首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The relationship among activation of the Na+/H+ antiporter, ornithine decarboxylase, and DNA synthesis was examined with bovine small lymphocytes stimulated by concanavalin A (Con A). The Na+/H+ antiport activity was activated immediately after addition of concanavalin A; the maximum was reached 1 h after Con A addition and the activation continued at least 6 h. With increasing concanavalin A concentrations, the activities of the Na+/H+ antiporter, ornithine decarboxylase, and DNA synthesis increased in a parallel manner. In the presence of HCO3- in the medium, the internal alkalinization of lymphocytes was not induced by Con A. Ornithine decarboxylase and DNA synthetic activities were not inhibited by 5-(N-ethyl-N-isopropyl) amiloride (EIPA), a specific inhibitor of the Na+/H+ antiporter. In contrast, in the absence of HCO3- in the medium, the internal pH was alkalinized approximately 0.06 pH units by Con A. EIPA did inhibit the alkalinization of the internal pH or DNA synthesis significantly. Ornithine decarboxylase activity was not inhibited by EIPA. These results indicate that the activation of a Na+/H+ antiporter is not a trigger for cell proliferation, but its activation is important probably through the maintenance of the internal pH optimum, especially in HCO3(-)-free medium.  相似文献   

3.
The fluorescence of 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) has been used to follow the Na+/H+ antiport activity of isolated heart mitochondria as a Na+-dependent extrusion of matrix H+. The antiport activity measured in this way shows a hyperbolic dependence on external Na+ or Li+ concentration when the external pH (pHo) is 7.2 or higher. The apparent Km for Na+ decreases with increasing pHo to a limit of 4.6 mM. The Ki for external H+ as a competitive inhibitor of Na+/H+ antiport averages 3.0 nM (pHo 8.6). The Vmax at 24 degrees C is 160 ng ion of H+ min-1 (mg of protein)-1 and does not vary with pHo. Li+ reacts with the antiporter with higher affinity, but much lower Vmax, and is a competitive inhibitor of Na+/H+ antiport. The rate of Na+/H+ antiport is optimal when the pHi is near 7.2. When pHo is maintained constant, Na+-dependent extrusion of matrix H+ shows a hyperbolic dependence on [H+]i with an apparent Km corresponding to a pHi of 6.8. The Na+/H+ antiport is inhibited by benzamil and by 5-N-substituted amiloride analogues with I50 values in the range from 50 to 100 microM. The pH profile for this inhibition seems consistent with the availability of a matrix binding site for the amiloride analogues. The mitochondrial Na+/H+ antiport resembles the antiport found in the plasma membrane of mammalian cells in that Na+, Li+, and external H+ appear to compete for a common external binding site and both exchanges are inhibited by amiloride analogues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Interaction of some mitogenic lectins and growth factors with the cell surface leads to activation of the Na+/H+ antiport and a resultant cytoplasmic alkalinization. Because amiloride inhibits both Na+/H+ exchange and cell proliferation, it has been hypothesized that activation of the antiport is an obligatory requirement and may, perhaps, be the "trigger" for proliferation. However, concentrations of amiloride which inhibit the antiport also inhibit several other intracellular processes, including protein synthesis and phosphorylation. To determine whether activation of the Na+/H+ antiport is necessary for lectin-induced proliferation, we examined the inhibitory activity of a series of potent amiloride analogs by measuring [3H]thymidine incorporation, cell cycle progression, and induction of the interleukin 2 (IL 2) receptor on human lymphocytes. In medium containing bicarbonate, and at concentrations at least 10 times higher than required to inhibit the antiport, these drugs did not inhibit the proliferative response of human peripheral blood T cells to the mitogen phytohemagglutinin. The amiloride analogs also failed to inhibit induction of the IL 2 receptor. Similarly, with human thymocytes, the amiloride analogs did not inhibit the co-mitogenic effects of the lectins phytohemagglutinin and concanavalin A together with IL 2 or the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. This finding suggests that Na+/H+ exchange through the antiport is not an obligatory requirement for activation or proliferation of human lymphocytes or thymocytes.  相似文献   

