首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purpose

Energy consumption of buildings is one of the major drivers of environmental impacts. Life cycle assessment (LCA) may support the assessment of burdens and benefits associated to eco-innovations aiming at reducing these environmental impacts. Energy efficiency policies however typically focus on the meso- or macro-scale, while interventions are typically taken at the micro-scale. This paper presents an approach that bridges this gap by using the results of energy simulations and LCA studies at the building level to estimate the effect of micro-scale eco-innovations on the macro-scale, i.e. the housing stock in Europe.

Methods

LCA and dynamic energy simulations are integrated to accurately assess the life cycle environmental burdens and benefits of eco-innovation measures at the building level. This allows quantitatively assessing the effectiveness of these measures to lower the energy use and environmental impact of buildings. The analysis at this micro-scale focuses on 24 representative residential buildings within the EU. For the upscaling to the EU housing stock, a hybrid approach is used. The results of the micro-scale analysis are upscaled to the EU housing stock scale by adopting the eco-innovation measures to (part of) the EU building stock (bottom–up approach) and extrapolating the relative impact reduction obtained for the reference buildings to the baseline stock model. The reference buildings in the baseline stock model have been developed by European Commission-Joint Research Centre based on a statistical analysis (top–down approach) of the European housing stock. The method is used to evaluate five scenarios covering various aspects: building components (building envelope insulation), technical installations (renewable energy), user behaviour (night setback of the setpoint temperature), and a combined scenario.

Results and discussion

Results show that the proposed combination of bottom–up and top–down approaches allow accurately assessing the impact of eco-innovation measures at the macro-scale. The results indicate that a combination of policy measures is necessary to lower the environmental impacts of the building stock to a significative extent.

Conclusions

Interventions addressing energy efficiency at building level may lead to the need of a trade-off between resource efficiency and environmental impacts. LCA integrated with dynamic energy simulation may help unveiling the potential improvements and burdens associated to eco-innovations.

  相似文献   

2.
Purpose

An estimation of the environmental impact of buildings by means of a life cycle assessment (LCA) raises uncertainty related to the parameters that are subject to major changes over longer time spans. The main aim of the present study is to evaluate the influence of modifications in the electricity mix and the production efficiency in the chosen reference year on the embodied impacts (i.e., greenhouse gas (GHG) emissions) of building materials and components and the possible impact of this on future refurbishment measures.

Methods

A new LCA methodological approach was developed and implemented that can have a significant impact on the way in which existing buildings are assessed at the end of their service lives. The electricity mixes of different reference years were collected and assessed, and the main datasets and sub-datasets were modified according to the predefined substitution criteria. The influence of the electricity-mix modification and production efficiency were illustrated on a selected existing reference building, built in 1970. The relative contribution of the electricity mix to the embodied impact of the production phase was calculated for four different electricity mixes, with this comprising the electricity mix from 1970, the current electricity mix and two possible future electricity-mix scenarios for 2050. The residual value of the building was also estimated.

Results and discussion

In the case presented, the relative share of the electricity mix GHG emission towards the total value was as high as 20% for separate building components. If this electricity mix is replaced with an electricity mix having greater environmental emissions, the relative contribution of the electricity mix to the total emissions can be even higher. When, by contrast, the modified electricity mix is almost decarbonized, the relative contribution to the total emissions may well be reduced to a point where it becomes negligible. The modification of the electricity mix can also influence the residual value of a building. In the observed case, the differences due to different electricity mixes were in the range of 10%.

Conclusions

It was found that those parameters that are subject to a major change during the reference service period of the building should be treated dynamically in order to obtain reliable results. Future research is foreseen to provide additional knowledge concerning the influence of dynamic parameters on both the use phase and the end-of-life phase of buildings, and these findings will also be important when planning future refurbishment measures.

  相似文献   

3.
Various green building rating systems (GBRSs) have been proposed to reduce the environmental impact of buildings. However, these GBRSs, such as Leadership in Energy and Environmental Design (LEED) v4, are primarily oriented toward a building's use stage energy consumption. Their application in contexts involving a high share of renewable energy, and hence a low‐impact electricity mix, can result in undesirable side effects. This paper aims to investigate such effects, based on an existing office building in Quebec (Canada), where more than 95% of the electricity consumption mix is renewable. This paper compares the material impacts from a low‐energy context building to material considerations in LEED v4. In addition to their contributions to the building impacts, material impacts are also defined by their potential to change impacts with different material configurations. Life cycle assessment (LCA) impacts were evaluated using Simapro 8.2, the ecoinvent 3.1 database, and the IMPACT 2002+ method. The building LCA results indicated higher environmental impact contributions from materials (>50%) compared to those from energy consumption. This is in contrast with the LEED v4 rating system, as it did not seem to be as effective in capturing such effects. The conclusions drawn from this work will help stakeholders from the buildings sector to have a better understanding of building environmental profiles, and the limitations of LEED v4 in contexts involving a low‐impact energy mix. In addition, this critical assessment can be used to further improve the LEED certification system.  相似文献   

4.

