首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chondrocyte based therapy is promising to treat symptomatic chondral and osteochondral lesions. Growth factors to accelerate the proliferation and retain the phenotype of chondrocytes in vitro are imperative. However, the high cost and rapid degradation of growth factors limited their further application. Therefore, it is significant to find substitutes that can preserve chondrocytes phenotype and ensure sufficient cells for cytotherapy. Antioxidant and anti-inflammatory agents or their derivatives that have effect on arthritis may be an alternative. In this study, we synthesized sulfonamido-based gallate – LDQN-C and investigated its effect on rat articular chondrocytes through examination of the cell proliferation, morphology, viability, glycosaminoglycans (GAGs) synthesis and cartilage specific gene expression. Results showed that LDQN-C could enhance secretion and synthesis of cartilage extracellular matrix (ECM) by up-regulating expression levels of aggrecan, collagen II and Sox9 genes compared to the GA treated group and control group. Expression of collagen type II was effectively up-regulated while collagen I was down-regulated, which demonstrated that the inhibition of chondrocytes dedifferentiation by LDQN-C. Range of 1.36 × 10−9 M to 1.36 × 10−7 M is recommended dose of LDQN-C, among which the most profound response was observed with 1.36 × 10−8 M. GA at concentration of 0.125 μg/mL was compared. This study might provide a basis for the development of a novel agent for the treatment of articular cartilage defect.  相似文献   

2.
Recent studies have shown that integrins act as mechanoreceptors in articular cartilage. In this study, we examined the effect of blocking RGD-dependent integrins on both ECM gene expression and ECM protein synthesis.Chondrocytes were isolated from full-depth porcine articular cartilage and seeded in 3% agarose constructs. These constructs were loaded in compression with 15% strain at 0.33 and 1 Hz for 12 h, in the presence or absence of GRGDSP, which blocks RGD-dependent integrin receptors. The levels of mRNA for aggrecan, collagen II and MMP-3 were determined by semi-quantitative PCR at several time points up to 24 h post-stimulation. DNA and sGAG content were determined at several time points up to 28 days post-stimulation.At 0.33 Hz, the mRNA levels for aggrecan and MMP-3 were increased after loading, but the mRNA levels for collagen II remained unchanged. Incubation with GRGDSP counteracted these effects. Loading at 1 Hz led to increased mRNA levels for all three molecules directly after loading and these effects were counteracted by incubation with GRGDSP. The constructs that were loaded at 0.33 Hz showed a lower amount of sGAG, compared to the unstrained control. In contrast, loading at 1 Hz caused an increase in sGAG deposition over the culture period. Blocking integrins had only a counteracting effect on the long-term biosynthetic response of constructs that were compressed at 1 Hz.The results confirmed the role of RGD-dependent integrins as mechanotransducers in the regulation of both ECM gene expression and matrix biosynthesis for chondrocytes seeded in agarose under the applied loading regime. Interestingly, this role seems to be dependent on the applied loading frequency.  相似文献   

3.
Sulforaphane (SFN), a dietary phase-2 enzyme inducer that mitigates cellular oxidative stress through nuclear factor erythroid 2-related factor 2 (Nrf2) activation, is known to exhibit beneficial effects in the vessel wall. For instance, it inhibits vascular smooth muscle cell (VSMC) proliferation, a major event in atherosclerosis and restenosis after angioplasty. In particular, SFN attenuates the mitogenic and pro-inflammatory actions of platelet-derived growth factor (PDGF) and tumor necrosis factor-α (TNFα), respectively, in VSMCs. Nevertheless, the vasoprotective role of SFN has not been examined in the setting of obesity characterized by hyperleptinemia and insulin resistance. Using the mouse model of western diet-induced obesity, the present study demonstrates for the first time that subcutaneous delivery of SFN (0.5 mg/Kg/day) for ~ 3 weeks significantly attenuates neointima formation in the injured femoral artery [↓ (decrease) neointima/media ratio by ~ 60%; n = 5–8]. This was associated with significant improvements in metabolic parameters, including ↓ weight gain by ~ 52%, ↓ plasma leptin by ~ 42%, ↓ plasma insulin by ~ 63%, insulin resistance [↓ homeostasis model assessment of insulin resistance (HOMA-IR) index by ~ 73%], glucose tolerance (↓ AUCGTT by ~ 24%), and plasma lipid profile (e.g., ↓ triglycerides). Under in vitro conditions, SFN significantly decreased leptin-induced VSMC proliferation by ~ 23% (n = 5) with associated diminutions in leptin-induced cyclin D1 expression and the phosphorylation of p70S6kinase and ribosomal S6 protein (n = 3–4). The present findings reveal that, in addition to improving systemic metabolic parameters, SFN inhibits leptin-induced VSMC proliferative signaling that may contribute in part to the suppression of injury-induced neointima formation in diet-induced obesity.  相似文献   