5.
We determined the effect of okadaic acid (OA), a potent phosphoprotein phosphatase inhibitor, on the intracellular pH (pHi) of rat thymic lymphocytes and human bladder carcinoma cells. OA induced a rapid and sustained cytosolic alkalinization. This pHi increase was Na(+)-dependent and was inhibited by 5,N-disubstituted analogs of amiloride, indicating mediation by the Na+/H+ antiport. As described for other stimulants, such as mitogens and hypertonic challenge, activation of the antiport by OA is attributable to an upward shift in its pHi dependence. Accordingly, the alkalinization produced by the phosphatase inhibitor was not additive with that induced osmotically. Activation of the antiport by OA was accompanied by a marked increase in phosphoprotein accumulation, revealing the presence of active protein kinases in otherwise unstimulated cells. We considered the possibility that phosphorylation of the antiport itself or of an ancillary protein is responsible for activation of Na+/H+ exchange. Consistent with this notion, the alkalinization induced by OA was absent in ATP depleted cells. More importantly, immunoprecipitation experiments demonstrated increased phosphorylation of the antiport following treatment with OA. We conclude that, upon inhibition of phosphoprotein phosphatase activity, constitutively active kinases induce the activation of Na+/H+ exchange, possibly by direct phosphorylation of the antiport.  相似文献   

6.
Thrombin-stimulated endothelial cells produce platelet-activating factor (PAF) in a dose-dependent manner: the activation of a Ca2+-dependent lyso-PAF acetyltransferase is the rate-limiting step in this process. The present study shows that acetyltransferase activation and consequent PAF production induced by thrombin in human endothelial cells are markedly inhibited in Na+-free media or after addition of the amiloride analog 5-(N-ethyl-N-isopropyl)amiloride, suggesting that a Na+/H+ antiport system is present in endothelial cells and plays a prominent role in thrombin-induced PAF synthesis. Accordingly, thrombin elicits a sustained alkalinization in 6-carboxyfluorescein-loaded endothelial cells, that is abolished in either Na+-free or 5-(N-ethyl-N-isopropyl)amiloride-containing medium. Extracellular Ca2+ influx induced by thrombin (as measured by quin2 and 45Ca methods) is completely blocked in the same experimental conditions, and monensin, a Na+/H+ ionophore mimicking the effects of the antiporter activation, evokes a dose-dependent PAF synthesis and a marked Ca2+ influx, which are abolished in Ca2+-free medium. An amiloride-inhibitable Na+/H+ exchanger is present in the membrane of human endothelial cells, its apparent Km for extracellular Na+ is 25 mM, and its activity is greatly enhanced when the cytoplasm is acidified. These results suggest that Na+/H+ exchange activation by thrombin and the resulting intracellular alkalinization play a direct role in the induction of Ca2+ influx and PAF synthesis in human endothelial cells.  相似文献   

7.
It has been suggested that an intracellular alkalinization, resulting from stimulation of Na+/H+ exchange, is a necessary step and perhaps the signal leading to cellular proliferation in cells stimulated by mitogens. This hypothesis was tested by measuring the early stages of the proliferative cascade in cells where antiport activity was precluded by omission of Na+ or by the addition of potent amiloride analogs. To circumvent possible nonspecific effects due to long incubations under these conditions, an early response to mitogens, the increased level of c-fos mRNA, was monitored. In rat thymic lymphocytes, the increase in the level of c-fos RNA induced by the combination of 12-O-tetradecanoylphorbol 13-acetate and ionomycin was unaffected by inhibition of the antiport with 5-(N-ethyl-N-propyl)amiloride. Increased c-fos RNA was also observed in the absence of Na+ and when alkalinization was prevented by means of nigericin. Similar results were obtained with phytohemagglutinin-stimulated human T lymphocytes. Moreover, although the lectin stimulated the antiport in these cells, an alkalinization was not observed, due to the concomitant occurrence of an acidifying process. It was concluded that the stimulation of the Na+/H+ antiport that accompanies the addition of mitogens is neither sufficient nor necessary for the initiation of cellular proliferation.  相似文献   