Purpose

Since the construction sector is a considerable energy consumer and greenhouse gas (GHG) producer, the EU rules strive to build nearly zero-energy buildings, by reducing the operative energy and yearning for on-site energy production. This article underlines the necessity to go beyond the energy evaluations and move towards the environmental assessment in a life cycle perspective, by comparing the impacts due to building materials and energy production devices.

Methods

We compared the operational energy impacts and those of technologies and materials carrying out a life cycle assessment (LCA; ISO 14040, ISO 14044, EN 15643–2, EN 15978) on a nearly zero-energy building (ZEB), a residential complex with 61 apartments in four buildings, situated near Milan (Italy). We consider all life cycle phases, including production, transport, building site activities, use and maintenance; the materials inventory was filled out collecting data from invoices paid, building site reports, construction drawings and product data sheets. To make the assessment results comparable, we set a functional unit of 1 m2 of net floor area in 1 year (1 m2y), upon a lifespan of 100 years. The environmental data were acquired from Ecoinvent 2.2.

Results and discussion

The results highlight the important role of the pre-use and maintenance phases in building life so that in a nearly ZEB, the environmental impacts linked to the use are no longer the major proportion: the pre-use phase accounts for 56 %, while the operative energy is only 31 % of the total. For this reason, if the environmental assessment of the case study was shrunk to the operational consumption, only one third of the impacts would be considered. The consumption of non-renewable resources after 100 years are 193,950 GJ (133.5 kWh/m2y); the GHG emissions are 15,300 t (37.8 kg of CO2?eq/m2y). In the pre-use phase, structures have the major impacts (50 %) and the load of system components is unexpectedly high (12 %) due to the ambition of on-site energy production.

Conclusions

Paying attention to the operative energy consumption seems to address to only one third of the environmental impacts of buildings: the adoption of LCA as a tool to guide the design choices could help to identify the solution which ensures the lowest overall impact on the whole life, balancing the options of reducing the energy requirements, the on-site production from renewable sources and the limitation of the impacts due to building components (simpler and more durable).
  相似文献   

5.

Purpose

With the increasing concerns related to integration of social and economic dimensions of the sustainability into life cycle assessment (LCA), traditional LCA approach has been transformed into a new concept, which is called as life cycle sustainability assessment (LCSA). This study aims to contribute the existing LCSA framework by integrating several social and economic indicators to demonstrate the usefulness of input–output modeling on quantifying sustainability impacts. Additionally, inclusion of all indirect supply chain-related impacts provides an economy-wide analysis and a macro-level LCSA. Current research also aims to identify and outline economic, social, and environmental impacts, termed as triple bottom line (TBL), of the US residential and commercial buildings encompassing building construction, operation, and disposal phases.

Methods

To achieve this goal, TBL economic input–output based hybrid LCA model is utilized for assessing building sustainability of the US residential and commercial buildings. Residential buildings include single and multi-family structures, while medical buildings, hospitals, special care buildings, office buildings, including financial buildings, multi-merchandise shopping, beverage and food establishments, warehouses, and other commercial structures are classified as commercial buildings according to the US Department of Commerce. In this analysis, 16 macro-level sustainability assessment indicators were chosen and divided into three main categories, namely environmental, social, and economic indicators.

Results and discussion

Analysis results revealed that construction phase, electricity use, and commuting played a crucial role in much of the sustainability impact categories. The electricity use was the most dominant component of the environmental impacts with more than 50 % of greenhouse gas emissions and energy consumption through all life cycle stages of the US buildings. In addition, construction phase has the largest share in income category with 60 % of the total income generated through residential building’s life cycle. Residential buildings have higher shares in all of the sustainability impact categories due to their relatively higher economic activity and different supply chain characteristics.

Conclusions

This paper is an important attempt toward integrating the TBL perspective into LCSA framework. Policymakers can benefit from such approach and quantify macro-level environmental, economic, and social impacts of their policy implications simultaneously. Another important outcome of this study is that focusing only environmental impacts may misguide decision-makers and compromise social and economic benefits while trying to reduce environmental impacts. Hence, instead of focusing on environmental impacts only, this study filled the gap about analyzing sustainability impacts of buildings from a holistic perspective.  相似文献   