4.
The past two decades triterpenes have attracted attention because of their pharmacological potential, especially its anti-oxidant activity. The present study was aimed to evaluate the possible protective effects of the triterpene betulin on porcine chondrocytes. For this, the cells were treated with different doses of betulin (0.02, 0.32 and 5.12 μg/mL) and without betulin. Biochemical measures of necrosis, mitochondrial activity, DNA content and sulphated glycosaminoglycans (sGAG) were reported. In addition, the gene expression of extracellular matrix molecules (ECM), proteases and soluble factors were examined. The abundance of reactive oxygen species (ROS) was also reported. Among the concentrations tried 0.32 μg/mL of betulin was found to be optimum because it effectively promoted the gene expressions of type II collagen, aggrecan and inhibited the gene expression of matrix metalloproteinase 2 (MMP-2). The chemiluminescence (CL) assay indicated that betulin treated chondrocytes had better free radical scavenging activity than the chondrocytes cultured without betulin. Alcian blue staining revealed that the chondrocytes were functionally active and able to synthesis sGAG. The free radical scavenging activity ensures betulin as protectant of chondrocytes and it further maintains the proliferation and basic activities of chondrocytes.  相似文献   

5.
Our objective was to evaluate the age-dependent mechanical phenotype of bone marrow stromal cell- (BMSC-) and chondrocyte-produced cartilage-like neo-tissue and to elucidate the matrix-associated mechanisms which generate this phenotype. Cells from both immature (2–4 month-old foals) and skeletally-mature (2–5 year-old adults) mixed-breed horses were isolated from animal-matched bone marrow and cartilage tissue, encapsulated in self-assembling-peptide hydrogels, and cultured with and without TGF-β1 supplementation. BMSCs and chondrocytes from both donor ages were encapsulated with high viability. BMSCs from both ages produced neo-tissue with higher mechanical stiffness than that produced by either young or adult chondrocytes. Young, but not adult, chondrocytes proliferated in response to TGF-β1 while BMSCs from both age groups proliferated with TGF-β1. Young chondrocytes stimulated by TGF-β1 accumulated ECM with 10-fold higher sulfated-glycosaminoglycan content than adult chondrocytes and 2–3-fold higher than BMSCs of either age. The opposite trend was observed for hydroxyproline content, with BMSCs accumulating 2–3-fold more than chondrocytes, independent of age. Size-exclusion chromatography of extracted proteoglycans showed that an aggrecan-like peak was the predominant sulfated proteoglycan for all cell types. Direct measurement of aggrecan core protein length and chondroitin sulfate chain length by single molecule atomic force microscopy imaging revealed that, independent of age, BMSCs produced longer core protein and longer chondroitin sulfate chains, and fewer short core protein molecules than chondrocytes, suggesting that the BMSC-produced aggrecan has a phenotype more characteristic of young tissue than chondrocyte-produced aggrecan. Aggrecan ultrastructure, ECM composition, and cellular proliferation combine to suggest a mechanism by which BMSCs produce a superior cartilage-like neo-tissue than either young or adult chondrocytes.  相似文献   

