首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basic mechanisms of regulation of Ca2+ influx have been studied in murine myoblasts proliferating and differentiating in culture. The presence of L-type Ca2+ channels in proliferating myoblasts is shown for the first time. It is also shown that the influx of Ca2+ through these channels is regulated by the adrenergic system. The influx of Ca2+ after activation of the adrenergic system by addition of adrenaline has been estimated in comparison with the contribution of reticular stocks exhausted by ATP in calcium-free medium. The Ca2+ influx in proliferating myoblasts is regulated by β-2 adrenergic receptors whose action is mediated by adenylate cyclase through L-type calcium channels. In differentiating myoblasts, the adrenaline-induced Ca2+ influx is substantially lower than in proliferating cells, and maximal influx of Ca2+ may be reached only upon exhaustion of reticular stocks.  相似文献   

2.
3.
In filamentous fungi, intracellular signaling pathways which are mediated by changing calcium levels and/or by activated protein kinase C (Pkc), control fungal adaptation to external stimuli. A rise in intracellular Ca2+ levels activates calcineurin subunit A (CnaA), which regulates cellular calcium homeostasis among other processes. Pkc is primarily involved in maintaining cell wall integrity (CWI) in response to different environmental stresses. Cross-talk between the Ca2+ and Pkc-mediated pathways has mainly been described in Saccharomyces cerevisiae and in a few other filamentous fungi. The presented study describes a genetic interaction between CnaA and PkcA in the filamentous fungus Aspergillus nidulans. Overexpression of pkcA partially rescues the phenotypes caused by a cnaA deletion. Furthermore, CnaA appears to affect the regulation of a mitogen-activated kinase, MpkA, involved in the CWI pathway. Reversely, PkcA is involved in controlling intracellular calcium homeostasis, as was confirmed by microarray analysis. Furthermore, overexpression of pkcA in a cnaA deletion background restores mitochondrial number and function. In conclusion, PkcA and CnaA-mediated signaling appear to share common targets, one of which appears to be MpkA of the CWI pathway. Both pathways also regulate components involved in mitochondrial biogenesis and function. This study describes targets for PkcA and CnaA-signaling pathways in an A. nidulans and identifies a novel interaction of both pathways in the regulation of cellular respiration.  相似文献   

4.
Anaplastic thyroid cancer (ATC) is a rare malignancy and has a poor prognosis due to its aggressive behavior and resistance to treatments. Calcium (Ca2+) serves as a ubiquitous cellular second messenger and influences several tumor behaviors. Therefore, Ca2+ modulation is expected to be a novel therapeutic target in cancers. However, whether Ca2+ modulation is effective in ATC therapy remains unknown. In this study, we reported that capsaicin (CAP), a transient receptor potential vanilloid type1 (TRPV1) agonist, inhibited the viability of anaplastic thyroid cancer cells. Capsaicin treatment triggered Ca2+ influx by TRPV1 activation, resulting in disequilibrium of intracellular calcium homeostasis. The rapidly increased cytosolic Ca2+ concentration was mirrored in the mitochondria and caused a severe condition of mitochondrial calcium overload in ATC cells. In addition, the disruption of mitochondrial calcium homeostasis caused by capsaicin led to mitochondrial dysfunction in ATC cells, as evidenced by the production of mitochondrial reactive oxygen species (ROS), depolarization of mitochondrial membrane potential (ΔΨm), and opening of mitochondrial permeability transition pore (mPTP). Next, the resulting release of cyt c into the cytosol triggered apoptosome assembly and subsequent caspase activation and apoptosis. It was worth noting that both TRPV1 antagonist (capsazepine) and calcium chelator (BAPTA) could attenuate aberrant Ca2+ homeostasis, mitochondrial dysfunction and apoptosis induced by capsaicin treatment. Thus, our study demonstrated that capsaicin induced mitochondrial calcium overload and apoptosis in ATC cells through a TRPV1-mediated pathway. The better understanding of the anti-cancer mechanisms of calcium modulation provides a potential target for the ATC therapy.  相似文献   