6.
Background, aim, and scope  To minimize the environmental impacts of construction and simultaneously move closer to sustainable development in the society, the life cycle assessment of buildings is essential. This article provides an environmental life cycle assessment (LCA) of a typical commercial office building in Thailand. Almost all commercial office buildings in Thailand follow a similar structural, envelope pattern as well as usage patterns. Likewise, almost every office building in Thailand operates on electricity, which is obtained from the national grid which limits variability. Therefore, the results of the single case study building are representative of commercial office buildings in Thailand. Target audiences are architects, building construction managers and environmental policy makers who are interested in the environmental impact of buildings. Materials and methods  In this work, a combination of input–output and process analysis was used in assessing the potential environmental impact associated with the system under study according to the ISO14040 methodology. The study covered the whole life cycle including material production, construction, occupation, maintenance, demolition, and disposal. The inventory data was simulated in an LCA model and the environmental impacts for each stage computed. Three environmental impact categories considered relevant to the Thailand context were evaluated, namely, global warming potential, acidification potential, and photo-oxidant formation potential. A 50-year service time was assumed for the building. Results  The results obtained showed that steel and concrete are the most significant materials both in terms of quantities used, and also for their associated environmental impacts at the manufacturing stage. They accounted for 24% and 47% of the global warming potential, respectively. In addition, of the total photo-oxidant formation potential, they accounted for approximately 41% and 30%; and, of the total acidification potential, 37% and 42%, respectively. Analysis also revealed that the life cycle environmental impacts of commercial buildings are dominated by the operation stage, which accounted for approximately 52% of the total global warming potential, about 66% of the total acidification potential, and about 71% of the total photo-oxidant formation potential, respectively. The results indicate that the principal contributor to the impact categories during the operation phase were emissions related to fossil fuel combustion, particularly for electricity production. Discussion  The life cycle environmental impacts of commercial buildings are dominated by the operation stage, especially electricity consumption. Significant reductions in the environmental impacts of buildings at this stage can be achieved through reducing their operating energy. The results obtained show that increasing the indoor set-point temperature of the building by 2°C, as well as the practice of load shedding, reduces the environmental burdens of buildings at the operation stage. On a national scale, the implementation of these simple no-cost energy conservation measures have the potential to achieve estimated reductions of 10.2% global warming potential, 5.3% acidification potential, and 0.21% photo-oxidant formation potential per year, respectively, in emissions from the power generation sector. Overall, the measures could reduce approximately 4% per year from the projected global warming potential of 211.51 Tg for the economy of Thailand. Conclusions  Operation phase has the highest energy and environmental impacts, followed by the manufacturing phase. At the operation phase, significant reductions in the energy consumption and environmental impacts can be achieved through the implementation of simple no-cost energy conservation as well as energy efficiency strategies. No-cost energy conservation policies, which minimize energy consumption in commercial buildings, should be encouraged in combination with already existing energy efficiency measures of the government. Recommendations and perspectives  In the long run, the environmental impacts of buildings will need to be addressed. Incorporation of environmental life cycle assessment into the current building code is proposed. It is difficult to conduct a full and rigorous life cycle assessment of an office building. A building consists of many materials and components. This study made an effort to access reliable data on all the life cycle stages considered. Nevertheless, there were a number of assumptions made in the study due to the unavailability of adequate data. In order for life cycle modeling to fulfill its potential, there is a need for detailed data on specific building systems and components in Thailand. This will enable designers to construct and customize LCAs during the design phase to enable the evaluation of performance and material tradeoffs across life cycles without the excessive burden of compiling an inventory. Further studies with more detailed, reliable, and Thailand-specific inventories for building materials are recommended.  相似文献   

7.
Purpose

The environmental impacts of electricity generation are a critical issue towards sustainability and thus an important research topic in several countries. The life cycle assessment methodology has been widely employed to assess electricity generation. However, there are still gaps in research to be explored within this theme. Therefore, this paper aims to conduct a systematic theoretical analysis of the state of the art of the scientific research on LCA of electricity generation systems in the world.

Methods

A critical review of 47 studies was conducted. The study is comprehensive in the analysis of the main aspects of the identified high impact studies as follows: authors, countries, universities, keywords, journals, number of citations, life cycle impact assessment methods, impact categories, software tools, and databases. The Methodi Ordinatio was applied to rank the studies in terms of impact factor and number of citations, pointing out high impact research.

Results and discussion

Wind and solar powers have two of the smallest impact indices in their generation in terms of global warming, compared to other sources. The ecoinvent database was the most used among the studies analyzed, providing data for potential environmental impacts. The most frequently used impact category in the assessments was climate change. The studies are not equally distributed but most of them are concentrated in European countries. In some countries, clean sources seem promising due to their capacity to generate electricity in places with high wind incidence and high capacity for sunlight capture.

Conclusions

The conclusions of this article summarize the characteristics of existing literature and provide suggestions for future work. The results of the study can also be used to promote development actions and foment changes in energy matrices in a global context. The main studies in this area point that in the future, the main sources for electricity generation will be renewable ones, since life cycle assessment of electricity generation systems has been seeking to generate knowledge to support informed decision-making.

  相似文献   

8.
Purpose

Cotton yarns spun from natural fibers are widely used in the apparel industry. Most of waste cotton goods are now disposed by incineration or landfill, which brings resource and environmental challenges to the society. Using the waste cotton to spin yarns is an alternative way to forward a more sustainable future. In this research, two scenarios for the environmental impacts of yarns spun from corresponding fibers are investigated, including recycled cotton fibers and virgin cotton fibers.

Methods

The life cycle assessment (LCA) has been conducted according to the collected data from on-site investigation of typical production factories. The life cycle for the recycled cotton yarn production is divided into five stages, i.e., raw material acquisition, transportation, breaking, mixing, and spinning. The life cycle of virgin cotton yarn production is been divided into four stages, i.e., raw material acquisition, transportation, mixing, and spinning. The functional unit is 1000 kg produced yarns which are used for weaving into the fabrics. Notable impacts on climate change, fossil depletion, water depletion, and human toxicity were observed.