6.
Autologous chondrocyte implantation (ACI) is a promising strategy for cartilage repair and reconstitution. However, limited cell numbers and the dedifferentiation of chondrocytes present major difficulties to the success of ACI therapy. Therefore, it is important to find effective pro-chondrogenic agents that restore these defects to ensure a successful therapy. In this study, we synthesized a sulfonamido-based gallate, namely N-[4-(4,6-dimethyl-pyrimidin-2-ylsulfamoyl)-phenyl]-3,4,5-trihydroxy-benzamide (EJTC), and investigated its effects on rabbit articular chondrocytes through an examination of its specific effects on cell proliferation, morphology, viability, GAG synthesis, and cartilage-specific gene expression. The results show that EJTC can effectively promote chondrocyte growth and enhance the secretion and synthesis of cartilage ECM by upregulating the expression levels of the aggrecan, collagen II, and Sox9 genes. The expression of the collagen I gene was effectively downregulated, which indicates that EJTC inhibits chondrocytes dedifferentiation. Chondrocyte hypertrophy, which may lead to chondrocyte ossification, was also undetectable in the EJTC-treated groups. The recommended dose of EJTC ranges from 3.125 μg/mL to 7.8125 μg/mL, and the most profound response was observed with 7.8125 μg/mL. This study may provide a basis for the development of a novel agent for the treatment of articular cartilage defects.  相似文献   

7.
The sequence encoding the N-propeptide of collagen I is characterized by significant conservation of amino acids across species; however, the function of the N-propeptide remains poorly defined. Studies in vitro have suggested that one activity of this propeptide might be to act as a feedback inhibitor of collagen I synthesis. To determine whether the N-propeptide contributed to decreased collagen content in SPARC-null mice, mice carrying a deletion of exon 2, which encodes the globular domain of the N-propeptide of collagen I, were crossed to SPARC-null animals. Mice lacking SPARC and expressing collagen I without the globular domain of the N-propeptide were viable and fertile. However, a significant number of animals developed abdominal hernias within the first 2 months of life with an approximate 20% penetrance (~ 35% of males). The dermis of SPARC-null/exon 2-deleted mice was thinner and contained fewer large collagen fibers in comparison with wild-type or in either single transgenic animal. The average collagen fibril diameter of exon 2-deleted mice did not significantly differ from wild-type mice (WT: 87.9 nm versus exon 2-deleted: 88.2 nm), whereas SPARC-null/exon 2-deleted fibrils were smaller than that of SPARC-null dermis (SPARC-null: 60.2 nm, SPARC-null/exon 2-deleted: 40.8 nm). As measured by hydroxyproline analysis, double transgenic skin biopsies contained significantly less collagen than those of wild-type, those of exon 2-deleted, and those of SPARC-null biopsies. Acetic acid extraction of collagen from skin biopsies revealed an increase in the proportion of soluble collagen in the SPARC-null/exon 2-deleted mice. These results support a function of the N-propeptide of collagen I in facilitating incorporation and stabilization of collagen I into the insoluble ECM and argue against a primary function of the N-propeptide as a negative regulator of collagen synthesis.  相似文献   

8.
Salvia miltiorrhiza is a medicinal herb commonly used in traditional Chinese medicine for the prevention and treatment of cardiovascular disease. This study investigated the effects of Cardiotonic Pill (CP), a pharmaceutical preparation of Salvia miltiorrhiza, on cardiac myocytes and fibroblasts with respect to the viability, proliferation, and collagen synthesis in these cells under various conditions. A cardiac myocyte line, H9c2, and primarily cultured fibroblasts from rat hearts were incubated with CP over a broad concentration range (50–800 μg/ml) under normal cultures, conditions of ischemia (serum-free culture), and stimulation by angiotensin II (AII, 100 nM), hydrogen peroxide (H2O2, 50–200 μM), or tumor necrosis factor α (TNFα, 40 ng/ml) for 24–48 h. Cell growth, apoptosis, DNA and collagen synthesis, and expression of relevant genes were assessed via cell number study, morphological examination, Annexin-V staining, flow-cytometry, [3H]-thymidine or [3H]-proline incorporation assay, and Western blotting analysis. It was found that (1) at therapeutic (50 μg/ml) and double therapeutic (100 μg/ml) concentrations, CP did not significantly affect normal DNA synthesis and cell growth in these cardiac cells, while at higher (over 4-fold therapeutic) concentrations (200–800 μg/ml), CP decreased DNA synthesis and cell growth and increased cell death; (2) CP treatment (50 μg/ml) significantly inhibited TNFα-induced apoptosis in myocytes, with 12.3±1.46% cells being apoptosis in CP treatment group and 37.0±7.34% in the control (p<0.01), and simultaneously, expression of activated (phosphorylated) Akt protein was increased by about 2 folds in the CP-treated cells; and (3) in cultured fibroblasts, CP significantly reduced AII-induced collagen synthesis in a concentration-dependent manner (by ~50% and ~90% reduction of AII-induced collagen synthesis at 50 and 100 μg/ml, respectively). Thus, Salvia miltiorrhiza preparation CP is physiologically active on cardiac cells. The actions by CP to reduce apoptotic damage in myocytes and collagen synthesis in fibroblasts may help to preserve the heart function and reduce heart failure risk. The actions by CP to inhibit DNA synthesis and cell growth, which occurred at over therapeutic doses, may weaken the ability of heart repair. Further studies are needed to identify the chemical compounds in this herbal product that are responsible for these observed physiological effects.  相似文献   