5.
Methylglyoxal (MG) is a by-product of glucose metabolism and its accumulation has been linked to the development of diabetic complications such as retinopathy and nephropathy by affecting multiple signalling pathways. However, its influence on the intracellular Ca2+ homeostasis and particularly Ca2+ entry, which has been reported to be mediated via TRPA1 channels in DRG neurons, has not been studied in much detail in other cell types. In this study, we report the consequences of acute and long-term MG application on intracellular Ca2+ levels in endothelial cells. We showed that acute MG application doesn’t evoke any instantaneous changes in the intracellular Ca2+ concentration in immortalized mouse cardiac endothelial cells (MCECs) and murine microvascular endothelial cells (muMECs). In contrast, an MG-induced rise in intracellular Ca2+ level was observed in primary mouse mesangial cells within 30 s, indicating that the modulation of Ca2+ homeostasis by MG is strictly cell type specific. The formation of the MG-derived advanced glycation end product (AGE) MG-H1 was found to be time and concentration-dependent in MCECs. Likewise, MG pre-incubation for 6 h increased the angiotensin II-evoked Ca2+ entry in MCECs and muMECs which was abrogated by inhibition of Calcium release activated calcium (CRAC) channels with GSK-7975A, but unaffected by an inhibitor specific to TRPA1 channels. Quantitative PCR analysis revealed that MG pre-treatment did not affect expression of the genes encoding the angiotensin receptors AT1R (Agtr 1a & Agtr 1b), Trpa1 nor Orai1, Orai2, Orai3, Stim1, Stim2 and Saraf which operate as constituents or regulators of CRAC channels and store-operated Ca2+ entry (SOCE) in other cell types. Together, our results show that long-term MG stimulation leads to the formation of glycation end products, which facilitates the agonist-evoked Ca2+ entry in endothelial cells, and this could be a new pathway that might lead to MG-evoked vasoregression observed in diabetic vasculopathies.  相似文献   

6.
Autophagy is a lysosomal degradation pathway important for cellular homeostasis and survival. Inhibition of the mammalian target of rapamycin (mTOR) is the best known trigger for autophagy stimulation. In addition, intracellular Ca2+ regulates autophagy, but its exact role remains ambiguous. Here, we report that the mTOR inhibitor rapamycin, while enhancing autophagy, also remodeled the intracellular Ca2+-signaling machinery. These alterations include a) an increase in the endoplasmic-reticulum (ER) Ca2+-store content, b) a decrease in the ER Ca2+-leak rate, and c) an increased Ca2+ release through the inositol 1,4,5-trisphosphate receptors (IP3Rs), the main ER-resident Ca2+-release channels. Importantly, buffering cytosolic Ca2+ with BAPTA impeded rapamycin-induced autophagy. These results reveal intracellular Ca2+ signaling as a crucial component in the canonical mTOR-dependent autophagy pathway.  相似文献   

7.
Calcium is an ubiquitous cellular signaling molecule that controls a variety of cellular processes and is strictly maintained in the cellular compartments by the coordination of various Ca2+ pumps and channels. Two such fundamental calcium pumps are plasma membrane calcium ATPase (PMCA) and Sarco/endoplasmic reticulum calcium ATPase (SERCA) which play a pivotal role in maintaining intracellular calcium homeostasis. This intracellular Ca2+ homeostasis is often disturbed by the protozoan parasite Leishmania donovani, the causative organism of visceral leishmaniasis. In the present study we have dileneated the involvement of PMCA4 and SERCA3 during leishmaniasis. We have observed that during leishmaniasis, intracellular Ca2+ concentration was up-regulated and was further controlled by both PMCA4 and SERCA3. Inhibition of these two Ca2+-ATPases resulted in decreased parasite burden within the host macrophages due to enhanced intracellular Ca2+. Contrastingly, on the other hand, activation of PMCA4 was found to enhance the parasite burden. Our findings also highlighted the importance of Ca2+ in the modulation of cytokine balance during leishmaniasis. These results thus cumulatively suggests that these two Ca2+-ATPases play prominent roles during visceral leishmaniasis.  相似文献   