Results

The life cycle impact assessment (LCIA) results show that environmental impacts of recycled cotton yarns are far less than those of virgin cotton yarns, except for climate change and water depletion. The reason is that the land occupation and irrigation water have great impact on environmental impacts of cotton cultivation. In spinning, the electricity is the key factor whose environmental impacts account for the most in the virgin cotton yarn scenario, while the electricity and water consumptions are the key factors for the recycled cotton yarn scenario in the life cycle of yarn production. The sensitivity analysis indicates that improving energy efficiency can significantly reduce environmental burdens for both the two scenarios. The uncertainty distribution of water depletion, human toxicity, fossil depletion, and climate change of the two scenarios were determined with a 90% confidence interval.

Conclusions

The LCIA results reveal recycled cotton yarn is a viable alternative to relieve resource and environmental pressure. About 0.5 ha of agricultural land can be saved, 6600 kg CO2 eq can be reduced, and 2783 m3 irrigation water can be saved by using 1000 kg of the recycled cotton yarns. It can be concluded that the recycled cotton fibers can be served as a substitute for virgin cotton fibers to reduce agricultural land and avoid environmental impacts generated from the cotton planting.

  相似文献   

9.
Short-rotation woody crops (SRWC) along with other woody biomass feedstocks will play a significant role in a more secure and sustainable energy future for the United States and around the world. In temperate regions, shrub willows are being developed as a SRWC because of their potential for high biomass production in short time periods, ease of vegetative propagation, broad genetic base, and ability to resprout after multiple harvests. Understanding and working with willow's biology is important for the agricultural and economic success of the system.

The energy, environmental, and economic performance of willow biomass production and conversion to electricity is evaluated using life cycle modeling methods. The net energy ratio (electricity generated/life cycle fossil fuel consumed) for willow ranges from 10 to 13 for direct firing and gasification processes. Reductions of 70 to 98 percent (compared to U.S. grid generated electricity) in greenhouse gas emissions as well as NOx, SO2, and particulate emissions are achieved.

Despite willow's multiple environmental and rural development benefits, its high cost of production has limited deployment. Costs will be lowered by significant improvements in yields and production efficiency and by valuing the system's environmental and rural development benefits. Policies like the Conservation Reserve Program (CRP), federal biomass tax credits and renewable portfolio standards will make willow cost competitive in the near term.

The avoided air pollution from the substitution of willow for conventional fossil fuel generated electricity has an estimated damage cost of $0.02 to $0.06 kWh?1. The land intensity of about 4.9 × 10?5 ha-yr/kWh is greater than other renewable energy sources. This may be considered the most significant limitation of willow, but unlike other biomass crops such as corn it can be cultivated on the millions of hectares of marginal agricultural lands, improving site conditions, soil quality and landscape diversity. A clear advantage of willow biomass compared to other renewables is that it is a stock resource whereas wind and PV are intermittent. With only 6 percent of the current U.S. energy consumption met by renewable sources the accelerated development of willow biomass and other renewable energy sources is critical to address concerns of energy security and environmental impacts associated with fossil fuels.  相似文献   


10.
Purpose

Bio-based recycling systems and agricultural production using recycled materials are often evaluated separately. This study performs an environmental and socio-economic life cycle assessment (LCA) of a food waste treatment and spinach farming system in Japan. The environmental and economic tradeoffs of introducing a recycling system and the net environmental benefit of the substitution of market fertilizer considering operation changes are also examined.

Methods

Three scenarios were developed and compared. In the conventional (CV) scenario, food waste is collected, incinerated, and disposed of in landfill, and the farmer uses market organic fertilizer. The on-site composting (OC) scenario processes food waste using an on-site garbage disposer and transports compost to a nearby spinach farmer. Food waste in the centralized composting (CC) scenario is transported to a centralized composting facility and resultant compost is sent to the farm. Primary data were obtained from field experiments and interviews. Non-greenhouse gas (GHG) emissions from the field and nitrogen leaching to water systems were simulated using the denitrification–decomposition (DNDC) model.

The environmental LCA targeted climate change, eutrophication, and waste landfill. An input–output analysis estimated socio-economic indicators, namely gross added value and employment inducement effect.

Results and discussion

The scenario with the lowest impact is the CC scenario. Climate change and eutrophication impacts are highest in the OC scenario and waste landfill impacts are most significant in the CV scenario. The weighted impact by LIME2 can be reduced by 47% in the CC scenario and 17% in the OC scenario due to the recycling of food waste instead of dumping in the landfill. The difference in socio-economic indicators between the scenarios was relatively small, although the CV scenario encouraged more employment. The substitution effect of composting, as well as the environmental impact reduction of replacing market organic fertilizer with compost, will result in 28.7% of the avoided impacts in GHG emissions.

Conclusions

Both composting scenarios are feasible from an environmental and socio-economic perspective when compared with conventional organic production, although there is a tradeoff between waste landfill and GHG emissions for the on-site composting system. However, the OC scenario needs to save electricity to improve its environmental competitiveness with the CV scenario. When considering the substitution effect of composting, it is recommended to take into account that agricultural operation also changes.