9.
The epidermal growth factor receptor (EGFR) is a well-studied receptor tyrosine kinase and an important anticancer therapeutic target. The activity of EGFR autophosphorylation and transphosphorylation, which induces several cell signaling pathways, has been suggested to be related to its oligomeric state. However, the oligomeric states of EGFRs induced by EGF binding and the receptor–ligand stoichiometry required for its activation are still controversial. In the present study, we performed Förster resonance energy transfer (FRET) measurements by combining the coiled-coil tag–probe labeling method and spectral imaging to quantitatively analyze EGFR oligomerization on living CHO-K1 cell membranes at physiological expression levels. In the absence of its ligands, EGFRs mainly existed as monomers with a small fraction of predimers (~ 10%), whereas ~ 70% of the EGFRs formed dimers after being stimulated with the ligand EGF. Ligand-induced dimerization was not significantly affected by the perturbation of membrane components (cholesterol or monosialoganglioside GM3). We also investigated both dose and time dependences of EGF-dependent EGFR dimerization and autophosphorylation. The formation of dimers occurred within 20 s of the ligand stimulation and preceded its autophosphorylation, which reached a plateau 90 s after the stimulation. The EGF concentration needed to evoke half-maximum dimerization (~ 1 nM) was lower than that for half-maximum autophosphorylation (~ 8 nM), which suggested the presence of an inactive dimer binding a single EGF molecule.  相似文献   

10.
The African baobab (Adansonia digitata L.) is an important multi-purpose fruit tree with high potential for domestication in drier Africa. Although adult individuals are well-known to be drought resistant, only little has been reported on how young baobab trees can survive drought. Therefore, the aim of this study was to examine short-term soil drought effects on water relations of baobab seedlings. Baobab seedlings used a limited amount of stored water to buffer daily water deficits (~ 8.5 g d 1), which contributed up to only ~ 17.5% of daily water use and ~ 6% of total plant water. Under drought, a strong reduction in stomatal conductance (~ 85%) resulted in a midday leaf water potential of − 1 MPa and zero stem sap flow followed by significant leaf loss. Plant anatomy evidenced the presence of water storage tissues and the vulnerability to xylem embolism. The taproot was the most important plant part for water storage (68% of total plant water), suggesting root-succulence rather than stem-succulence. When drought intensified, limitation of leaf transpiration and/or root water uptake led to drought-enforced dormancy. Despite the large amounts of water stored in the taproot (~ 90%) and the stem (~ 75%), only a limited amount of stored water appeared to be used to sustain upper leaves and plant metabolism during the dormant period, and to facilitate recovery following water supply. Drought avoidance, conservative water use and the presence of internal stored water allow baobab seedlings to survive drought.  相似文献   

11.
Experiments were conducted with chickens exposed to corticosterone (CORT), with the aim of determining its effects on bone characteristics. At 7 d of age, the experimental birds were injected daily with CORT (4 mg/kg of body mass) for 1 week. CORT administration significantly decreased the body weight while increasing relative liver weight of the chickens and the bone parameters were also decreased. Histology and immunohistochemistry of type X collagen revealed that CORT reduced the lengths of proliferative and prehypertrophic zone in growth plate and the number of positive chondrocytes in the prehypertrophic zone. In conclusion exposure to CORT depressed the growth performance and retarded the longitudinal growth of the long bones by inhibiting the proliferation and differentiation of chondrocytes in growth plate in broilers.  相似文献   