8.
Caffeine-induced Ca2+ transients (CICTs) in rabbit nodose ganglion neurons (NGNs) are produced by two distinct mechanisms: release from intracellular stores via ryanodine receptors and Ca2+ influx across the plasma membrane, due to activation of an unknown receptor. In isolated rat NGNs, we used single-cell microfluorimetry to measure changes in intracellular Ca2+ and to test whether TRPV1 receptors underlie the Ca2+ influx pathway. Caffeine (10 mM) evoked CICTs in all NGNs tested (n = 47) averaging 365 ± 32 nM. CICTs were partially dependent upon a Ca2+ influx pathway that ranged between 33% and 98% of the total Ca2+ transient. Application of two selective TRPV1 antagonists significantly attenuated CICTs. The peak average amplitudes of CICTs in Ca2+-free Locke solution and Ca2+-free Locke solution with IRTX or with BCTC were not significantly different from one another (n = 5 and 7, respectively). These observations suggest that caffeine can induce Ca2+ influx by activating TRPV1 channels.  相似文献   

9.
Tubular aggregates are regular arrays of membrane tubules accumulating in muscle with age. They are found as secondary features in several muscle disorders, including alcohol- and drug-induced myopathies, exercise-induced cramps, and inherited myasthenia, but also exist as a pure genetic form characterized by slowly progressive muscle weakness. We identified dominant STIM1 mutations as a genetic cause of tubular-aggregate myopathy (TAM). Stromal interaction molecule 1 (STIM1) is the main Ca2+ sensor in the endoplasmic reticulum, and all mutations were found in the highly conserved intraluminal Ca2+-binding EF hands. Ca2+ stores are refilled through a process called store-operated Ca2+ entry (SOCE). Upon Ca2+-store depletion, wild-type STIM1 oligomerizes and thereby triggers extracellular Ca2+ entry. In contrast, the missense mutations found in our four TAM-affected families induced constitutive STIM1 clustering, indicating that Ca2+ sensing was impaired. By monitoring the calcium response of TAM myoblasts to SOCE, we found a significantly higher basal Ca2+ level in TAM cells and a dysregulation of intracellular Ca2+ homeostasis. Because recessive STIM1 loss-of-function mutations were associated with immunodeficiency, we conclude that the tissue-specific impact of STIM1 loss or constitutive activation is different and that a tight regulation of STIM1-dependent SOCE is fundamental for normal skeletal-muscle structure and function.  相似文献   