  相似文献   

11.
Purpose

In the booming electric vehicle market, the demand for refined cobalt is showing a blowout growth. China is the largest cobalt-refiner and cobalt-importer in the world. However, the life cycle inventory and potential environmental impact from cobalt refining in China have not been clearly illustrated. This paper builds a comprehensive inventory to support the data needs of downstream users of cobalt sulfate. A “cradle-to-gate” life cycle assessment was conducted to provide theoretical support to stakeholders.

Methods

A life cycle assessment was performed based on ISO 14040 to evaluate the potential environmental impact and recognize the key processes. The system boundary of this study contains four stages of cobalt sulfate production: mining, beneficiation, primary extraction, and refining. Except for the experimental data used in the primary extraction stage, all relevant data are actual operating data. The normalization value was calculated based on the latest released global emission and extraction data.

Results and discussion

Normalization results show that the potential impacts of cobalt refining were mainly concentrated in the fossil depletion and freshwater ecotoxicity categories. The beneficiation stage and the refining stage account for 72% and 26% of the total normalization value, respectively. The beneficiation stage needs to consume a lot of chemicals and energy to increase the cobalt content, due to the low grade of cobalt ore in China. Compared with cobalt concentrate, the use of cobalt-containing waste (e.g., cobalt waste from EV batteries) can ease endpoint impact by up to 73%. With the application of the target electricity structure in 2050, the potential impact of China’s cobalt sulfate production on global warming, fossil depletion, and particulates formation can be reduced by 24%, 22%, and 26%, respectively.

Conclusion

Findings indicate that the chemical inputs and electricity consumption are primary sources of potential environmental impact in China’s cobalt sulfate production. Promoting the development of urban mines can reduce excessive consumption of chemicals and energy in the beneficiation stage. The environmental benefits of transforming the electricity structure and using more renewable energy to reduce dependence on coal-based power in the cobalt refining industry were revealed.

  相似文献   

12.
Purpose

Digital fabrication is revolutionizing architecture, enabling the construction of complex and multi-functional building elements. Multi-functionality is often achieved through material reduction strategies such as functional or material hybridization. However, these design strategies may increase environmental impacts over the life cycle. The integration of functions may hinder the maintenance and shorten the service life. Moreover, once a building element has reached the end of life, hybrid materials may influence negatively its recycling capacity. Consequently, the aim of this paper is to analyze the influence of multi-functionality in the environmental performance of two digitally fabricated architectural elements: The Sequential Roof and Concrete-Sandstone Composite Slab and to compare them with existing standard elements.

Methods

A method based on the life-cycle assessment (LCA) framework is applied for the evaluation of the environmental implications of multi-functionality in digital fabrication. The evaluation consists of the comparison of embodied impacts between a multi-functional building element constructed with digital fabrication techniques and a conventional one, both with the same building functions. Specifically, the method considers the lifetime uncertainty caused by multi-functionality by considering two alternative service life scenarios during the evaluation of the digitally fabricated building element. The study is extended with a sensitivity analysis to evaluate the additional environmental implications during end-of-life processing derived from the use of hybrid materials to achieve multi-functionality in architecture.

Results and discussion

The evaluation of two case studies of digitally fabricated architecture indicates that their environmental impacts are very sensitive to the duration of their service life. Considering production and life span phases, multi-functional building elements should have a minimum service life of 30 years to bring environmental benefits over conventional construction. Furthermore, the case study of Concrete-Sandstone Composite Slab shows that using hybrid materials to achieve multi-functionality carries important environmental consequences at the end of life, such as the emission of air pollutants during recycling.

Conclusions

The results from the case studies allow the identification of key environmental criteria to consider during the design of digitally fabricated building elements. Multi-functionality provides material efficiency during production, but design adaptability must be a priority to avoid a decrease in their environmental performance. Moreover, the high environmental impacts caused by end-of-life processing should be compensated during design.

  相似文献   

13.
Purpose

Technologies with low environmental impacts and promoting renewable energy sources are required to meet the energetic demand while facing the increase of gas emissions associated to the greenhouse effect and the depletion of fossil fuels. CO2 methanation activated by magnetic heating has recently been reported as a highly efficient and innovative power-to-gas technology in a perspective of successful renewable energy storage and carbon dioxide valorisation. In this work, the life cycle assessment (LCA) of this process is performed, in order to highlight the environmental potential of the technology, and its competitivity with in respect to conventional heating technologies.

Methods

The IMPACT 2002+ was used for this LCA. The process studied integrates methanation, water electrolysis and CO2 capture and separation. This “cradle-to-gate” LCA study does not consider the use of methane, which is the reaction product. The functional unit used is the energy content of the produced CH4. The LCA was carried out using the energy mix data for the years 2020 and 2050 as given by the French Agency for Environment and Energy management (ADEME). Consumption data were either collected from literature or obtained from the LPCNO measurements as discussed by Marbaix (2019). The environmental impact of the CO2 methanation activated by magnetic heating was compared with the environmental impact of a power-to-gas plant using conventional heating (Helmeth) and considering the environmental impact of the natural gas extraction.

Results

It is shown that the total flow rate of reactants, the source of CO2 and the energy mix play a major role on the environmental impact of sustainable CH4 production, whereas the lifetime of the considered catalyst has no significant influence. As a result of the possible improvements on the above-mentioned parameters, the whole process is expected to reduce by 75% in its environmental impact toward 2050. This illustrates the high environmental potential of the methanation activated by magnetic heating when coupled with industrial exhausts and renewable electricity production.

