首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Hypoxia inducible factor-1α (HIF-1α) is responsible for the majority of HIF-1-induced gene expression changes under hypoxia and for the “angiogenic switch” during tumor progression. HIF-1α is often upregulated in tumors leading to more aggressive tumor growth and chemoresistance, therefore representing an important target for antitumor intervention. We previously reported that zinc downregulated HIF-1α levels. Here, we evaluated the molecular mechanisms of zinc-induced HIF-1α downregulation and whether zinc affected HIF-1α also in vivo.

Methodology/Principal Findings

Here we report that zinc downregulated HIF-1α protein levels in human prostate cancer and glioblastoma cells under hypoxia, whether induced or constitutive. Investigations into the molecular mechanisms showed that zinc induced HIF-1α proteasomal degradation that was prevented by treatment with proteasomal inhibitor MG132. HIF-1α downregulation induced by zinc was ineffective in human RCC4 VHL-null renal carcinoma cell line; likewise, the HIF-1αP402/P564A mutant was resistant to zinc treatment. Similarly to HIF-1α, zinc downregulated also hypoxia-induced HIF-2α whereas the HIF-1β subunit remained unchanged. Zinc inhibited HIF-1α recruitment onto VEGF promoter and the zinc-induced suppression of HIF-1-dependent activation of VEGF correlated with reduction of glioblastoma and prostate cancer cell invasiveness in vitro. Finally, zinc administration downregulated HIF-1α levels in vivo, by bioluminescence imaging, and suppressed intratumoral VEGF expression.

Conclusions/Significance

These findings, by demonstrating that zinc induces HIF-1α proteasomal degradation, indicate that zinc could be useful as an inhibitor of HIF-1α in human tumors to repress important pathways involved in tumor progression, such as those induced by VEGF, MDR1, and Bcl2 target genes, and hopefully potentiate the anticancer therapies.  相似文献   

2.
3′–nucleases/nucleotidases of the S1–P1 family (EC 3.1.30.1) are single–strand–specific or non-specific zinc–dependent phosphoesterases present in plants, fungi, protozoan parasites, and in some bacteria. They participate in a wide variety of biological processes and their current biotechnological applications rely on their single–strand preference, nucleotide non-specificity, a broad range of catalytic conditions and high stability. We summarize the present and potential utilization of these enzymes in biotechnology and medicine in the context of their biochemical and structure–function properties. Explanation of unanswered questions for bacterial and trypanosomatid representatives could facilitate development of emerging applications in medicine.  相似文献   

3.
4.
Interleukine-1β (IL-1β) is the most studied pro-inflammatory cytokine, playing a central role in the generation of systemic and local responses to infection, injury, and immunological challenges. In mammals, IL-1β is synthesized as an inactive 31 kDa precursor that is cleaved by caspase-1 generating a 17.5 kDa secreted active mature form. The caspase-1 cleavage site strictly conserved in all mammalian IL-1β sequences is absent in IL-1β sequences reported for non-mammalian vertebrates. Recently, fish caspase-1 orthologues have been identified in sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata) but very little is known regarding their processing and activity. In this work it is shown that sea bass caspase-1 auto-processing is similar to that of the human enzyme, resulting in active p24/p10 and p20/p10 heterodimers. Moreover, the presence of alternatively spliced variants of caspase-1 in sea bass is reported. The existence of caspase-1 isoforms in fish and in mammals suggests that they have been evolutionarily maintained and therefore are likely to play a regulatory role in the inflammatory response, as shown for other caspases. Finally, it is shown that sea bass and avian IL-1β are specifically cleaved by caspase-1 at different but phylogenetically conserved aspartates, distinct from the cleavage site of mammalian IL-1β.  相似文献   

5.
The CST (Cdc13/CTC1-STN1-TEN1) complex was proposed to have evolved kingdom specific roles in telomere capping and replication. To shed light on its evolutionary conserved function, we examined the effect of STN1 dysfunction on telomere structure in plants. STN1 inactivation in Arabidopsis leads to a progressive loss of telomeric DNA and the onset of telomeric defects depends on the initial telomere size. While EXO1 aggravates defects associated with STN1 dysfunction, it does not contribute to the formation of long G-overhangs. Instead, these G-overhangs arise, at least partially, from telomerase-mediated telomere extension indicating a deficiency in C-strand fill-in synthesis. Analysis of hypomorphic DNA polymerase α mutants revealed that the impaired function of a general replication factor mimics the telomeric defects associated with CST dysfunction. Furthermore, we show that STN1-deficiency hinders re-replication of heterochromatic regions to a similar extent as polymerase α mutations. This comparative analysis of stn1 and pol α mutants suggests that STN1 plays a genome-wide role in DNA replication and that chromosome-end deprotection in stn1 mutants may represent a manifestation of aberrant replication through telomeres.  相似文献   

6.