10.
The properties of calcium channels were studied at the period of neurogenesis in the early embryonic chick retina. The whole neural retina was isolated from embryonic day 3 (E3) chick and loaded with a Ca2+-sensitive fluorescent dye (Fura-2). The retinal cells were depolarized by puff application of high-K+ solutions. Increases in intracellular Ca2+ concentrations were evoked by the depolarization through calcium channels. The type of calcium channel was identified as l-type by the sensitivity to dihydropyridines. The Ca2+ response was completely blocked by 10 μM nifedipine, whereas it was remarkably enhanced by 5 μM Bay K 8644. Then we sought a factor to activate the calcium channel and found that GABA could activate it by membrane depolarization at the E3 chick retina. Puff application of 100 μM GABA raised intracellular Ca2+ concentrations, and this Ca2+ response to GABA was also sensitive to the two dihydropyridines. Intracellular potential recordings verified clear depolarization by bath-applied 100 μM GABA. The Ca2+ response to GABA was mediated by GABAA receptors, since the GABA response was blocked by 10 μgM bicuculline or 50 μM picrotoxin, and mimicked by muscimol but not by baclofen. Neither glutamate, kainate, nor glycine evoked any Ca2+ response. We conclude that l-type calcium channels and GABAA receptors are already are already expressed before differentiation of retinal cells and synapse formation in the chick retina. A possibility is proposed that GABA might act as a trophic factor by activating l-type calcium channels via GABAA receptors during the early period of retinal neurogenesis. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
We characterized the effects of histamine on intracellular Ca2+ and activation of ionic currents in human capillary endothelial cells. Histamine produced both a transient and sustained increase in intracellular Ca2+. The transient response was mediated largely through intracellular Ca2+ release and the sustained response was due to extracellular Ca2+ entry. The increase in intracellular Ca2+ by histamine was not affected by the H2 blocker cimetidine. But was entirely blocked by the H1 antagonist diphenhydramine showing that the histamine response in these cells is mediated through the H1 receptor. A transient ionic current is coactivated with the histamine-induced increase in intracellular Ca2+ and this current has several properties of a nonselective, Ca2+ permeable, cation channel (NSC). The magnitude of the NSC current does not strictly correlate with intracellular Ca2+ levels. A Ca2+-activated K+ current (BKCA) is activated by the increase in intracellular Ca2+ and this current is blocked by the selective BKCA blocker iberiotoxin. Received: 16 June 1999/Revised: 22 September 1999  相似文献   

12.
Hemolymph calcium homeostasis in insects is achieved by the Malpighian tubules, primarily by sequestering excess Ca2+ within internal calcium stores (Ca‐rich granules) most often located within type I (principal) tubule cells. Using both the scanning ion‐selective electrode technique and the Ramsay secretion assay this study provides the first measurements of basolateral and transepithelial Ca2+ fluxes across the Malpighian tubules of an Orthopteran insect, the house cricket Acheta domesticus. Ca2+ transport was specific to midtubule segments, where 97% of the Ca2+ entering the tubule is sequestered within intracellular calcium stores and the remaining 3% is secreted into the lumen. Antagonists of voltage‐gated (L‐type) calcium channels decreased Ca2+ influx ≥fivefold in adenosine 3′,5′‐cyclic monophosphate (cAMP)‐stimulated tubules, suggesting basolateral Ca2+ influx is facilitated by voltage‐gated Ca2+ channels. Increasing fluid secretion through manipulation of intracellular levels of cAMP or Ca2+ had opposite effects on tubule Ca2+ transport. The adenylyl cyclase‐cAMP‐PKA pathway promotes Ca2+ sequestration whereas both 5‐hydroxytryptamine and thapsigargin inhibited sequestration. Our results suggest that the midtubules of Acheta domesticus are dynamic calcium stores, which maintain hemolymph calcium concentration by manipulating rates of Ca2+ sequestration through stimulatory (cAMP) and inhibitory (Ca2+) regulatory pathways.  相似文献   

13.

Background

Oxidative stress increases the cytosolic content of calcium in the cytoplasm through a combination of effects on calcium pumps, exchangers, channels and binding proteins. In this study, oxidative stress was produced by exposure to tert-butyl hydroperoxide (tBHP); cell viability was assessed using a dye reduction assay; receptor binding was characterized using [3H]N-methylscopolamine ([3H]MS); and cytosolic and luminal endoplasmic reticulum (ER) calcium concentrations ([Ca2+]i and [Ca2+]L, respectively) were measured by fluorescent imaging.