Conclusions

The technology is expected to be environmentally competitive compared with existing similar processes using external heating sources with the additional interest of being extremely dynamic in response, in line with the intermittency of renewable energy production.

  相似文献   

14.
Purpose

The long-term marginal electricity supply mixes of 40 countries were generated and integrated into version 3.4 of the ecoinvent consequential database. The total electricity production originating from these countries accounts for 77% of the current global electricity generation. The goal of this article is to provide an overview of the methodology used to calculate the marginal mixes and to evaluate the influence of key parameters and methodological choices on the results.

Methods

The marginal mixes are based on public energy projections from national and international authorities and reflect the accumulated effect of changes in demand for electricity on the installation and operation of new-generation capacities. These newly generated marginal mixes are first examined in terms of their compositions and environmental impacts. They are then compared to several sets of alternative electricity supply mixes calculated using different methodological choices or data sources.

Results and discussion

Renewable energy sources (RES) as well as natural gas power plants show the highest growth rates and usually dominate the marginal mixes. Nevertheless, important variations may exist between the marginal mixes of the different countries in terms of their technological compositions and environmental impacts. The examination of the modeling choices reveals substantial variations between the marginal mixes integrated into the ecoinvent consequential database version 3.4 and marginal mixes generated using alternative modeling options. These different modeling possibilities include changes in the methodology, temporal parameters, and the underlying energy scenarios. Furthermore, in most of the impact categories, average (i.e., attributional) mixes cause higher impact scores than marginal mixes due to higher shares of RES in marginal mixes.

Conclusions

Accurate and consistent data for electricity supply is integrated into a consequential database providing a strong basis for the development of consequential Life Cycle Assessments. The methodology adopted in this version of the database eliminates several shortcomings from the previous approach which led to unrealistic marginal mixes in several countries. The use of energy scenarios allows the evolution of the electricity system to be considered within the definition of the marginal mixes. The modeling choices behind the electricity marginal mix should be adjusted to the goal and scope of individual studies and their influence on the results evaluated.

  相似文献   

15.
Purpose

Galvanized sheet is the most widely used coated steel plate globally in the industry of construction, automobile, electronics manufacturing, etc. Large amounts of resources and energy are used in galvanized sheet production, which likewise generates vast amounts of pollutant emissions. In the face of the rapid growth of the production and demand of galvanized sheet in China, it is very important to find out the key factors of the environment impact in the production of galvanized sheet. An evaluation of the environmental impact of galvanized sheet production in China was conducted by using the framework of life cycle assessment to improve resource saving and environmental protection in the galvanized sheet industry, and update the life cycle inventory database of galvanized sheet production.

Methods

The environmental impact assessment was carried out based on the life cycle assessment framework by the use of ReCiPe 2016 method which was applicable on a global scale to evaluate the environmental impact of galvanized sheet production. Methods of uncertainty analysis and sensitivity analysis were adopted to provide credible support.

Results and discussion

The midpoint categories of global warming and fossil resource scarcity, as well as the endpoint categories of human health contributed most to environmental burden, which were mainly caused by carbon dioxide emissions and coal consumption. Environmental impact was dominated by the key process of continuous casting billet production, followed by electrolytic zinc production and electricity generation.

Conclusions

Additional CO2-reducing measures should be implemented in galvanized sheet production to slow the effect of global warming. Moreover, biomass char reducing agents, rather than coal-based reducing agents, should be utilized in steelmaking to reduce fossil resource consumption. Furthermore, renewable energy, rather than coal-based electricity, should be used in galvanized sheet production to reduce carbon emissions and fossil resource consumption. Increasing the recycling rate of scrap steel and zinc waste can save resources and reduce environmental burden. The results of this study can provide guidance in the reduction of resource consumption and environmental burden of galvanized sheet production to the maximum extent.

  相似文献   

16.

Purpose

This study aims at accounting for the variation in electricity production, processes and related impacts depending on season (heating, cooling), day of the week (tertiary building) and hour of the day. In this context, this paper suggests two alternative methods to integrate grid-building interaction in life cycle assessment of buildings and districts.

Methods

An attributional dynamic method (AD) and a marginal dynamic method (MD) are compared with an annual average method (AA), representative of standard practice, using electric space heating as an illustrative case. The different methods are based on a dispatch model simulating electricity supply on an hourly basis, averaging historically observed climatic and economic variability. The meteorological inputs of the model are identical to those of the building energy simulation. Therefore, the environmental benefits from smart buildings and onsite renewable energy production are more accurately evaluated.

Results and discussion

Using electricity production (or supply) data for a specific past year is a common practice in building LCA. This practice is sensitive to economic and meteorological hazards. The suggested methodology is based on a proposed reference year mitigating these hazards and thus could be seen as more representative of average impacts. Depending on the chosen approach (average or marginal) to evaluate electricity supply related impacts, the carbon footprint of the electric space heating option for the studied low-energy house in France is evaluated to 61.4 to 84.9 g CO2eq kWh?1 (AA), 78.8 to 110.2 g CO2eq kWh?1 (AD) and 765.1 to 928.7 g CO2eq kWh?1 (MD). Compared to wood and gas boiler, 22–107 and 218–284 g CO2eq kWh?1 respectively, the ranking between the different technical options depends on the chosen approach. Uncertainty analysis does not undermine the interpretation of the results.