Background

The study aimed at examining hypoxia-inducible factor (HIF)1α expression in adenocarcinomas and adenomas in bitches in regard to tumour malignancy grade, proliferation, apoptosis and vascularisation. Therefore, paraffin sections of 15 adenomas and 64 adenocarcinomas sampled from 79 dogs aged 6 to 16 years were analysed.

Results

A significantly higher HIF-1α expression was noted in adenocarcinomas in comparison to adenomas (P?<?0.0004). Moreover, HIF-1α expression in adenocarcinomas correlated positively with tumour malignancy grade (r?=?0.59, P?<?0.05), Ki-67 antigen expression (r?=?0.43; P?<?0.0005), TUNEL-positive cells (r?=?0.62, P?<?0001) and tumour vascularity measured by quantification of vessels characterized by the expression of von Willebrand Factor (r?=?0.57, P?<?0.05).

Conclusion

Results of this study indicate a similar biological role of HIF-1α in dogs and in humans, which may confirm suitability of the animal model in investigations on progression of tumours in humans.
  相似文献   

7.
8.
9.
Large quantities of organic matter are continuously deposited, and (a)biotic gradients intersect in the soil–rhizosphere, where biodegradation contributes to the global cycles of elements. The betaproteobacterial genus Aromatoleum comprises cosmopolitan, facultative denitrifying degradation specialists. Aromatoleum aromaticum. pCyN1 stands out for anaerobically decomposing plant-derived monoterpenes in addition to monoaromatic hydrocarbons, polar aromatics and aliphatics. The catabolic network's structure and flexibility in A. aromaticum pCyN1 were studied across 34 growth conditions by superimposing proteome profiles onto the manually annotated 4.37 Mbp genome. Strain pCyN1 employs three fundamentally different enzymes for C–H-bond cleavage at the methyl groups of p-cymene/4-ethyltoluene, toluene and p-cresol respectively. Regulation of degradation modules displayed substrate specificities ranging from narrow (toluene and cyclohexane carboxylate) via medium-wide (one module shared by p-cymene, 4-ethyltoluene, α-phellandrene, α-terpinene, γ-terpinene and limonene) to broad (central benzoyl-CoA pathway serving 16 aromatic substrates). Remarkably, three variants of ATP-dependent (class I) benzoyl-CoA reductase and four different β-oxidation routes establish a degradation hub that accommodates the substrate diversity. The respiratory system displayed several conspicuous profiles, e.g. the presence of nitrous oxide reductase under oxic and of low-affinity oxidase under anoxic conditions. Overall, nutritional versatility in conjunction with network regulation endow A. aromaticum pCyN1 with broad adaptability.  相似文献   

10.
11.
12.
13.
We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h) at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18-24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.  相似文献   

