共查询到20条相似文献,搜索用时 0 毫秒
1.
While protein growth factors promote therapeutic angiogenesis, delivery of lipid factors such as sphingosine 1-phosphate (S1P) may provide better stabilization of newly formed vessels. We developed a biomaterial for the controlled delivery of S1P, a bioactive lipid released from activated platelets. Multiarm poly(ethylene glycol)-vinyl sulfone was cross-linked with albumin, a lipid-transporting protein, to form hydrogels. The rate of S1P release from the materials followed Fickian kinetics and was dependent upon the presence of lipid carriers in the release solution. Delivery of S1P from RGD-modified hydrogels increased the cell migration speed of endothelial cells growing on the materials. The materials also induced angiogenesis in the chorioallantoic membrane assay. Our data demonstrate that the storage and release of lipid factors provides a new route for the induction of angiogenesis by artificial materials. 相似文献
2.
3,4-Dihydroxyphenylalanine (DOPA) residues are known for their ability to impart adhesive and curing properties to mussel adhesive proteins. In this paper, we report the preparation of linear and branched DOPA-modified poly(ethylene glycol)s (PEG-DOPAs) containing one to four DOPA endgroups. Gel permeation chromatography-multiple-angle laser light scattering analysis of methoxy-PEG-DOPA in the presence of oxidizing reagents (sodium periodate, horseradish peroxidase, and mushroom tyrosinase) revealed the formation of oligomers of methoxy-PEG-DOPA, presumably resulting from oxidative polymerization of DOPA endgroups. In the case of PEG-DOPAs containing two or more DOPA endgroups, oxidative polymerization resulted in polymer network formation and rapid gelation. The amount of time required for gelation of aqueous PEG-DOPA solutions was found to be as little as 1 min and was dependent on the polymer architecture as well as the type and concentration of oxidizing reagent used. Analysis of reaction mixtures by UV-vis spectroscopy allowed the identification of reaction intermediates and the elucidation of reaction pathways. On the basis of the observed reaction intermediates, oxidation of the catechol side chain of DOPA resulted in the formation of highly reactive DOPA-quinone, which further reacted to form cross-linked products via one of several pathways, depending on the presence or absence of N-terminal protecting groups on the PEG-DOPA. N-Boc protected PEG-DOPA cross-linked via phenol coupling and quinone methide tanning pathways, whereas PEG-DOPA containing a free amino group cross-linked via a pathway that resembled melanogenesis. Similar differences were observed for the rate of gel formation as well as the molecular weight between cross-links ((-)M(c)), calculated using equilibrium swelling and the Flory-Rehner equation. 相似文献
3.
Temenoff JS Park H Jabbari E Conway DE Sheffield TL Ambrose CG Mikos AG 《Biomacromolecules》2004,5(1):5-10
A novel polymer, oligo(poly(ethylene glycol) fumarate) (OPF), cross-linked with a thermal radical initiation system has recently been developed in our laboratory as an injectable, biodegradable cell carrier for regeneration of orthopaedic tissues. The cross-linking, swelling, and degradative properties of hydrogels prepared from OPF with poly(ethylene glycol) of two different chain lengths were assessed. The two OPF types had similar gelation onset times ( approximately 3.6 min) but, when cross-linked for 8 min at 37 degrees C, exhibited significantly different swelling characteristics (fold swelling: 17.5 +/- 0.2 vs 13.4 +/- 0.4). Rat marrow stromal cells (MSCs) were then directly combined with the hydrogel precursors and encapsulated in a model OPF formulation at approximately 14 million cells/mL, cultured in vitro in the presence of osteogenic supplements (dexamethasone), and monitored over 28 days via histology. MSC differentiation in these samples (6 mm diameter x 0.5 mm thick before swelling), as determined by Von Kossa staining for calcified matrix, was apparent by day 21. At day 28, mineralized matrix could be seen throughout the samples, many microns away from the cells. These experiments strongly support the usefulness of thermally cross-linked OPF hydrogels as injectable cell carriers for bone regeneration. 相似文献
4.