Conclusions

The proposed electricity system model allows a more precise and representative evaluation of electricity supply related impacts in LCA compared to standard practices. Two alternative methods are suggested corresponding to attributional and consequential LCA. The approach has to be chosen in line with the assessment objectives (e.g. certification, ecodesign). Prospective assessment integrating long-term evolution of the electric system and influence of global warming on buildings behaviour are identified as relevant future research subjects.
  相似文献   

17.

Purpose

The paper provides an empirical assessment of an uninterruptible power supply (UPS) system based on hydrogen technologies (HT-UPS) using renewable energy sources (RES) with regard to its environmental impacts and a comparison to a UPS system based on the internal combustion engine (ICE-UPS).

Methods

For the assessment and comparison of the environmental impacts, the life-cycle assessment (LCA) method was applied, while numerical models for individual components of the UPS systems (electrolyser, storage tank, fuel cell and ICE) were developed using GaBi software. The scope of analysis was cradle-to-end of utilisation with functional unit 1 kWh of uninterrupted electricity produced. For the life-cycle inventory analysis, quantitative data was collected with on-site measurements on an experimental system, project documentation, GaBi software generic databases and literature data. The CML 2001 method was applied to evaluate the system’s environmental impacts. Energy consumption of the manufacturing phase was estimated from gross value added (GVA) and the energy intensity of the industry sector in the manufacturer’s country.

Results and discussion

In terms of global warming (GW), acidification (A), abiotic depletion (AD) and eutrophication (E), manufacturing phase of HT-UPS accounts for more than 97 % of environmental impacts. Electrolyser in all its life-cycle phases contributes above 50 % of environmental impacts to the system’s GW, A and AD. Energy return on investment (EROI) for the HT-UPS has been calculated to be 0.143 with distinction between renewable (roughly 60 %) and non-renewable energy resources inputs. HT-UPS’s life-cycle GW emissions have been calculated to be 375 g of CO2 eq per 1 kWh of uninterruptible electric energy supplied. All these values have also been calculated for the ICE-UPS and show that in terms of GW, A and AD, the ICE-UPS has bigger environmental impacts and emits 1,190 g of CO2 eq per 1 kWh of uninterruptible electric energy supplied. Both systems have similar operation phase energy efficiency. The ICE-UPS has a higher EROI but uses almost none RES inputs.

Conclusions

The comparison of two different technologies for providing UPS has shown that in all environmental impact categories, except eutrophication, the HT-UPS is the sounder system. Most of HT-UPS’s environmental impacts result from the manufacturing phase. On the contrary, ICE-UPS system’s environmental impacts mainly result from operational phase. Efficiency of energy conversion from electricity to hydrogen to electricity again is rather low, as is EROI, but these will likely improve as the technology matures.  相似文献   

18.
Purpose

The overall aim of this study is to contribute to the creation of LCA database on electricity generation systems in Ethiopia. This study specifically estimates the environmental impacts associated with wind power systems supplying high voltage electricity to the national grid. The study has regional significance as the Ethiopian electric system is already supplying electricity to Sudan and Djibouti and envisioned to supply to other countries in the region.

Materials and methods

Three different grid-connected wind power systems consisting of four different models of wind turbines with power rates between 1 and 1.67 MW were analyzed for the situation in Ethiopia. The assessment takes into account all the life cycle stages of the total system, cradle to grave, considering all the processes related to the wind farms: raw material acquisition, manufacturing of main components, transporting to the wind farm, construction, operation and maintenance, and the final dismantling and waste treatment. The study has been developed in line with the main principles of the ISO 14040 and ISO 14044 standard procedures. The analysis is done using SimaPro software 8.0.3.14 multi-user, Ecoinvent database version 3.01, and ReCiPe 2008 impact assessment method. The assumed operational lifetime as a baseline is 20 years.

Results and discussion

The average midpoint environmental impact of Ethiopian wind power system per kWh electricity generated is for climate change: 33.6 g CO2 eq., fossil depletion: 8 g oil eq., freshwater ecotoxicity: 0.023 g 1,4-DCB eq., freshwater eutrophication: 0.005 g N eq., human toxicity: 9.9 g 1,4-DCB eq., metal depletion: 18.7 g Fe eq., marine ecotoxicity: 0.098 g 1,4-DCB eq., particulate matter formation: 0.097 g PM10 eq., photochemical oxidant formation: 0.144 g NMVOC, and terrestrial acidification: 0.21 g SO2 eq. The pre-operation phase that includes the upstream life cycle stage is the largest contributor to all the environmental impacts, with shares ranging between 82 and 96%. The values of cumulative energy demand (CED) and energy return on investment (EROI) for the wind power system are 0.393 MJ and 9.2, respectively.

Conclusion

The pre-operation phase is the largest contributor to all the environmental impact categories. The sensitivity and scenario analyses indicate that changes in wind turbine lifespans, capacity factors, exchange rates for parts, transport routes, and treatment activities would result in significant changes in the LCA results.