8.
Amiloride is a potent inhibitor of the Na+/H+ antiport. Inhibition is generally competitive with extracellular Na+ and therefore believed to result from binding to the outward-facing transport site. It is not known whether amiloride can interact with the internal aspect of the antiport. This question was addressed by trapping the drug inside resealed dog red cell ghosts. The antiport, which is quiescent in resting ghosts, was activated by acid-loading the cytoplasm. This was accomplished by exchanging extracellular Cl- for internal HCO-3 through capnophorin, the endogenous anion exchanger. The activity of the Na+/H+ antiport was detected as an increase in cell volume, resulting from the net osmotic gain associated with coupled Na+/H+ and Cl-/HCO-3 exchange, or as the uptake of 22Na+. Intracellular amiloride, at concentrations in excess of 100 microM, failed to inhibit Na+/H+ exchange. This is approximately 10 times higher than the concentration required for half-maximal inhibition when amiloride is added externally. Independent experiments demonstrated that failure of internal amiloride to inhibit exchange was not due to leakage of the inhibitor, to differences in pH, or to binding or inactivation of amiloride by the soluble contents. It was concluded that the antiport is functionally asymmetric with respect to amiloride. This implies that the transport site undergoes a conformational change upon translocation across the membrane or, alternatively, that a second site required for amiloride binding is only accessible from the outside.  相似文献   

9.
PMA and thrombin were examined for their ability to activate Na+/H+ exchange in growth-arrested WS-1 human fibroblasts. PMA or thrombin caused a cytoplasmic alkalinization that required extracellular sodium and was sensitive to 1 mM amiloride, suggesting that the rise in pH was mediated by the Na+/H+ exchanger. However, PMA and thrombin activated Na+/H+ exchange by distinctly different mechanisms. The rate of cytoplasmic alkalinization caused by 30 nM PMA was slower than 10 nM thrombin. The PMA-induced pH change was sensitive to the protein kinase inhibitors staurosporine (50 nM) and H-7 (100 microM). No increase in intracellular calcium was observed after PMA treatment and the cytoplasmic alkalinization caused by PMA was not sensitive to the drug TMB8 (200 microM) or the intracellular calcium-chelator BAPTA. In contrast, the thrombin-induced rise in cytoplasmic pH was insensitive to 50 nM staurosporine and only partially reduced with 100 microM H-7. The thrombin-induced activation of Na+/H+ exchange was inhibited by 200 microM TMB8 or pretreatment with BAPTA. PMA caused translocation of PKC activity from a cytoplasmic to membrane fraction whereas thrombin did not. Pretreatment with 50 nM staurosporine significantly reduced measurable PKC activity with or without PMA treatment. PMA and thrombin were also examined for their ability to induce DNA synthesis in growth-arrested WS-1 human fibroblasts. Unlike thrombin, PMA did not stimulate [3H]-thymidine incorporation in cells serum-deprived for 48 hours. In addition, PMA inhibited thrombin-induced DNA synthesis when added at the same time or as late as 10 hours after thrombin addition. Therefore, thrombin and PMA activate Na+/H+ exchange by distinct pathways, but only the thrombin-induced pathway correlates with a mitogenic response.  相似文献   