5.
Musumeci G Loreto C Carnazza ML Coppolino F Cardile V Leonardi R 《European journal of histochemistry : EJH》2011,55(3):e31
Osteoarthritis (OA) is characterized by degenerative changes within joints that involved quantitative and/or qualitative alterations of cartilage and synovial fluid lubricin, a mucinous glycoprotein secreted by synovial fibroblasts and chondrocytes. Modern therapeutic methods, including tissue-engineering techniques, have been used to treat mechanical damage of the articular cartilage but to date there is no specific and effective treatment. This study aimed at investigating lubricin immunohistochemical expression in cartilage explant from normal and OA patients and in cartilage constructions formed by Poly (ethylene glycol) (PEG) based hydrogels (PEG-DA) encapsulated OA chondrocytes. The expression levels of lubricin were studied by immunohistochemistry: i) in tissue explanted from OA and normal human cartilage; ii) in chondrocytes encapsulated in hydrogel PEGDA from OA and normal human cartilage. Moreover, immunocytochemical and western blot analysis were performed in monolayer cells from OA and normal cartilage. The results showed an increased expression of lubricin in explanted tissue and in monolayer cells from normal cartilage, and a decreased expression of lubricin in OA cartilage. The chondrocytes from OA cartilage after 5 weeks of culture in hydrogels (PEGDA) showed an increased expression of lubricin compared with the control cartilage. The present study demonstrated that OA chondrocytes encapsulated in PEGDA, grown in the scaffold and were able to restore lubricin biosynthesis. Thus our results suggest the possibility of applying autologous cell transplantation in conjunction with scaffold materials for repairing cartilage lesions in patients with OA to reduce at least the progression of the disease. 相似文献
6.
Highly extensible, tough, and elastomeric nanocomposite hydrogels from poly(ethylene glycol) and hydroxyapatite nanoparticles 总被引:1,自引:0,他引:1
Unique combinations of hard and soft components found in biological tissues have inspired researchers to design and develop synthetic nanocomposite gels and hydrogels with elastomeric properties. These elastic materials can potentially be used as synthetic mimics for diverse tissue engineering applications. Here we present a set of elastomeric nanocomposite hydrogels made from poly(ethylene glycol) (PEG) and hydroxyapatite nanoparticles (nHAp). The aqueous nanocomposite PEG-nHAp precursor solutions can be injected and then covalently cross-linked via photopolymerization. The resulting PEG-nHAp hydrogels have interconnected pore sizes ranging from 100 to 300 nm. They have higher extensibilities, fracture stresses, compressive strengths, and toughness when compared with conventional PEO hydrogels. The enhanced mechanical properties are a result of polymer nanoparticle interactions that interfere with the permanent cross-linking of PEG during photopolymerization. The effect of nHAp concentration and temperature on hydrogel swelling kinetics was evaluated under physiological conditions. An increase in nHAp concentration decreased the hydrogel saturated swelling degree. The combination of PEG and nHAp nanoparticles significantly improved the physical and chemical hydrogel properties as well as some biological characteristics such as osteoblast cell adhesion. Further development of these elastomeric materials can potentially lead to use as a matrix for drug delivery and tissue repair especially for orthopedic applications. 相似文献
7.
8.
