首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subcellular distribution of radiocopper in the brain and liver of rats has been determined following i.v. administration of Cu-PTSM, pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II), labeled with copper-67. Homogenized tissue samples were separated by differential centrifugation into four subcellular fractions: (I) cell membrane + nuclei; (II) mitochondria; (III) microsomes; and (IV) cell cytosol. Upon sacrifice at 10 min post-Cu-PTSM injection, brain fractions, I, II, III and IV contain 35 ± 12, 11 ± 3, 2.8 ± 1.3 and 51 ± 7% of brain activity, respectively (n = 4). In animals sacrificed 24 h post-injection the subcellular fractions of brain tissue show little change from the radiocopper distribution seen at 10 min post-injection, although the mitochondrial fraction may contain slightly more tracer and the cytosolic fraction slightly less (I, 40 ± 10%; II, 18 ± 5%; III, 3.4 ± 1.5%; and IV, 38 ± 5%; n = 5). Subcellular fractions I, II, III and IV of liver contain 25 ± 5, 12 ± 3, 17 ± 4 and 46 ± 6% of 67Cu tracer in animals sacrificed 10 min post-Cu-PTSM injection. An identical subcellular distribution of 67Cu, was found in the liver following i.v. administration of ionic radiocopper (as Cu-citrate). The liver and brain cytosolic fractions at 10 min post-injection were further separated by Sephadex column chromatography. In liver cytosol, three different radiocopper components with molecular weights of about 140,000, 41,000–46,000 and 10,000–16,000 Da were found. In the brain supernatant fraction, most of the radiocopper was bound to a single low molecular weight cytosolic component (14,000–16,000 Da). These results suggest that the intracellular decomposition of tracer Cu-PTSM may result in the radiocopper entering the normal cellular pools for copper ions.  相似文献   

2.
Oxidative stress has been suggested as a potential contributor to the development of diabetic complications. In this study, we investigated the protective effect of a strong antioxidant copper complex against streptozotocin (STZ)-induced diabetes in animals. Out of four copper complexes used, copper(II) (3,5-diisopropyl salicylate)4 (Cu(II)DIPS) was found to be the most potent antioxidant–copper complex. Pretreatment with Cu(II)DIPS (5 mg/kg) twice a week prior to the injection of streptozotocin (50 mg/kg) has reduced the level of hyperglycemia by 34 % and the mortality rate by 29 %. Injection of the same dosage of the ligand 3,5-diisopropyl salicylate has no effect on streptozotocin-induced hyperglycemia. The same copper complex has neither hypoglycemic activity when injected in normal rats nor antidiabetic activity when injected in STZ-induced diabetic rats. The protective effect of Cu(II)DIPS could be related to its strong antioxidant activity compared to other copper complexes median effective concentration (MEC)?=?23.84 μg/ml and to Trolox MEC?=?29.30 μg/ml. In addition, it reduced serum 8-hydroxy-2′-deoxyguanosine, a biomarker of oxidative DNA damage, by 29 %. This effect may explain why it was not effective against diabetic rats, when β Langerhans cells were already destroyed. Similar protective activities were reported by other antioxidants like Trolox.  相似文献   

3.
The cytoprotective effect of various copper(II) complexes on the gastric mucosa damage induced by acute intragastric administration of ethanol was investigated. For in vitro experiments, the following copper(II) complexes were tested: Cu(II)(L-Trp)(L-Phe), Cu(II)(L-Leu)Cu(II)(L-Leu-Leu)(L-Leu), Cu(II)(L-Phe-L-Leu), Cu(II)(Gly-His-Lys), and Cu(II)(cyHis)2(ClO4)2. Inorganic copper such as CuSO4 was also tested. The free radical generating system, acting for 2 hr on cardial and fundic mucosa scrapings or mucosal microsomes, was Fe++ (20 microM)/ascorbate (0.25 mM). We found a marked inhibition to 75% of lipid peroxidation in the range 10-100 mM, regardless of whether copper was given in complexed or inorganic form. The results suggest that nontoxic copper(II)-amino acid complexes are able to neutralize oxygen-derived free radicals. In addition, copper(II) complexes suppressed membrane lipid peroxidation when mucosa homogenates were exposed to t-butyl hydroperoxide (1-20 microM) plus Fe++ (50 microM). In vivo experiments on rat stomachs, pretreated p.o. by gavage either with Cu(II)(L-Trp)(L-Phe) as paradigmatic agent or with copper sulphate at equivalent doses in the range 3-30 mg/kg body weight showed a significant decrease (30 min after 95% ethanol administration) in the number and severity of mucosal hemorrhagic lesions. In the gastric mucosa scrapings of copper-treated rats after ethanol exposure, we found that malondialdehyde and conjugated diene levels were unchanged compared to those of untreated controls; five enzyme activities released from lysosomes were near control values. In isolated mucosal cells, whether or not pretreated with 200 microM solution of either Cu(II)(L-Trp)(L-Phe) or CuSO4, the release of cathepsin D activity was also unmodified. The results suggest that the cytoprotective effect of Cu(II) complexes against ethanol-induced mucosal lesions was not associated in vivo to lipid peroxidation.  相似文献   