10.
This study investigated fluctuations of cytosolic pH (pHi) of cultured rat vascular smooth muscle cells (VSMCs) in reaction to metabolic alterations induced by angiotensin II (AII). Serially passed VSMCs from Wistar rat aortae were grown on coverslips and loaded with the pH-sensitive fluorescent indicator 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein. A biphasic reaction was seen after exposure of these cells to AII (1 nM to 1 microM); an initial and relatively brief phase of acidification was followed by sustained alkalinization. The rate of acidification and magnitude of alkalinization were dose-dependent. This biphasic effect of AII was also demonstrated in Ca2+-free medium and was mimicked by subjecting VSMCs to the calcium ionophore A23187 (5 microM) in Ca2+-containing medium but not in Ca2+-free medium. Verapamil (10 microM) almost entirely eliminated the AII-induced acidification, whereas amiloride analogues 5-(N-methyl-N-isobutyl)amiloride and 5-(N-ethyl-N-isopropyl)amiloride (100 microM) as well as Na+-deficient medium abolished the subsequent (alkalinization) phase produced by the hormone. Activation of the Na+/H+ antiport by subjecting VSMCs to phorbol 12-myristate 13-acetate (100 nM) prevented a subsequent effect of AII on the pHi profile. This resistance to a further action of the hormone was not mediated via cytoplasmic alkalinization. AII produced a dramatic redistribution in the cellular compartments of 45Ca2+ associated with accelerated 45Ca2+ washout. These findings suggest that the AII-induced acidification phase may relate to activation of the Ca2+ pump (Ca2+/H+ exchange) and that this process can take place in the presence and absence of extracellular Ca2+. The alkalinization phase is the consequence of stimulation of the Na+/H+ antiport, which in cultured VSMCs can be activated by a rise in cytosolic free Ca2+ as well as other mechanisms.  相似文献   

11.
Cytoplasmic pH (pHi) has been shown to be an important determinant of the activity of the NADPH oxidase in phagocytic cells. We hypothesized that a difference in pHi and/or its regulation existed between activated and resident macrophages (RES MOs) which might explain the increased NADPH oxidase activity observed in the former. The pHi of RES and lipopolysaccharide (LPS)-elicited MOs was examined using the fluorescent dye BCECF. Resting pHi did not differ between resident (RES) and elicited (ELI) MOs (7.16 +/- 0.05 and 7.20 +/- 0.05, respectively). pHi recovery after intracellular acid loading was partially dependent on the presence of Na+ in the extracellular medium, and was partially inhibited by the Na+/H+ antiport inhibitor, amiloride. At comparable pHi, the rate of acid extrusion during recovery was not different in RES and ELI MOs (1.48 +/- 0.12 and 1.53 +/- 0.06 mM/min, respectively). In both RES and ELI MOs, approx. 40% of total pHi recovery was insensitive to amiloride and independent of extracellular Na+. In both RES and ELI MOs, stimulation with TPA resulted in a biphasic pHi response: an initial acidification followed by a sustained alkalinization to a new steady-state pHi. This alkalinization was Na(+)-dependent and amiloride-sensitive, consistent with a TPA-induced increase in Na+/H+ antiport activity. The new steady-state pHi attained after TPA stimulation was equivalent in RES and ELI MOs (7.28 +/- 0.04 and 7.31 +/- 0.06, respectively), indicating comparable stimulated Na+/H+ antiport activity. However, the initial acidification induced by TPA was greater in ELI than in RES MOs (0.18 +/- 0.02 vs. 0.06 +/- 0.02 pH unit, respectively, P less than 0.05). The specific NADPH oxidase inhibitor diphenylene iodonium (DPI) completely inhibited the respiratory burst but reduced the magnitude of this pHi reduction by only about 50%. This suggested that the TPA-induced pHi reduction was due in part to acid produced via the respiratory burst, and in part to other acid-generating pathways stimulated by TPA.  相似文献   

12.
Phosphorylation of regulatory light chain (LC20) by myosin light chain kinase (MLCK) has been thought to play an important role in both smooth muscle contraction and several functions of vertebrate non-muscle cells. Amiloride, a frequently used Na+/H+ exchange inhibitor, potently inhibited phosphorylation of LC20 by MLCK. The inhibition was non-competitive with respect to myosin but competitive with ATP (Ki = 0.95 microM), suggesting that amiloride may act as an ATP analogue. Amiloride also inhibited the tension development of ether-treated gizzard fibers which were lacking in Na+/H+ antiport, even in the presence of ATP regenerating system. Thus, it must be reminded that amiloride cannot be used as a specific inhibitor of Na+/H+ exchange, and that the inhibition of myosin phosphorylation by amiloride should be taken into consideration in studying the role of Na+/H+ antiport in the cellular function.  相似文献   