Tuning the degradation profiles of polymer cell carriers to match cell and tissue growth is an important design parameter for (cartilage) tissue engineering. In this study, degradable hydrogels were fabricated from divinyl, tetrafunctional poly(ethylene glycol) (PEG) and multivinyl, multifunctional poly(vinyl alcohol) (PVA) macromers to form homopolymer and copolymer gels. These gels were characterized by their volumetric swelling ratio and mass loss profiles as a function of degradation time. By variation of the macromer chemistry and functionality, the degradation time changed from less than 1 day for homopolymer PVA gels to 34 days for pure PEG gels. Furthermore, the degrading medium influenced mass loss, and a marked decrease in degradation time, from 34 to 12 days, was observed with the PEG gels when a chondrocyte-specific medium containing fetal bovine serum was employed. Interestingly, when copolymer gels of PEG and PVA were formed, PVA was released throughout the degradation (as determined by gel permeation chromatography) suggesting that covalent cross-linking of the PVA in the network was facilitated by copolymerizing with the PEG macromer. To assess these novel gels for cartilage tissue engineering applications, chondrocytes were photoencapsulated in the copolymer networks and cultured in vitro for up to 6 weeks. DNA, glycosaminoglycan (GAG), and total collagen contents increased with culture time, and the resulting neocartilaginous tissue at 6 weeks was homogeneously distributed as seen histologically. Biochemical analysis revealed that the constructs were comprised of 0.66 +/- 0.04 microg of DNA/mg wet weight (ww), 1.0 +/- 0.05% GAG/ww, and 0.29 +/- 0.07% total collagen/ww at 6 weeks. Furthermore, the compressive modulus increased during culture from 7 to 97 kPa as the neocartilaginous tissue evolved and the gel degraded. In summary, fabricating hydrogels through the copolymerization of PEG and PVA macromers is an effective tool for encapsulating chondrocytes, controlling gel degradation profiles, and generating cartilaginous tissue. 相似文献
9.
Transforming growth factor beta (TGFβ(1)) influences a host of cellular fates, including proliferation, migration, and differentiation. Due to its short half-life and cross reactivity with a variety of cells, clinical application of TGFβ(1) may benefit from a localized delivery strategy. Photoencapsulation of proteins in polymeric matrices offers such an opportunity; however, the reactions forming polymer networks often result in lowered protein bioactivity. Here, PEG-based gels formed from the chain polymerization of acrylated monomers were studied as a model system for TGFβ(1) delivery. Concentrations of acrylate group ranging from 0 to 50 mM and photopolymerization conditions were systematically altered to study their effects on TGFβ(1) bioactivity. In addition, two peptide sequences, WSHW (K(D) = 8.20 nM) and KRIWFIPRSSWY (K(D) = 10.41 nM), that exhibit binding affinity for TGFβ(1) were introduced into the monomer solution prior to encapsulation to determine if affinity binders would increase the activity and release of the encapsulated growth factor. The addition of affinity peptides enhanced the bioactivity of TGFβ(1) in vitro from 1.3- to 2.9-fold, compared to hydrogels with no peptide. Further, increasing the concentration of affinity peptides by a factor of 100-10000 relative to the TGFβ(1) concentration increased fractional recovery of the protein from PEG hydrogels. 相似文献
10.
As a new application of a thermogel, a poly(ethylene glycol)-b-poly(L-alanine) (PEG-L-PA) gel encapsulating fibroblasts was investigated for wound healing. The fibroblasts were encapsulated by the temperature sensitive sol-to-gel transition of the polymer aqueous solution. Under the in vitro three-dimensional (3D) cell culture condition, the PEG-L-PA thermogel was comparable with Matrigel for cell proliferation and was significantly better than Matrigel for collagen types I and III formation. After confirming the excellent 3D microenvironment of the PEG-L-PA thermogel for fibroblasts, in vivo wound healing was investigated by injecting the cell-suspended polymer aqueous solution on incisions of rat skin, where the cell-encapsulated gel was formed in situ. Compared with the phosphate buffered saline treated system and the cell-free PEG-L-PA thermogel, the cell-encapsulated PEG-L-PA thermogel not only accelerated the wound closure but also improved epithelialization and the formation of skin appendages such as keratinocyte layer (epidermis), hair follicles, and sebaceous glands. The results demonstrate the potential of thermogels for cell therapy as an injectable tissue-engineering scaffold. 相似文献
11.
Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers 总被引:1,自引:0,他引:1
Novel biodegradable hydrogels by photo-cross-linking macromers based on polyphosphoesters and poly(ethylene glycol) (PEG) are reported. Photo-cross-linkable macromers were synthesized by ring-opening polymerization of the cyclic phosphoester monomer 2-(2-oxo-1,3,2-dioxaphospholoyloxy) ethyl methacrylate (OPEMA) using PEG as the initiator and stannous octoate as the catalyst. The macromers were characterized by 1H NMR, Fourier transform infrared spectroscopy, and gel permeation chromatography measurements. The content of polyphosphoester in the macromer was controlled by varying the feed ratio of OPEMA to PEG. Hydrogels were fabricated by exposing aqueous solutions of macromers with 0.05% (w/w) photoinitiator to UV light irradiation, and their swelling kinetics as well as degradation behaviors were evaluated. The results demonstrated that cross-linking density and pH values strongly affected the degradation rates. The macromers was compatible to osteoblast cells, not exhibiting significant cytotoxicity up to 0.5 mg/mL. "Live/dead" cell staining assay also demonstrated that a large majority of the osteoblast cells remained viable after encapsulation into the hydrogel constructs, showing their potential as tissue engineering scaffolds. 相似文献
12.
Photo-cross-linkable oligo[poly(ethylene glycol) fumarate] (OPF) hydrogels have been developed for use in tissue engineering applications. We demonstrated that compressive modulus of these hydrogels increased with increasing polymer concentration, and hydrogels with different mechanical properties were formed by altering the ratio of cross-linker/polymer in precursor solution. Conversely, swelling of hydrogels decreased with increasing polymer concentration and cross-linker/polymer ratio. These hydrogels are degradable and degradation rates vary with the change in cross-linking level. Chondrocyte attachment was quantified as a method for evaluating adhesion of cells to the hydrogels. These data revealed that cross-linking density affects cell behavior on the hydrogel surfaces. Cell attachment was greater on the samples with increased cross-linking density. Chondrocytes on these samples exhibited spread morphology with distinct actin stress fibers, whereas they maintained their rounded morphology on the samples with lower cross-linking density. Moreover, chondrocytes were photoencapsulated within various hydrogel networks. Our results revealed that cells encapsulated within 2-mm thick OPF hydrogel disks remained viable throughout the 3-week culture period, with no difference in viability across the thickness of hydrogels. Photoencapsulated chondrocytes expressed the mRNA of type II collagen and produced cartilaginous matrix within the hydrogel constructs after three weeks. These findings suggest that photo-cross-linkable OPF hydrogels may be useful for cartilage tissue engineering and cell delivery applications. 相似文献
13.
M J Grabowski A M Brzozowski Z S Derewenda T Skar?nński M Cygler A Stepień A E Derewenda 《The Biochemical journal》1978,171(1):277-279
Crystals of human oxyhaemoglobin were obtained from poly(ethylene glycol) solutions. Spectroscopic and spectrophotometric measurements on the solutions during crystallization and on the dissolved crystals indicate that the method yields stable crystals of oxyhaemoglobin. Preliminary X-ray studies showed that the crystals obtained are isomorphous with those of deoxyhaemoglobin obtained from poly(ethylene glycol) solutions [Ward, Wishner, Lattman & Love (1975) J. Mol. Biol. 98, 161-177]. 相似文献
14.