4.
Interactions of inosine derivatives with copper(II) were studied in the pH range 1.4–13 in 50% H2O-50% DMSO solution. The distinct pH dependence of the optical spectra observed in copper(II)-inosine complexes are correlated to their respective EPR changes as a function of pH. It was concluded that a simple 1:1 complex of copper(II)-inosine is formed in the pH range 1.4–5.0 and bis complexes are present in the pH 5.0–6.2 region solutions of inosine and Cu(II). From pH 6.2 to 7.8 a diamagnetic, hydroxybridged complex dominates. At pH 7.8–9.2 an insoluble, oxybridged species is formed in addition to the soluble paramagnetic Cu(NI)4 complex. Starting from pH 9.1 the N-polymeric complex is formed which is stable up to pH 12.5, and above pH 12.5 the only species is the Cu(ribose)2 complex.  相似文献   

5.
Copper adsorption on the surface and intracellular uptake inside the cells of four representative taxons of soil and aquatic micro‐organisms: aerobic rhizospheric heterotrophs (Pseudomonas aureofaciens), anoxygenic (Rhodovulum steppense) and oxygenic (cyanobacteria Gloeocapsa sp. and freshwater diatoms Navicula minima) phototrophs were studied in a wide range of pH, copper concentration, and time of exposure. Chemical status of adsorbed and assimilated Cu was investigated using in situ X‐ray absorption spectroscopy. In case of adsorbed copper, XANES spectra demonstrated significant fractions of Cu(I) likely in the form of tri‐coordinate complexes with O/N and/or S ligands. Upon short‐term reversible adsorption at all four studied micro‐organisms’ cell surface, Cu(II) is coordinated by 4.0 ± 0.5 planar oxygens at an average distance of 1.97 ± 0.02 Å, which is tentatively assigned to the carboxylate groups. The atomic environment of copper incorporated into diatoms and cyanobacteria during long‐term growth is similar to that of the adsorbed metal with slightly shorter distances to the first O/N neighbor (1.95 Å). In contrast to the common view of Cu status in phototrophic micro‐organisms, XAFS failed to detect sulfur in the nearest atomic environment of Cu assimilated by freshwater plankton (cyanobacteria) and periphyton (diatoms). The appearance of S in Cu 1st coordination shell at 2.27–2.32 Å was revealed only after long‐term interaction of Cu with anoxygenic phototrophs (and Cu uptake by soil heterotrophs), suggesting Cu scavenging in the form of sulfhydryl, histidine/carboxyl or a mixture of carboxylate and sulfhydryl complexes. These new structural constraints suggest that adsorbed Cu(II) is partially reduced to Cu(I) already at the cell surface, where as intracellular Cu uptake and storage occur in the form of both Cu(I)‐S linked proteins and Cu(II) carboxylates. Obtained results allow to better understand how, in the course of biological evolution, micro‐organisms elaborated various mechanisms of Cu uptake and storage, from passive adsorption and uptake to active, protein‐controlled surface reduction, and intracellular storage.  相似文献   

6.
The effects of cobalt and copper o-phenanthroline complexes on electron transfer and energy coupling activity in the reaction center and chromatophore preparations of purple bacteria were studied. In terms of their effects on the systems under study these complexes fall into two groups, i.e. cobalt complexes with a high electron transfer activity, which stimulate membrane energization, and copper complexes which contribute to the chromatophore membrane deenergization. Among a variety of complexes studied the perchlorate tris-o-phenanthroline complex Co(II) and the chloride 4,7-diphenyl-o-phenanthroline complex Cu(II) were found to have the highest activity. Both cobalt and copper o-phenanthroline complexes may be a promising tool for regulating bioenergetic processes.  相似文献   