13.
We have previously characterized in Chinese hamster lung fibroblasts a growth factor activatable and amiloride-sensitive Na+/H+ antiport (Pouysségur, J., Chambard, J. C., Franchi, A., Paris, S., and Van Obberghen-Schilling, E. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 3935-3939). In this report, we compared the affinity of 28 analogs of amiloride for inhibition of the Na+/H+ antiport and inhibition of growth factor-induced DNA synthesis. We showed that the guanidino moiety of amiloride must be protonated to elicit inhibition of the Na+/H+ exchange. Substitutions within this moiety by methyl, phenyl, or benzyl groups reduced the activity 20- to 1000-fold. On the contrary, substitution of the proton(s) of the 5-amino group of amiloride with alkyl or alkenyl groups increases potency up to 100-fold (5-N,N-diethylamiloride has a KI of 4 X 10(-8) M). In HCO-3-free medium and at lower [Na+]0 (25 or 50 mM) to reduce competition with amiloride, we found that growth factor-stimulated DNA synthesis of G0-arrested cells is inhibited by amiloride and its analogs with the same rank order as that for Na+/H+ antiporter inhibition. Over a range of 3 logs of concentration, a tight correlation was established between IC50 for the blockade of both processes, Na+/H+ exchange and percentage of cells entering the S phase upon growth factor action. These findings indicate that, in HCO-3-free medium, the functioning of the Na+/H+ exchange system is required for growth factor-induced DNA synthesis.  相似文献   

14.
The mechanisms underlying cytoplasmic pH (pHi) regulation in elicited rat peritoneal macrophages were investigated by electronic sizing and fluorescence determinations. Acid-loaded cells rapidly regained normal pHi by means of an amiloride-sensitive Na+/H+ exchange. When stimulated by 12-O-tetradecanoyl phorbol 13-acetate, macrophages displayed a biphasic pHi change: a marginal acidification followed by an alkalinization. The latter results from activation of Na+/H+ exchange, since it is Na+-dependent and prevented by amiloride. When the antiport is inhibited, the full magnitude of the initial acidification can be appreciated. This acidification is independent of the nature of the ionic composition of the medium and probably reflects accumulation of protons generated during the metabolic burst. Under physiological conditions, these protons are rapidly extruded by the Na+/H+ antiport.  相似文献   

15.
Amiloride, an inhibitor of Na+/H+ exchange, interfered with cytomegalovirus (CMV) DNA synthesis, blocked the formation of nuclear inclusions, and reduced CMV infectious yields. The reduction of CMV infectious yields was concentration dependent with an ED90 of 46 microM. Amiloride at a concentration of 150 microM reduced CMV yields by about 100-fold. Reduction of infectious yields appeared to be related to interference with the formation of nuclear inclusions and to inhibition of CMV DNA synthesis. Nuclear inclusions were much reduced in size and demonstrated poorly defined cellulae in the amiloride-treated cells. CMV DNA synthesis was inhibited by approximately 70% when cells were treated with 150 microM amiloride. The reduction in CMV yields could not be related to the reported inhibitory effect of amiloride on protein synthesis. In amiloride (150 microM)-treated, CMV-infected cells, late, yet not immediate-early or early, protein synthesis was markedly decreased relative to untreated, CMV-infected cells. Accordingly, CMV DNA synthesis and the replication of CMV may be related to Na+ entry through an amiloride-sensitive pathway.  相似文献   

16.
Chinese hamster lung fibroblasts (CCl39) possess in their plasma membrane an amiloride-sensitive Na+/H+ antiport, activated by growth factors. Measurements of intracellular pH (pHi), using equilibrium distribution of benzoic acid, provide evidence for a major role of this antiport in 1) regulation of cytoplasmic pH, in response to an acute acid load or to varying external pH values, and 2) the increase in cytoplasmic pH (by 0.2-0.3 pH unit) upon addition of growth factors (alpha-thrombin and insulin) to G0/G1-arrested cells. Indeed, these two processes are Na+-dependent and amiloride-sensitive; furthermore, CCl39-derived mutant cells, lacking the Na+/H+ exchange activity, are greatly impaired in pHi regulation and present no cytoplasmic alkalinization upon growth factor addition. In wild type G0-arrested cells, the amplitude of the mitogen-induced alkalinization reflects directly the activity of the Na+/H+ antiport, and is tightly correlated with the magnitude of DNA synthesis stimulation. Therefore, we conclude that cytoplasmic pH, regulated by the Na+/H+ antiport, is of crucial importance in the mitogenic response.  相似文献   