Results

Activation of M3 muscarinic receptors induced a biphasic increase in [Ca2+]i: an initial, inositol trisphosphate (IP3)-mediated release of Ca2+ from endoplasmic reticulum (ER) stores followed by a sustained phase of Ca2+ entry (i.e., store-operated calcium entry; SOCE). Under non-cytotoxic conditions, tBHP increased resting [Ca2+]i; a 90 minute exposure to tBHP (0.5-10 mM ) increased [Ca2+]i from 26 to up to 127 nM and decreased [Ca2+]L by 55%. The initial response to 10 μM carbamylcholine was depressed by tBHP in the absence, but not the presence, of extracellular calcium. SOCE, however, was depressed in both the presence and absence of extracellular calcium. Acute exposure to tBHP did not block calcium influx through open SOCE channels. Activation of SOCE following thapsigargin-induced depletion of ER calcium was depressed by tBHP exposure. In calcium-free media, tBHP depressed both SOCE and the extent of thapsigargin-induced release of Ca2+ from the ER. M3 receptor binding parameters (ligand affinity, guanine nucleotide sensitivity, allosteric modulation) were not affected by exposure to tBHP.

Conclusions

Oxidative stress induced by tBHP affected several aspects of M3 receptor signaling pathway in CHO cells, including resting [Ca2+]i, [Ca2+]L, IP3 receptor mediated release of calcium from the ER, and calcium entry through the SOCE. tBHP had little effect on M3 receptor binding or G protein coupling. Thus, oxidative stress affects multiple aspects of calcium homeostasis and calcium dependent signaling.  相似文献   

14.
Calmodulin (CaM) is a highly conserved calcium (Ca2+) binding protein that transduces Ca2+ signals into downstream effects influencing a range of cellular processes, including Ca2+ homeostasis. The present study explores CaM expression when Ca2+ homeostasis is challenged during the mineralization cycle of the freshwater crayfish (Procambarus clarkii). In this paper we report the cloning of a CaM gene from axial abdominal crayfish muscle (referred to as pcCaM). The pcCaM mRNA is ubiquitously expressed but is far more abundant in excitable tissue (muscle, nerve) than in any epithelia (gill, antennal gland, digestive) suggesting that it plays a greater role in the biology of excitation than in epithelial ion transport. In muscle cells the pcCaM was colocalized on the plasma membrane with the Ca2+ ATPase (PMCA) known to regulate intracellular Ca2+ through basolateral efflux. While PMCA exhibits a greater upregulation in epithelia (than in non-epithelial tissues) during molting stages requiring transcellular Ca2+ flux (pre- and postmolt compared with intermolt), expression of pcCaM exhibited a uniform increase in epithelial and non-epithelial tissues alike. The common increase in expression of CaM in all tissues during pre- and postmolt stages (compared with intermolt) suggests that the upregulation is systemically (hormonally) mediated. Colocalization of CaM with PMCA confirms physiological findings that their regulation is linked.  相似文献   

15.
The rise in intracellular Ca2+ mediated by AMPA subtype of glutamate receptors has been implicated in the pathogenesis of motor neuron disease, but the exact route of Ca2+ entry into motor neurons is not clearly known. In the present study, we examined the role of voltage gated calcium channels (VGCCs) in AMPA induced Ca2+ influx and subsequent intracellular signaling events responsible for motor neuron degeneration. AMPA stimulation caused sodium influx in spinal neurons that would depolarize the plasma membrane. The AMPA induced [Ca2+]i rise in motor neurons as well as other spinal neurons was drastically reduced when extracellular sodium was replaced with NMDG, suggesting the involvement of voltage gated calcium channels. AMPA mediated rise in [Ca2+]i was significantly inhibited by L-type VGCC blocker nifedipine, whereas ω-agatoxin-IVA and ω-conotoxin-GVIA, specific blockers of P/Q type and N-type VGCC were not effective. 1-Napthyl-acetyl spermine (NAS), an antagonist of Ca2+ permeable AMPA receptors partially inhibited the AMPA induced [Ca2+]i rise but selectively in motor neurons. Measurement of AMPA induced currents in whole cell voltage clamp mode suggests that a moderate amount of Ca2+ influx occurs through Ca2+ permeable AMPA receptors in a subpopulation of motor neurons. The AMPA induced mitochondrial calcium loading [Ca2+]m, mitochondrial depolarization and neurotoxicity were also significantly reduced in presence of nifedipine. Activation of VGCCs by depolarizing concentration of KCl (30 mM) in extracellular medium increased the [Ca2+]i but no change was observed in mitochondrial Ca2+ and membrane potential. Our results demonstrate that a subpopulation of motor neurons express Ca2+ permeable AMPA receptors, however the larger part of Ca2+ influx occurs through L-type VGCCs subsequent to AMPA receptor activation and consequent mitochondrial dysfunction is the trigger for motor neuron degeneration. Nifedipine is an effective protective agent against AMPA induced mitochondrial stress and degeneration of motor neurons.  相似文献   