7.
A new method for the determination of Cu(II) and Pb(II) by flame atomic absorption spectrometry (FAAS) after preconcentrating on a column containing Anoxybacillus sp. SO B1–immobilized Amberlite XAD-16 was developed. The functional groups of Anoxybacillus sp. SO B1 immobilized on Amberlite XAD-16 were characterized in KBr tablets by Fourier transform infrared (FT-IR) spectrometry. Various parameters such as pH, amount of the adsorbent, eluent type and volume, and flow rate of the sample solution were studied. The optimum pH values of quantitative sorption for Cu(II) and Pb(II) were found to be pH 7.0 and 5.0 and Cu(II) and Pb(II) ions could be quantitatively eluted with 5.0 ml of 1.0 mol L?1 HCI and 10.0 ml of 0.25 mol L?1 HNO3, respectively. Recoveries of Cu(II) and Pb(II) were found to be 100.9 ± 1.57% and 100.3 ± 0.49% (N = 5), the limits of detection of Cu(II) and Pb(II) in the determination by FAAS (3 s, N = 10) were found to be 0.8 and 1.6 μg L?1, respectively. The proposed enrichment method was applied for metal ion determination from water samples such as two parts of Tigris River water in Diyarbak?r and Elaz??, Lake of Hazar in Elaz??, and tap water in Diyarbak?r. Furthermore, the accuracy of the proposed method was verified by studying the analytical recovery and by analyzing certified reference material (NCS-DC 73350 leaves of poplar).  相似文献   

8.
In this paper are presented the features of copper (II) and zinc (II) heteronuclear complexes of the cyclic peptide—c(HKHGPG)2. The coordination properties of ligand were studied by potentiometric, UV–Vis and CD spectroscopic methods. These experiments were carried out in aqueous solutions at 298 K depending on pH. It turned out that in a physiological pH dominates Cu(II)/Zn(II) complex ([CuZnL]4+) which could mimic the active center of superoxide dismutase (Cu,ZnSOD). In next step we performed in vitro research on Cu,ZnSOD activity for [CuZnL]4+ complex existing in 7.4 pH by the method of reduction of nitroblue tetrazolium (NBT). Also mono- and di-nuclear copper (II) complexes of this ligand were examined. The ability of inhibition free radical reaction were compared for all complexes. The results of these studies show that Cu(II) mono-, di-nuclear and Cu(II)/Zn(II) complexes becoming to new promising synthetic superoxide dismutase mimetics, and should be considered for further biological assays.  相似文献   

9.
Resveratrol (Rsv) is widely reported to possess anticarcinogenic properties in a plethora of cellular and animal models having limited toxicity toward normal cells. In the molecular level, Rsv can act as a suppressive agent for several impaired signaling pathways on cancer cells. However, Fukuhara and Miyata have shown a non-proteic reaction of Rsv, which can act as a prooxidant agent in the presence of copper (Cu), causing cellular oxidative stress accompanied of DNA damage. After this discovery, the complex Rsv-Cu was broadly explored as an antitumor mechanism in multiples tumor cell lines. The aim of the study is to explore the anticarcinogenic behavior of resveratrol–Cu(II) complex in MCF-7 cell line.Selectivity of Rsv binding to Cu ions was analyzed by HPLC and UV–VIS. The cells were enriched with concentrations of 10 and 50 µM CuSO4 solution and treated with 25 µM of Rsv. Copper uptake after enrichment of cells, as its intracellular distribution in MCF-7 line, was scanned by ICP-MS and TEM-EDS. Cell death and intracellular ROS production were determined by flow cytometry.Different from the extracellular model, no relationship of synergy between Rsv–Cu(II) and reactive oxidative species (ROS) production was detected in vitro. ICP-MS revealed intracellular copper accumulation to both chosen concentrations (0.33 ± 0.09 and 1.18 ± 0.13 ppb) but there is no promotion of cell death by Rsv–Cu(II) complex. In addition, significant attenuation of ROS production was detected when cells were exposed to CuSO4 after Rsv treatment, falling from 7.54% of ROS production when treated only with Rsv to 3.07 and 2.72% with CuSO4.Based on these findings antitumor activity of resveratrol when in copper ions presence, is not mediated by Rsv-Cu complex formation in MCF-7 human cell line, suggesting that the antitumoral reaction is dependent of a cancer cellular model.  相似文献   