12.
A mitochondrial matrix-specific p53 construct (termed p53-290) in HepG2 cells was utilized to determine the impact of p53 in the mitochondrial matrix following oxidative stress. H2O2 exposure reduced cellular proliferation similarly in both p53-290 and vector cells, and p53-290 cells demonstrating decreased cell viability at 1 mM H2O2 (~ 85% viable). Mitochondrial DNA (mtDNA) abundance was decreased in a dose-dependent manner in p53-290 cells while no change was observed in vector cells. Oximetric analysis revealed reduced maximal respiration and reserve capacity in p53-290 cells. Our results demonstrate that mitochondrial matrix p53 sensitizes cells to oxidative stress by reducing mtDNA abundance and mitochondrial function.  相似文献   

13.
Both underloading and overloading of joints can lead to articular cartilage degradation, a process mediated in part by matrix metalloproteinases (MMPs). Here we examine the effects of reduced loading of rat hindlimbs on articular cartilage expression of MMP-3, which not only digests matrix components but also activates other proteolytic enzymes. We show that hindlimb immobilization resulted in elevated MMP-3 mRNA expression at 6 h that was sustained throughout the 21 day immobilization period. MMP-3 upregulation was higher in the medial condyle than the lateral, and was greatest in the superficial cartilage zone, followed by middle and deep zones. These areas also showed decreases in safranin O staining, consistent with reduced cartilage proteoglycan content, as early as 7 days after immobilization. One hour of daily moderate mechanical loading, applied as passive joint motion, reduced the MMP-3 and ADAMTS-5 increases that resulted from immobilization, and also prevented changes in safranin O staining. Intra-articular injections of an MMP-3 inhibitor, N-isobutyl-N-(4-methoxyphenylsulfonyl)-glycylhydroxamic acid (NNGH), dampened the catabolic effects of a 7 day immobilization period, indicating a likely requirement for MMP-3 in the regulation of proteoglycan levels through ADAMTS-5. These results suggest that biomechanical forces have the potential to combat cartilage destruction and can be critical in developing effective therapeutic strategies.  相似文献   

14.
《BBA》2014,1837(2):287-295
The Redox-Optimized ROS Balance [R-ORB] hypothesis postulates that the redox environment [RE] is the main intermediary between mitochondrial respiration and reactive oxygen species [ROS]. According to R-ORB, ROS emission levels will attain a minimum vs. RE when respiratory rate (VO2) reaches a maximum following ADP stimulation, a tenet that we test herein in isolated heart mitochondria under forward electron transport [FET]. ROS emission increased two-fold as a function of changes in the RE (~ 400 to ~ 900 mV·mM) in state 4 respiration elicited by increasing glutamate/malate (G/M). In G/M energized mitochondria, ROS emission decreases two-fold for RE ~ 500 to ~ 300 mV·mM in state 3 respiration at increasing ADP. Stressed mitochondria released higher ROS, that was only weakly dependent on RE under state 3. As a function of VO2, the ROS dependence on RE was strong between ~ 550 and ~ 350 mV·mM, when VO2 is maximal, primarily due to changes in glutathione redox potential. A similar dependence was observed with stressed mitochondria, but over a significantly more oxidized RE and ~ 3-fold higher ROS emission overall, as compared with non-stressed controls. We conclude that under non-stressful conditions mitochondrial ROS efflux decreases when the RE becomes less reduced within a range in which VO2 is maximal. These results agree with the R-ORB postulate that mitochondria minimize ROS emission as they maximize VO2 and ATP synthesis. This relationship is altered quantitatively, but not qualitatively, by oxidative stress although stressed mitochondria exhibit diminished energetic performance and increased ROS release.  相似文献   

15.
Extraction of bromelain from pineapple peel (Nang Lae cultv.) using aqueous two phase system (ATPS) was optimized. Some biochemical properties including collagen hydrolysis were also investigated. Bromelain predominantly partitioned to the polyethylene glycol (PEG)-rich phase. The highest enzyme activity recovery (113.54%) and purification fold (2.23) were presented in the top phase of 15% PEG2000–14% MgSO4. Protein pattern and activity staining showed the molecular weight (MW) of bromelain to be about 29 kDa. The extracted bromelain showed the highest relative activity at pH 7.0 and 55 °C. Its activity was decreased continuously by increasing NaCl concentration (up to 1.5% (w/v)). The bromelain extract was applied to hydrolyze the skin collagen of beef and giant catfish (0–0.3 units). The β, α1, α2 of giant catfish skin collagen extensively degraded into small peptides when treated with 0.02 units of the bromelain extract. Bovine collagen was hydrolyzed using higher bromelain up to 0.18 units. This study showed the ATPS can be employed to partially purify bromelain from Nang Lae pineapple peel and the enzyme effectively hydrolyzed the collagens.  相似文献   