Currently, oligo[poly(ethylene glycol) fumarate] (OPF) hydrogels are being investigated as an injectable and biodegradable system for tissue engineering applications. In this study, cytotoxicity of each component of the OPF hydrogel formulation and the resulting cross-linked network was examined. Specifically, OPF synthesized with poly(ethylene glycol) (PEG) of different molecular weights (MW), the cross-linking agent [PEG-diacrylate (PEG-DA)], and the redox initiator pair [ammonium persulfate (APS) and ascorbic acid (AA)] were evaluated for cytotoxicity at 2 and 24 h using marrow stromal cells (MSCs) as model cells. The effect of leachable byproducts of OPF hydrogels on cytotoxicity was also investigated. Upon exposure to various concentrations of OPF for 2 h, greater than 50% of the MSCs were viable, regardless of OPF molecular weight or concentration in the media. After 24 h, the MSCs maintained more than 75% viability except for OPF concentrations higher than 25% (w/v). When examining the cross-linking agent, PEG-DA of higher MW (3400) demonstrated significantly higher viability compared to PEG-DA with MW 575 at all concentrations tested. Considering initiators, when MSCs were exposed to AA and APS, as well as the combination of AA and APS, higher viability was observed at lower concentrations. Once cross-linked, the leachable products from the OPF hydrogels had minimal adverse effects on the viability of MSCs (percentage of live cells was higher than 90% regardless of hydrogel types). The results suggest that, after optimization of cross-linking parameters, OPF-based hydrogels hold promise as novel injectable scaffolds or cell carriers in tissue engineering. 相似文献
15.
Kim HW Chung CW Hwang SJ Rhee YH 《International journal of biological macromolecules》2005,36(1-2):84-89
Monoacrylate-poly(ethylene glycol)-grafted poly(3-hydroxyoctanoate) (PEGMA-g-PHO) copolymers were synthesized to develop a swelling-controlled release delivery system for ibuprofen as a model drug. The in vitro hydrolytic degradation of and the drug release from a film made of the PEGMA-g-PHO copolymer were carried out in a phosphate buffer saline (pH 7.4) medium. The hydrolytic degradation of the copolymer was strongly dependent on the degree of grafting (DG) of the PEGMA group. The degradation rate of the copolymer films in vitro increased with increasing DG of the PEGMA group on the PHO chain. The copolymer films showed a controlled delivery of ibuprofen to the medium in periods of time that depend on the composition, hydrophilic/hydrophobic characteristics, initial drug loading amount and film thickness of the graft copolymer support. The drug release rate from the grafted copolymer films was faster than the rate of weight loss of the films themselves. In particular, a combination of the low DG of the PEGMA group in the PHO chains with the low ibuprofen solubility in water led to long-term constant release from these matrices in vitro. 相似文献
16.
Partition of isomeric dipeptides in poly(ethylene glycol)/magnesium sulfate aqueous two-phase systems 总被引:1,自引:0,他引:1
A series of isomeric dipeptides, i.e., those containing identical residues but in different order such as Trp-Gly versus Gly-Trp, was partitioned in a poly(ethylene glycol) (PEG)/magnesium sulfate (MgSO4) aqueous two-phase system. Dipeptides having a more hydrophobic character favored the upper (PEG) phase. Moreover, the partition coefficients for isomeric dipeptides are different, with the partition coefficients for dipeptides containing the more hydrophobic residue in the C-terminal position being, in general, greater than the partition coefficients for corresponding isomers which contain the more hydrophobic residue in the N-terminal position. These observations can be attributed to the different interactions that the isomers have with specific two-phase systems. 相似文献
17.
Several amino acids and peptides were partitioned in poly(ethylene glycol) (PEG)/magnesium sulfate (MgSO4) aqueous two-phase systems. The partition coefficients measured for amino acids and peptides were proportional to the difference in PEG concentration between the phases. The partitioning data were used to calculate the relative hydrophobicities of individual amino acids, which were then used to estimate the hydrophobicities of peptides. The partition coefficients of several dipeptides were predicted from these estimated hydrophobicities. A series of peptide fragments that compose the pentapeptide leucine enkephalin was also partitioned in the PEG/MgSO4 system. Again, the partitioning depended upon the hydrophobicities of the individual exposed amino acids. 相似文献
18.