10.
Abstract

Azo linked salicyldehyde and a new 2-hydroxy acetophenone based ligands (HL1 and HL2) with their copper(II) complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) were synthesized and characterized by spectroscopic methods such as 1H, 13C NMR, UV–Vis spectroscopy and elemental analyses. Calculation based on Density Functional Theory (DFT), have been performed to obtain optimized structures. Binding studies of these copper (II) complexes with calf thymus DNA (ct-DNA) and torula yeast RNA (t-RNA) were analyzed by absorption spectra, emission spectra and Viscosity studies and Molecular Docking techniques. The absorption spectral study indicated that the copper(II) complexes of 1 and 2 had intrinsic binding constants with DNA or RNA in the range of 7.6?±?0.2?×?103?M?1 or 6.5?±?0.3?×?103M?1 and 5.7?±?0.4?×?104 M?1 or 1.8?±?0.5?×?103 M?1 respectively. The synthesized compounds and nucleic acids were simulated by molecular docking to explore more details mode of interaction of the complexes and their orientations in the active site of the receptor.  相似文献   

11.
The effects of transition metals on nonenzymatic and ceruloplasmin catalyzed epinephrine oxidation were investigated by studying rates of epinephrine oxidation in purified buffers and in the presence of metal chelating agents. We found that epinephrine does not “autoxidize” in sodium chloride solutions prepared with deionized water that was further purified by chromatography over Chelex 100 resin prior to use. Epinephrine was oxidized rapidly in sodium chloride prepared with tap water (1.20±0.12 nmoles/min) or in deionized water (0.40±0.80 nmoles/min), but this oxidation was prevented by the addition of Desferal, a potent metal chelating agent. Epinephrine oxidation was enhanced upon the addition of ceruloplasmin, and this oxidation rate could be slowed, but not eliminated, by the addition of Desferal. If epinephrine solutions were preincubated for 72 hours with Desferal prior to ceruloplasmin addition, however, no oxidation was observed. Epinephrine was shown to form colored complexes with both iron and copper at pH 7.0. The Fe(III)-epinephrine complex was much more stable than was the Cu(II)-epinephrine complex. Oxygen consumption studies of ceruloplasmin catalyzed epinephrine oxidation showed that copper was a better promoter of epinephrine oxidation than was iron, suggesting that ceruloplasmin-catalyzed epinephrine oxidation results from adventitious copper bound to the purified enzyme. In light of these results, the physiological relevance of ceruloplasmin catalyzed oxidation of biogenic amines may be minor.  相似文献   

12.
Using inductively coupled plasma-mass spectrometry after samples microwave-assisted acid digestion, zinc (Zn), copper (Cu), and manganese (Mn) levels were measured in 14 different areas of the human brain of adult individuals (n?=?42; 71?±?12, range 50–101 years old) without a known history of neurodegenerative, neurological, or psychiatric disorder. The main goals of the work were to establish the “normal” (reference) values for those elements in the human brain and to evaluate the age-related changes, a prior and indispensable step in order to enlighten the role of trace element (TE) in human brain physiology and their involvement in aging and neurodegenerative processes. Considering the mean values for the 14 regions, Zn (mean ± sd; range 53?±?5; 43–61 μg/g) was found at higher levels, followed by Cu (22?±?5; 10–37 μg/g) and Mn (1.3?±?0.3; 0.5–2.7 μg/g). The TE distribution across the brain tissue showed to be quite heterogeneous: the highest levels of Zn were found in the hippocampus (70?±?10; 49–95 μg/g) and superior temporal gyrus (68?±?10; 44–88 μg/g) and the lowest in the pons (33?±?8; 19–51 μg/g); the highest levels of Cu and Mn were found in the putamen (36?±?13; 21–76 μg/g and 2.5?±?0.8; 0.7–4.5 μg/g, respectively) and the lowest in the medulla (11?±?6; 2–30 μg/g and 0.8?±?0.3; 0.2–1.8 μg/g, respectively). A tendency for an age-related increase in Zn and Mn levels was observed in most brain regions while Cu levels showed to be negatively correlated with age.  相似文献   

13.
In the aqueous solution of copper(II) ions, bidentate L-α-alaninehydroxamic acid (CH3CH(NH2)-CONHOHHL) binds cupric ion forming of monodimeric and bis(L-α-alaninehydroxamato)copper(II) complexes. These complexes were studied by potentiometric, ESR and spectrophotometric methods.The ESR studies provide important evidence for the formation of different Cu(II) complexes with L-α-alaninehydroxamic acid, depending on pH. The ESR spectra can be used to follow the appearance of the individual complexes, to estimate the coordination sphere around Cu(II) and to observe the equilibria between different complexes.The solution electronic spectra are reported. The experimental curve was resolved into precise- positioned absorption bands by Gaussian analysis for the bis(L-α-alaninehydroxamato)copper(II) species. These data were used in a weak tetragonal ligand field model to calculate ligand field parameters.The distribution and the relevant stability constants of species present in aqueous solutions were obtained by analytical potentiometry.  相似文献   