16.
The murine mesenchymal cell line, C3H10T1/2 in micromass culture undergoes chondrogenic differentiation with the addition of BMP-2. This study compares the use of BMP-2 vs. insulin, transferrin, and sodium selenite (ITS) to create a chondrogenic micromass cell culture system that models cartilage calcification in the presence of 4 mM inorganic phosphate. BMP-2 treated cultures showed more intense alcian blue staining for proteoglycans than ITS treated cultures at early time points. Both ITS and BMP-2 treated cultures showed similar mineral deposition in cultures treated with 4 mM phosphate via von Kossa staining, however FTIR spectroscopy of cultures showed different matrix properties. ITS treated cultures produced matrix that more closely resembled mouse calcified cartilage by FTIR analysis. 45Ca uptake curves showed delayed onset of mineralization in cultures treated with BMP-2, however they had an increased rate of mineralization (initial slope of 45Ca uptake curve) when compared to the cultures treated with ITS. Immunohistochemistry showed the presence of both collagens type I and type II in BMP-2 and ITS treated control (1 mM inorganic phosphate) and mineralizing cultures. BMP-2 treated mineralizing cultures displayed more intense staining for collagen type II than all other cultures. Collagen type X staining was detected at Day 9 only in mineralizing cultures treated with ITS. Western blotting of Day 9 cultures confirmed the presence of collagen type X in the mineralizing ITS cultures, and also showed very small amounts of collagen type X in BMP-2 treated cultures and control ITS cultures. By Day 16 all cultures stained positive for collagen type X. These data suggest that BMP-2 induces a more chondrogenic phenotype, while ITS treatment favors maturation and hypertrophy of the chondrocytes in the murine micromass cultures.  相似文献   

17.
While biochemical and biomechanical cues are known to play important roles in directing stem cell differentiation, there remains little known regarding how these inextricably linked biological cues impact the differentiation fate of human marrow stromal cells (hMSCs). This study investigates the chondrogenic differentiation potential of hMSCs when encapsulated in a three dimensional (3D) hydrogel and exposed to a biochemical cue, chondroitin sulfate (ChS), a biomechanical cue, dynamic loading, and their combination. hMSCs were encapsulated in bioinert poly(ethylene glycol) (PEG) hydrogels only, PEG hydrogels modified with covalently incorporated methacrylated ChS and cultured under free swelling conditions or subjected to delayed intermittent dynamic loading for 2 weeks. The 3D hydrogel environment led to the expression of chondrogenic genes (SOX9) and proteins (aggrecan and collagen II), but also upregulated hypertrophic genes (RUNX2 and Col X mRNA) and proteins (collagen X), while the application of loading generally led to a downregulation in chondrogenic proteins (collagen II). The presence of ChS led to elevated levels of aggrecan, but also collagen I, protein expression and when combined with dynamic loading downregulated, but did not suppress, hypertrophic genes (Col X and RUNX2) and collagen I protein expression. Taken together, this study demonstrates that while the 3D environment induces early terminal differentiation during chondrogenesis of hMSCs, the incorporation of ChS into PEG hydrogels may slow the terminal differentiation process down the hypertrophic lineage particularly when dynamic loading is applied. Biotechnol. Bioeng. 2012; 109: 2671–2682. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Sliding motion and shear are important mediators for the synthesis of cartilage matrix and surface molecules. This study investigated the effects of velocity magnitude and motion path on the response of bovine chondrocytes cultured in polyurethane scaffolds and subjected to oscillation against a ceramic ball. In order to vary velocity magnitude, the ball oscillated ±25° at 0.01, 0.1, and 1 Hz to generate 0.28, 2.8, and 28 mm/s, respectively. The median velocity of these ‘open’ motion trajectories was tested against ‘closed’ motion trajectories in that the scaffold oscillated ±20° against the ball at 1 Hz, reaching 2.8 mm/s. Constructs were loaded twice a day for 1 h over 5 days. Gene expression of cartilage oligomeric matrix protein (COMP), proteoglycan 4 (PRG4, lubricin), and hyaluronan synthase 1 (HAS1) and release of COMP, PRG4, and hyaluronan (HA) were analyzed.Velocity magnitude determined both gene expression and release of target molecules. Using regression analysis, there was a positive and significant relationship with all outcome variables. However, only COMP reacted significantly at 0.28 mm/s, while all other measured variables were considerably up-regulated at 28 mm/s. Motion path characteristics affected COMP, but not PRG4 and HAS1/HA.To conclude, velocity magnitude is a critical determinant for cellular responses in tissue engineered cartilage constructs. The motion type also plays a role. However, different molecules are affected in different ways. A molecule specific velocity threshold appears necessary to induce a significant response. This should be considered in further studies investigating the effects of continuous or intermittent motion.  相似文献   