16.
Adaptation to the host environment is crucial for fungal pathogenesis. Calcium (Ca2+) signals are essential for fungal cells to respond rapidly to stress stimuli. In eukaryotic cells, Ca2+ is the main intracellular secondary messenger and regulates a myriad of processes, including the cellular fitness of the fungal pathogen Cryptococcus neoformans. In this minireview, we highlight the main cryptococcal processes regulated by Ca2+. Moreover, we underline all the characterized proteins responsible for intracellular calcium homeostasis in this yeast, such as Ca2+ transporters and binding proteins. These elements, in general, are essential for C. neoformans’ growth and adaptation to the host environment, as well as to virulence mechanisms. We also revisit the specific traits of the calcineurin signaling pathway in C. neoformans, which is the major pathway regulated by calcium and is crucial for yeast pathogenesis, adaptation, and growth at 37 °C. Notably, several Ca2+-related functions are highly conserved throughout fungal cells. Moreover, C. neoformans exhibits exclusive, significant features that are required for disease progression, thus attracting attention as feasible targets for antifungal drug development. Collectively, all the available data related to Ca2+ processes clarify the complex role that Ca2+ plays within cryptococcal cells, participating in host adaptation, transmigration, antifungal resistance, cell growth, and more.  相似文献   

17.
The transient receptor potential vanilloid subtype 1 (TRPV1) is a Ca2+-permeable channel primarily expressed in dorsal root ganglion neurons. Besides its function in thermogenic nociception and neurogenic inflammation, TRPV1 is involved in cell migration, cytoskeleton re-organisation and in neuronal guidance. To explore the TRPV1 level and activity during conditions for neuronal maturation, TRPV1-expressing SHSY5Y neuroblastoma cells were differentiated into a neuronal phenotype using all-trans-retinoic acid (RA). We show that RA highly up-regulated the total and cell surface TRPV1 protein expression but the TRPV1 mRNA level was unaffected. The up-regulated receptors were localised to the cell bodies and the developed neurites. Furthermore, RA increased both the basal intracellular free Ca2+ concentration by 30% as well as the relative capsaicin-induced Ca2+ influx. The results show that TRPV1 protein expression increases during RA-induced differentiation in vitro, which generates an altered intracellular Ca2+ homeostasis.  相似文献   

18.
CD2, CD3, and MHC class II have been demonstrated to stimulate lymphocyte function-associated antigen (LFA)-1 (CD11a/CD18) mediated adhesion (Van Kooyk et al., 1989, Dustin and Springer, 1989; Mourad et al., 1990). Activation of LFA-1 may be mediated by different intracellular signals generated from these stimuli, since previous findings suggest that triggering of LFA-1 through CD2 or CD3 leads to sustained and transient cell adhesion respectively (Van Kooyk et al., 1989). We investigated the role of intracellular signalling pathways in more detail. The results demonstrate that, in addition to protein tyrosine kinase (PTK) and protein kinase C (PKC) mediated signalling, increase in cytosolic-free calcium ([Ca2+]i) levels play a major role in the activation of LFA-1. The calcium iono-phore Ionomycin, which increases [Ca2+]i is capable of directly activating LFA-1. Furthermore, activation of LFA-1 by triggering through CD2, CD3 or MHC class II is associated with an increase in [Ca2+]i levels, with kinetics that directly correlate with cell adhesiveness. Moreover, entry of extracellular Ca2+ via Ca-channels is involved in both the CD3-and MHC class II, as well as part of the CD2 induced LFA-1 activation. Depletion of intracellular calcium results in unresponsiveness of LFA-1 to these stimuli, further demonstrating a regulatory role for [Ca2+]i in LFA-1 mediated adhesion.  相似文献   