14.
Copper was acutely toxic to the estuarine microbial community of Middle Marshes, N.C. Under ambient water quality conditions, 10 μg of added total copper [Cu(II)] liter−1 reduced the CFU bacterial abundance by up to 60% and inhibited the amino acid turnover rate (AATR) by as much as 30%. Copper toxicity, however, was a quantitative function of free cupric ion (Cu2+) activity that was not directly related to Cu(II) or ligand-bound copper. By using a nitrilotriacetic acid-cupric ion buffer to control pCu (−log Cu2+ activity), it was found that an in situ pCu of 10.1 was bactericidal, reducing the CFU by 60%, but inhibited the AATR by only about 10%. A bacterial bioassay that was used to estimate the pCu in Cu(II)-treated Middle Marshes samples indicated that less than 0.5% of added Cu(II) was in the free cupric ion form. CFU was a more sensitive indicator of low-level copper stress than was AATR. When tested at different times, native microbial community responses to acute cupric ion stress were quantitatively quite similar even when there were large differences in bacterial abundances and in situ metabolic rates. Variations were observed in response to Cu(II) treatments at different times, but these were likely due to differences in water quality, which would quantitatively influence the distribution of copper complexes that were present. Asymptotic response curves suggest that some degree of copper resistance exists in this community. At a pCu of 8, more than 2 orders of magnitude above the minimum inhibitory level, the CFU was still 5 to 10% and the AATR was about 3% of the control values.  相似文献   

15.
Extraction and analytical methods for estimating the cholesterol/phospholipid molar ratio in cell membranes were compared. It was important to extract the membrane or cells in saline suspension, as phospholipid was lost on drying the material. The phospholipid analytical methods were found to be satisfactory. The method of analyzing for cholesterol using the enzyme cholesterol oxidase produced results in agreement with those from gas chromatography. Older less specific analytical methods gave cholesterol results which were 10–33% higher. The human tonsil lymphocyte was found to have a cholesterol/phospholipid molar ratio of 0.30 ± 0.02, and the human erythrocyte plasma membrane had a ratio of 0.72 ± 0.03.  相似文献   

16.
Saccharose, forming sufficiently stable complexes with copper(II) ions in alkaline solutions, was found to be a suitable ligand for copper(II) chelating in alkaline (pH>12) electroless copper deposition solutions. Reduction of copper(II)-saccharose complexes by hydrated formaldehyde was investigated and the copper deposits formed were characterized. The thickness of the compact copper coatings obtained under optimal operating conditions in 1h reaches ca. 2 microm at ambient temperature. The plating solutions were stable and no signs of Cu(II) reduction in the bulk solution were observed. Results were compared with those systems operating with other copper(II) ligands.  相似文献   

17.
The reconstitution of Cu,Zn-superoxide dismutase from the copper-free protein by the Cu(I).GSH complex was monitored by: (a) EPR and optical spectroscopy upon reoxidation of the enzyme-bound copper; (b) NMR spectroscopy following the broadening of the resonances of the Cu(I).GSH complex after addition of Cu-free,Zn-superoxide dismutase; and (c) NMR spectroscopy of the Cu-free,Co(II) enzyme following the appearance of the isotropically shifted resonances of the Cu(I), Co enzyme, Cu(I).GSH was found to be a very stable complex in the presence of oxygen and a more efficient copper donor to the copper-free enzyme than other low molecular weight Cu(II) complexes. In particular, 100% reconstitution was obtained with stoichiometric copper at any GSH:copper ratio between 2 and 500. Evidence was obtained for the occurrence of a Cu(I).GSH.protein intermediate in the reconstitution process. In view of the inability of copper-thionein to reconstitute Cu,Zn-superoxide dismutase and of the detection of copper.GSH complexes in copper-over-loaded hepatoma cells (Freedman, J.H., Ciriolo, M.R., and Peisach, J. (1989) J. Biol. Chem. 264, 5598-5605), Cu(I).GSH is proposed as a likely candidate for copper donation to Cu-free,Zn-superoxide dismutase in vivo.  相似文献   