14.
To study the effects and importance of fluoride on FBs in the development of extraperiosteal calcification and the ossification of skeletal fluorosis, the presence of the osteogenic phenotype, which is indicated by the expression of core-binding factor α1 (Cbfa1) and osteocalcin (OCN), in an FB cell line (L929) and in osteoblasts (OBs) exposed to fluoride was determined. Fibroblasts and osteoblasts were exposed to different concentrations of fluoride (0, 0.0001, 0.001, 0.1, 1.0, 10.0 and 20.0 mg/L F). By using RT-PCR and ELISA, the mRNA levels of Cbfa1 and OCN were measured at 48 h, and the protein levels of Cbfa1 and OCN were measured at 2, 4, 24, 48 and 72 h. The data demonstrated the following: (1) The Cbfa1 protein level in fluoride-treated fibroblasts clearly increased at 48 h in the groups treated with 0.0001, 0.001, 0.1, 1.0 and 20.0 mg/L F. The Cbfa1 protein level of the group treated with 10 mg/L F at 72 h was higher than that of the control group. The level of Cbfa1 mRNA in the fibroblasts was much higher at 48 h in the group treated with 10.0 mg/L F than in the control group. (2) The OCN protein level in fluoride-treated fibroblasts was significantly higher than that of the control group in the 0.0001, 0.1, 1.0, 10.0 and 20.0 mg/L F groups at 2 h, and in the 0.001 and 0.1 F groups at 4 h. A slightly higher level of OCN mRNA in fluoride-treated fibroblasts was also found in the 1.0 and 20.0 mg/L F groups compared to the control group. (3) The expressions of Cbfa1 and OCN in osteoblasts treated with the same experimental conditions as the fibroblasts were up-regulated by fluoride following the same trend as in the fibroblasts. Our results showed an increase in the expression of Cbfa1 and OCN in fibroblasts and osteoblasts exposed to fluoride and suggested that the osteogenic function of fibroblasts induced by fluoride could play an important role in the development of extraperiosteal ossification during skeletal fluorosis.  相似文献   

15.
The transforming growth factor (TGF) β1 are members of the essential, multifunctional family of cytokines. Of them, TGFβ1 is the most extensively studied and the best characterized. To current knowledge, TGFβ1 is known to be intimately involved in many…  相似文献   

16.
17.

Objectives

Familial Mediterranean fever (FMF) is a recessively inherited autoinflammatory disorder. The caspase-1-dependent cytokine, IL-1β, plays an important role in FMF pathogenesis, and RAC1 protein has been recently involved in IL-1β secretion. This study aims to investigate RAC1 expression and role in IL-1β and caspase-1 production and oxidative stress generation in FMF.

Materials and methods

The study included 25 FMF patients (nine during attack and remission, and 16 during remission only), and 25 controls. RAC1 expression levels were analyzed by real-time PCR. Ex vivo production of caspase-1, IL-1β, IL-6 and markers of oxidative stress (malondialdehyde, catalase, and glutathione system) were evaluated respectively in supernatants of patients’ and controls’ PBMC and PMN cultures, in the presence and absence of RAC1 inhibitor.

Results

RAC1 gene expression and IL-1β levels were increased in patients in crises compared to those in remission or controls. RAC1 expression levels were correlated with MEFV genotypes, patients carrying the M694V/M694V genotype having a two-fold increase in the expression levels compared to those carrying other genotypes. Caspase-1 levels were higher in LPS-induced PBMC of patients in remission than controls. Spontaneous and LPS-induced IL-1β production were comparable in patients in remission and controls, whereas LPS-induced IL-6 production was enhanced in patients, compared to controls. RAC1 inhibition resulted in a decrease in caspase-1 and IL-1β, but not IL-6, levels. Malondialdehyde levels produced by LPS-stimulated PMNs were increased in patients in remission compared to those in controls, but decreased following RAC1 inhibition. Catalase and GSH activities were reduced in unstimulated PMN culture supernatants of patients in remission compared to controls and were increased in the presence of RAC1 inhibitor.

Conclusion

These results show the involvement of RAC1 in the inflammatory process of FMF by enhancing IL-1β production, through caspase-1 activation, and generating oxidative stress, even during asymptomatic periods.
  相似文献   

18.
Transforming growth factorβ1 (TGFβ1) is known to be intimately involved in many cellular processes. To explore the mechanism of TGFβ1 in these processes, the non-chimeric hammerhead ribozyme and U1 snRNA chimeric ribozyme against TGFβ1 were designed to down-regulate TGFβ1 expression. The activity of non-chimeric ribozyme and U1 snRNA chimeric ribozyme against TGFβ1 in vitro and in activated hepatic stellate cells (HSCs) was detected. Cleavage reactions of both ribozymes in vitro demonstrated that non-chimeric ribozyme possessed better cleavage activity in vitro than U1 snRNA chimeric ribozyme. The further study showed U1 snRNA chimeric ribozyme inhibited TGFβ1 expression more efficiently than non-chimeric ribozyme in transfected HSC cells. So it indicates that the U1 snRNA chimeric ribozyme provides an alternative approach for the research on the precise mechanism of TGFβ1 in many cellular processes and a potential therapeutic candidate for TGFβ1-related diseases.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号