Masahiro Goto Masaki Miyata Noriho Kamiya Fumiyuki Nakashio 《Biotechnology Techniques》1995,9(2):81-84
Summary Novel surfactant-coated enzymes immobilized in poly(ethylene glycol) microcapsules have been developed for the re-use of an oil-soluble enzyme in organic media. The esterification rate of the surfactant-coated lipase immobilized in the microcapsules was thirty times that of the powder lipase. More than 90% of the enzymatic activity of the capsulated lipases has been maintained after recycling six times. 相似文献
19.
Human insulin was modified by covalent attachment of short-chain (750 and 2000 Da) methoxypoly (ethylene glycol) (mPEG) to the amino groups of either residue PheB1 or LysB29, resulting in four distinct conjugates: mPEG(750)-PheB1-insulin, mPEG(2000)-PheB1-insulin, mPEG(750)-LysB29-insulin, and mPEG(2000)-LysB29-insulin. Characterization of the conjugates by MALDI-TOF mass spectrometry and N-terminal protein sequence analyses verified that only a single polymer chain (750 or 2000 Da) was attached to the selected residue of interest (PheB1 or LysB29). Equilibrium sedimentation experiments were performed using analytical ultracentrifugation to quantitatively determine the association state(s) of insulin derivatives. In the concentration range studied, all four of the conjugates and Zn-free insulin exist as stable dimers while Zn(2+)-insulin was exclusively hexameric and Lispro was monomeric. In addition, insulin (conjugate) self-association was evaluated by circular dichroism in the near-ultraviolet wavelength range (320-250 nm). This independent method qualitatively suggests that mPEG-insulin conjugates behave similarly to Zn-free insulin in the concentration range studied and complements results from ultracentrifugation studies. The physical stability/resistance to fibrillation of mPEG-insulin conjugates in aqueous solution were assessed. The data proves that mPEG(750 and 2000)-PheB1-insulin conjugates are substantially more stable than controls but the mPEG(750 and 2000)-LysB29-insulin conjugates were only slightly more stable than commercially available preparations. Circular dichroism studies done in the far ultraviolet region confirm insulin's tertiary structure in aqueous solution is essentially conserved after mPEG conjugation. In vivo pharmacodynamic assays reveal that there is no loss in biological activity after conjugation of mPEG(750) to either position on the insulin B-chain. However, attachment of mPEG(2000) decreased the bioactivity of the conjugates to about 85% of Lilly's HumulinR formulation. The characterization presented in this paper provides strong testimony to the fact that attachment of mPEG to specific amino acid residues of insulin's B-chain improves the conjugates' physical stability without appreciable perturbations to its tertiary structure, self-association behavior, or in vivo biological activity. 相似文献
20.
Two types of 32 arm star polymers incorporating amphiphilic block copolymer arms have been synthesized and characterized. The first type, stPCL-PEG 32, is composed of a polyamidoamine (PAMAM) dendrimer as the core with radiating arms having poly(epsilon-caprolactone) (PCL) as an inner lipophilic block in the arm and poly(ethylene glycol) (PEG) as an outer hydrophilic block. The second type, stPLA-PEG 32, is similar but with poly(L-lactide) (PLA) as the inner lipophilic block. Characterization with SEC, (1)H NMR, FTIR, and DSC confirmed the structure of the polymers. Micelle formation by both star copolymers was studied by fluorescence spectroscopy. The stPCL-PEG 32 polymer exhibited unimolecular micelle behavior. It was capable of solubilizing hydrophobic molecules, such as pyrene, in aqueous solution, while not displaying a critical micelle concentration. In contrast, the association behavior of stPLA-PEG 32 in aqueous solution was characterized by an apparent critical micelle concentration of ca. 0.01 mg/mL. The hydrophobic anticancer drug etoposide can be encapsulated in the micelles formed from both polymers. Overall, the stPCL-PEG 32 polymer exhibited a higher etoposide loading capacity (up to 7.8 w/w % versus 4.3 w/w % for stPLA-PEG 32) as well as facile release kinetics and is more suitable as a potential drug delivery carrier. 相似文献