19.
Mitochondria contribute to cytosolic Ca2+ homeostasis through several uptake and release pathways. Here we report that 1,2-sn-diacylglycerols (DAGs) induce Ca2+ release from Ca2+-loaded mammalian mitochondria. Release is not mediated by the uniporter or the Na+/Ca2+ exchanger, nor is it attributed to putative catabolites. DAGs-induced Ca2+ efflux is biphasic. Initial release is rapid and transient, insensitive to permeability transition inhibitors, and not accompanied by mitochondrial swelling. Following initial rapid release of Ca2+ and relatively slow reuptake, a secondary progressive release of Ca2+ occurs, associated with swelling, and mitigated by permeability transition inhibitors. The initial peak of DAGs-induced Ca2+ efflux is abolished by La3+ (1 mM) and potentiated by protein kinase C inhibitors. Phorbol esters, 1,3-diacylglycerols and 1-monoacylglycerols do not induce mitochondrial Ca2+ efflux. Ca2+-loaded mitoplasts devoid of outer mitochondrial membrane also exhibit DAGs-induced Ca2+ release, indicating that this mechanism resides at the inner mitochondrial membrane. Patch clamping brain mitoplasts reveal DAGs-induced slightly cation-selective channel activity that is insensitive to bongkrekic acid and abolished by La3+. The presence of a second messenger-sensitive Ca2+ release mechanism in mitochondria could have an important impact on intracellular Ca2+ homeostasis.  相似文献   

20.
Regulation of cytosolic calcium (Ca2+) dynamics is fundamental to microglial function. Temporal and spatial Ca2+ fluxes are induced from a complicated signal transduction pathway linked to brain ionic homeostasis. In this paper, we develop a novel biophysical model of Ca2+ and sodium (Na+) dynamics in human microglia and evaluate the contribution of purinergic receptors (P2XRs) to both intracellular Ca2+ and Na+ levels in response to agonist/ATP binding. This is the first comprehensive model that integrates P2XRs to predict intricate Ca2+ and Na+ transient responses in microglia. Specifically, a novel compact biophysical model is proposed for the capture of whole-cell patch-clamp currents associated with P2X4 and P2X7 receptors, which is composed of only four state variables. The entire model shows that intricate intracellular ion dynamics arise from the coupled interaction between P2X4 and P2X7 receptors, the Na+/Ca2+ exchanger (NCX), Ca2+ extrusion by the plasma membrane Ca2+ ATPase (PMCA), and Ca2+ and Na+ leak channels. Both P2XRs are modelled as two separate adenosine triphosphate (ATP) gated Ca2+ and Na+ conductance channels, where the stoichiometry is the removal of one Ca2+ for the hydrolysis of one ATP molecule. Two unique sets of model parameters were determined using an evolutionary algorithm to optimise fitting to experimental data for each of the receptors. This allows the proposed model to capture both human P2X7 and P2X4 data (hP2X7 and hP2X4). The model architecture enables a high degree of simplicity, accuracy and predictability of Ca2+ and Na+ dynamics thus providing quantitative insights into different behaviours of intracellular Na+ and Ca2+ which will guide future experimental research. Understanding the interactions between these receptors and other membrane-bound transporters provides a step forward in resolving the qualitative link between purinergic receptors and microglial physiology and their contribution to brain pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号