19.
《Cytokine》2008,41(3):226-234
The aim of this study is to determine if there is an antagonistic effect between tumour necrosis factor (TNF)-α and the immunoregulatory interleukin (IL)-10 on chondrocytes survival. Serum-starved primary human articular chondrocytes were stimulated with either 10 ng/ml recombinant TNF-α, IL-10 or a combination of both (at 10 ng/ml each). Chondrocyte apoptosis was determined by measuring caspase-3/7, -8 and -9 activities using caspase assays. Mitochondrial apoptotic inducer bax, and the suppressor bcl-2 were evaluated using western blotting at 48 h. Results indicated that TNF-α increased caspase activities and resulted in a significant (p = 0.001) increase in bax/bcl-2 ratio. Stimulation with IL-10 did not alter caspase activities, while co-treatment with IL-10 and TNF-α inhibited TNF-α induced caspase activities and significantly (p > 0.004) impaired bax/bcl-2 ratio. At 24 h, mRNA levels for collagen type II, TNF-α and IL-10 were determined using real-time RT-PCR. Stimulation with TNF-α or TNF-α and IL-10 significantly inhibited collagen type II and increased IL-10 and TNF-α mRNA expression. IL-10 modulated the pro-apoptotic capacity of TNF-α in chondrocytes as shown by the decrease in caspase activities and bax/bcl-2 ratio compared to TNF-α stimulated chondrocytes, suggesting a mostly antagonistic interplay of IL-10 and TNF-α on mitochondrial apoptotic pathways.  相似文献   

20.
HET-C2 is a fungal glycolipid transfer protein (GLTP) that uses an evolutionarily-modified GLTP-fold to achieve more focused transfer specificity for simple neutral glycosphingolipids than mammalian GLTPs. Only one of HET-C2's two Trp residues is topologically identical to the three Trp residues of mammalian GLTP. Here, we provide the first assessment of the functional roles of HET-C2 Trp residues in glycolipid binding and membrane interaction. Point mutants HET-C2W208F, HET-C2W208A and HET-C2F149Y all retained > 90% activity and 80–90% intrinsic Trp fluorescence intensity; whereas HET-C2F149A transfer activity decreased to ~ 55% but displayed ~ 120% intrinsic Trp emission intensity. Thus, neither W208 nor F149 is absolutely essential for activity and most Trp emission intensity (~ 85–90%) originates from Trp109. This conclusion was supported by HET-C2W109Y/F149Y which displayed ~ 8% intrinsic Trp intensity and was nearly inactive. Incubation of the HET-C2 mutants with 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles containing different monoglycosylceramides or presented by lipid ethanol-injection decreased Trp fluorescence intensity and blue-shifted the Trp λmax by differing amounts compared to wtHET-C2. With HET-C2 mutants for Trp208, the emission intensity decreases (~ 30–40%) and λmax blue-shifts (~ 12 nm) were more dramatic than for wtHET-C2 or F149 mutants and closely resembled human GLTP. When Trp109 was mutated, the glycolipid induced changes in HET-C2 emission intensity and λmax blue-shift were nearly nonexistent. Our findings indicate that the HET-C2 Trp λmax blue-shift is diagnostic for glycolipid binding; whereas the emission intensity decrease reflects higher environmental polarity encountered upon nonspecific interaction with phosphocholine headgroups comprising the membrane interface and specific interaction with the hydrated glycolipid sugar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号