具有多向分化潜能的细胞,胚胎干细胞具有非常重要的理论研究意义和临床应用前景。近期以胚胎干细胞为模型,研究有关干细胞分化的表观遗传调控已成为新的研究热点。本文就胚胎干细胞分化过程中DNA甲基化、组蛋白修饰、非编码RNA调控以及与胚胎干细胞分化密切相关的表观遗传学动态变化做一概述,对表观遗传学改变与胚胎干细胞分化关系的基础研究进行探讨。  相似文献   

12.
《Genomics》2020,112(5):3615-3623
Stem cell research has progressed widely and has been receiving a considerable attention for its advantages and drawbacks. Despite their extensive therapeutic potential in regenerative medicine, they are debatable for their genetic and epigenetic stability. In fact lineage specific differentiation is mediated via epigenetic changes in DNA methylation, acetylation, histone modifications etc. Thus epigenetics plays an important role in stem cell biology. For therapeutic interventions stem cells need to be genetically and epigenetically stable for their maximum paracrine secretions for bringing about expected tissue repair and regeneration. In this review we have focused on the current status of genetic and epigenetic stability in stem cells and their importance in regenerative medicine. We have also touched upon the possibility of considering tissue resident mesenchymal stem cells as epigenetic modifiers. This is likely to open a new era in stem cell therapeutic intervention by reversing disease inducing epigenetic changes.  相似文献   

13.
Stem cells in plant shoot and root meristems are maintained throughout the life of the plant and produce somatic daughter cells that make up the body of the plant. Plant stem cells can also be derived from somatic cells in vivo and in vitro. Recent findings are refining our knowledge of signaling pathways that define stem cell fate and specify either shoot or root stem cell function. New evidence also highlights a role for epigenetic mechanisms in controlling stem cell fate.  相似文献   

14.
Stem cells: from epigenetics to microRNAs   总被引:11,自引:0,他引:11  
Cheng LC  Tavazoie M  Doetsch F 《Neuron》2005,46(3):363-367
  相似文献   

15.
16.
17.
Stem cells are required to support the indeterminate growth style of plants. Meristems are a plants stem cell niches that foster stem cell survival and the production of descendants destined for differentiation. In shoot meristems, stem cell fate is decided at the populational level. The size of the stem cell domain at the meristem tip depends on signals that are exchanged with cells of the organizing centre underneath. In root meristems, individual stem cells are controlled by direct interaction with cells of the quiescent centre that lie in the immediate neighbourhood. Analysis of the interactions and signaling processes in the stem cell niches has delivered some insights into the molecules that are involved and revealed that the two major niches for plant stem cells are more similar than anticipated.  相似文献   

18.
Stem cells in plants, established during embryogenesis, are located in the centers of the shoot apical meristem (SAM) and the root apical meristem (RAM). Stem cells in SAM have a capacity to renew themselves and to produce new organs and tissues indefinitely. Although fully differentiated organs such as leaves do not contain stem cells, cells in such organs do have the capacity to re-establish new stem cells, especially under the induction of phytohormones in vitro. Cytokinin and auxin are critical in creating position signals in the SAM to maintain the stem cell organizing center and to position the new organ primordia, respectively. This review addresses the distinct features of plant stem cells and focuses on how stem cell renewal and differentiation are regulated in SAMs.  相似文献   

19.
Stem cells are self-renewing multipotent cells essential for development or homeostasis of many tissues. Stem cell populations can be found in most multicellular plants and animals. The mechanisms by which these populations are maintained are diverse, utilizing both intrinsic and extrinsic factors to regulate cell division and differentiation. The genetic tools of the fruitfly, Drosophila melanogaster, have permitted detailed characterization of two stem cell populations. In this review, we will examine these contrasting stem cell model systems from Drosophila and their relevance to stem cell populations in other organisms.  相似文献   

20.
为了从显微结构上进一步探讨虉草(Phalaris arundinacea L.)的抗旱耐涝性及与利用的关系,于2011年采用常规石蜡切片技术,对其根、茎叶3种营养器官进行解剖观察。结果表明,虉草根的结构自外而内依次为表皮、皮层、维管束鞘、初生韧皮部和初生木质部;茎由表皮、基本组织和维管束构成;叶片内部结构可分为表皮、叶肉和叶脉3部分。根皮层大的细胞间隙和气腔,初生木质部的后生大导管和茎基本组织解体形成的髓腔都是虉草良好的通气组织,是其耐水淹的主要显微特征。茎、叶片角质化的表皮和叶表皮所含的丰富泡状细胞组是虉草具有抗旱性的主要解剖结构特征。叶肉细胞排列紧密且只有少量气孔分布于叶片下表皮,这样的结构可减少蒸腾;叶肉细胞富含叶绿体,增强光合作用,获得更多的同化产物,确保了植株在干旱条件下也有足够的光合产物来维持正常的生理活动。茎、叶维管束部分大量的木纤维起到支撑作用。虉草根的皮层和维管柱部分、茎的基本组织和维管束部分、叶的叶脉部分都含有大面积的厚壁细胞,厚壁细胞中含有丰富的粗纤维和木质素。丰富的粗纤维、木质素等成分则是虉草能成为新能源燃料植物的必备条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号