18.
Abstract: A role for copper in the release of luteinizing hormone releasing hormone (LHRH) from hypothalamic neurons has been previously proposed. To elucidate further the mechanism of action of copper, we addressed two questions: (a) what is the active form of copper that interacts with the LHRH granule (ionic or chelated)? and (b) is copper-stimulated LHRH release a result of an interaction of copper with thiol groups and, if so, does it require oxygen? Granules were isolated from hypothalami of adult male rats and were then incubated at 37°C for 3–5 min in a buffered medium. When granules were incubated with various copper complexes, CuATP stimulated LHRH release by 45 ± 4% (mean ± SE), copper tartrate by 44 ± 4%, CuBSA by 27 ± 7%, and copper histidine by 16 ± 6%. Neither CuEDTA nor CuCl2 stimulated LHRH release. CuATP-stimulated LHRH release from granules incubated under N2 was 50% of that incubated under air. Furthermore, the CuATP-stimulated release of LHRH was completely inhibited by dithiothreitol or glutathione (10?3M each), partially (40–50%) by iodoacetate or 5,5-dithiobis-(2-nitrobenzoic acid), and not at all by oxidized dithiothreitol. Thus, chelated copper, rather than ionic copper, is the active form of the metal, and the action of copper involves an oxidation reaction and granule thiol groups. The precise mechanism of action of copper, however, has yet to be elucidated. We propose that copper may affect LHRH release as follows: copper, bound to an intracellular chelator (protein, peptide, or amino acid), oxidizes thiols of the LHRH granule, leading to a change in granule-membrane permeability and hence to LHRH release.  相似文献   

19.
The superoxide scavenging activities of copper(II) complexes with the ligands, 6,6′-methylene-bis(5′-amino-3′,4′-benzo-2′-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L), and 6,6′-bis(5′-amino-3′,4′-benzo-2′-thiapentyl)-1,11-diamino-2,3:9,10-dibenzo-4,8-dithiaundecane (H4L′), were investigated by xanthine–xanthine oxidase (X/XO) assays using nitroblue tetrazolium (NBT) as indicator molecule, and the results were compared with respect to the particular type of anion (ClO·4, Cl·, NO·3) on the apical site of the copper(II) complexes. All of the complexes inhibited the reduction of NBT by superoxide radicals, with the [Cu2(L′)](ClO4)2 complex exhibiting the highest scavenging activity against superoxide radicals among the complexes examined. The catalytic efficiency of the complexes for dismutation of superoxide radicals depends on the particular anion liganded to Cu(II) ion in the complexes, and the order of potency was observed to be ClO4 > Cl > NO·3 in phosphate buffer at pH 7.40. The Cu(II)-H4L′ complexes had the lowest IC50 and catalytic rate constant values indicating that the distorted geometry of the Cu(II)-H4L′ complexes influence their catalytic activities for dismutation of superoxide radicals more efficiently. The difference in the activities of the complexes toward superoxide radicals can also be attributed to the nature of the anions on the apical site of the copper(II) complexes and the superoxide dismutase-like activity. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 53–59, 1998  相似文献   

20.
This article presents an analytical method for the determination of the relative concentrations of trace elements in plasma protein by gel chromatography combined with SXRF (synchrotron radiation X-ray fluorescence). The fraction of plasma protein of male Kunming mice (body weight 24.2±0.3 g), treated with a cisplatin ip injection at a dose of 10 mg/kg, was obtained by the separation of a Sephadex G-50 column (buffered with ammonium acetate, pH 5.7). The SXRF experiments were performed at the Beijing Electron Positron Collider synchrotron radiation facility. The elements (Pt, S, Ca, Fe, Ni, Cu, Zn, Se, Br, and Sr) in the fraction of the plasma proteins (>22 kDa) were assayed using highly sensitive SXRF. The relative concentrations of elements were calculated by a normalization of Compton scattering intensity around 22 keV, after the normalization for the collection time of the X-ray spectrum and the counting of the ion chamber, and subtracting the contribution of the polycarbonate film for the supporting sample. The determination could prove that the element Pt in plasma was bound with macromolecular protein. Cu and S were present in the fraction of the protein in mice treated with cisplatin increase, and their ratios of treated/control were 1.66±0.06 and 1.78±0.33, respectively; Zn decreased to a ratio of 0.78±0.09. Our results are in agreement with others that cisplatin exposure leads to a marked loss of kidney copper and a moderate rise in kidney zinc. However, this article primarily describes one of the analytical methods used; it does not emphasize the results of the effect of cisplatin on trace elements in plasma protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号