  相似文献   

19.
Background, aim, and scope  The environmental burden of photovoltaic (PV) solar modules is currently largely determined by the cumulative input of fossil energy used for module production. However, with an increased focus on limiting the emission of CO2 coming from fossil fuels, it is expected that renewable resources, including photovoltaics, may well become more important in producing electricity. A comparison of the environmental impacts of PV modules in case their life cycle is based on the use of PV electricity in contrast to conventional electricity can elucidate potential environmental drawbacks in an early stage of development of a solar-based economy. The goal of this paper is to show for ten impact categories the environmental consequences of replacing fossil electricity with solar electricity into the life cycle of two types of PV modules. Materials and methods  Using life cycle assessment (LCA), we evaluated the environmental impacts of two types of PV modules: a thin-film GaInP/GaAs tandem module and a multicrystalline silicon (multi-Si) module. For each of the modules, the total amount of fossil electricity required in the life cycle of the module was substituted with electricity that is generated by a corresponding PV module. The environmental impacts of the modules on the midpoint level were compared with those of the same modules in case their life cycle is based on the use of conventional electricity. The environmental impacts were assessed for Western European circumstances with an annual solar irradiation of 1000 kWh/m2. For the GaInP/GaAs module, the environmental impacts of individual production steps were also analysed. Results  Environmental burdens decreased when PV electricity was applied in the life cycle of the two PV modules. The impact score reductions of the GaInP/GaAs module were up to a factor of 4.9 (global warming). The impact score reductions found for the multi-Si module were up to a factor of 2.5 (abiotic depletion and global warming). Reductions of the toxicity scores of both module types were smaller or negligible. This is caused by a decreased use of fossil fuels, on the one hand, and an increased consumption of materials for the production of the additional solar modules used for generating the required PV electricity on the other. Overall, the impact scores of the GaInP/GaAs module were reduced more than the corresponding scores of the multi-Si module. The contribution analysis of the GaInP/GaAs module production steps indicated that for global warming, the cell growth process is dominant for supply with conventional electricity, while for the solar scenario, the frame becomes dominant. Regarding freshwater aquatic ecotoxicity scores associated with the life cycle of the GaInP/GaAs module, the cell growth process is dominant for supply with conventional electricity, while the reactor system for the cell growth with the associated gas scrubbing system is dominant for the solar scenario. Discussion  There are uncertainties regarding the calculated environmental impact scores. This paper describes uncertainties associated with the used economic allocation method, and uncertainties because of missing life cycle inventory data. For the GaInP/GaAs module, it was found that the global warming impact scores range from −66% to +41%, and the freshwater aquatic ecotoxicity scores (for an infinite time horizon) range from −40% to +300% compared to the default estimates. For both impact categories, the choices associated with the allocation of gallium, with the electricity mix, with the conversion efficiency of the commercially produced GaInP/GaAs cells, and with the yield of the cell growth process are most influential. For freshwater aquatic ecotoxicity, the uncertainty concerning the lifetime of the reactor system for the GaInP/GaAs cell growth process and the gas scrubbing system is particularly relevant. Conclusions  Use of PV electricity instead of fossil electricity significantly reduces the environmental burdens of the GaInP/GaAs and the multi-Si module. The reductions of the toxicity scores, however, are smaller or negligible. Toxicity impacts of the GaInP/GaAs cells can be reduced by improvement of the yield of the cell growth process, a reduced energy demand in the cell growth process, reduction of the amount of stainless steel in the cell growth reactor system and the gas scrubbing system, and a longer lifetime of these systems. Recommendations and perspectives  Because the greenhouse gas emissions associated with the production of fossil-fuel-based electricity have an important share in global warming on a world-wide scale, switching to a more extensive use of solar power is helpful to comply with the present international legislation on the area of global warming reduction. As reductions in toxicity impact scores are smaller or negligible when fossil electricity is replaced by PV electricity, it is desirable to give specific attention to the processes which dominantly contribute to these impact categories. Furthermore, in this study, a shift in ranking of several environmental impacts of the modules has been found when PV electricity is used instead of fossil electricity. The results of a comparative LCA can thus be dependent of the electricity mix used in the life cycles of the assessed products. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Abstract

Multiple environmental benefits can be achieved by using a green roof instead of conventional roofs. To better understand the LCA and cost-effectiveness of a green roof, a case study was performed. Two energy models, one with conventional white roof and the other with green roof, were created using eQUEST software to compare the influence of green roof on building energy consumption. The results indicated that the application of a green roof reduced annual space heating and cooling electricity consumption by 9500 kWh (2.2 kWh per square meter). The LCA shows that by using an extensive green roof in lieu of a conventional white roof the LCA measures at the product, construction, and end-of-life stages increased due to the use of additional layers. However, these increases are offset by the reduction of LCA measures at the use stage such that the overall environmental impacts of green roof is less than that of conventional roof. To find out the cost-effectiveness of green roof, a 50-year cost-benefits analysis was conducted. The analysis showed that the net savings of the green roof is negative compared to the white roof it replaced due to its higher initial cost and follow on maintenance cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号