17.
Isolated human blood platelets, loaded with the pH-sensitive fluorescence dye 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein show cytoplasmic alkalinization upon stimulation with thrombin but acidification with ADP stimulation. In both cases a Na+/H+ exchange is activated. This can be revealed by the sensitivity of the induced pH changes to amiloride and to 5-N-(3-aminophenyl)amiloride (APA), known inhibitors of the Na+/H+ exchanger, and by a dependence on sodium in the external medium. ADP-induced platelet aggregation is not affected by omission of sodium from the external medium. Furthermore, aggregation is barely inhibited (less than 10%) by amiloride or APA at concentrations up to 50 microM while the Ki values in affecting the Na+/H+ exchange are 5.9 and 1.6 microM for amiloride and APA, respectively. Platelet aggregation is inhibited by amiloride or APA at concentrations higher than 50 microM, but this inhibition is apparently due to a secondary effect of the agents. It is concluded that platelet aggregation induced by ADP is not dependent on activation of Na+/H+ exchange.  相似文献   

18.
Na+/H+ exchange activity was investigated in cultured rat thyroid follicular FRTL-5 cells using the pH sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF). Basal intracellular pH (pHi) was 7.13 +/- 0.10 in cells incubated in Hepes-buffered saline solution. The intracellular buffering capacity beta i was determined using the NH4Cl-pulse method, yielding a beta i value of 85 +/- 12 mM/pH unit. The relationship between extracellular Na+ and the initial rate of alkalinization of acid-loaded cells showed simple saturation kinetics, with an apparent Km value of 44 +/- 26 mM, and an Vmax value of 0.3 +/- 0.01 pH unit/min. The agonist-induced activation of Na+/H+ exchange was investigated in cells acidified with nigericin. Addition of 12-O-tetradecanoylphorbol 13-acetate (TPA) or ATP induced rapid cytosolic alkalinization in acid-loaded cells. The action of both TPA and ATP was abolished by preincubating the cells with 100 microM amiloride, by substituting extracellular Na+ with equimolar concentrations of choline+, and by pretreating the cells with TPA for 24 h. Chelating extracellular Ca2+, or depleating intracellular Ca2+ pools did not affect the ATP-induced alkalinization. The results indicate, that FRTL-5 cells have a functional Na+/H+ exchange mechanism. Furthermore, stimulation of protein kinase C activity is of importance in activating the antiport.  相似文献   

19.
In several cell types, proliferation initiated by growth factors is associated with a rapid increase in cytoplasmic pH (pHi). This cytoplasmic alkalinization is due to the activation of an amiloride-sensitive Na+/H+ antiport. It is unclear whether growth factor-induced activation of the antiport or the resultant increase in pHi is the trigger for proliferation, an obligatory requirement for proliferation, or simply an associated phenomenon. Interleukin 2 (IL 2) acts as a growth factor for mitogen or antigen-stimulated thymus-derived (T) lymphocytes. In this study, we established that IL 2 produces an increase in pHi and determined whether this increase in pHi plays a role in the proliferative response to IL 2. Monitoring pHi with an intracellularly trapped, pH-sensitive, fluorescent dye, 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein, we demonstrated that IL 2 rapidly (less than 90 s) initiates an increase in pHi in IL 2-sensitive human and murine T cells. Because intracellular alkalinization requires extracellular Na+ and is amiloride-sensitive, it likely occurs through activation of the Na+/H+ antiport. Using partitioning of a weak acid, 5,5-dimethyl-2,4-oxazolidinedione, we confirmed that the IL 2-dependent increase in pHi is sustained for several hours and returns to near base-line levels by 18 h. We also investigated the consequence of preventing Na+/H+ exchange on the proliferative response induced by IL 2. IL 2-driven proliferation occurred in nominally bicarbonate-free medium in the presence of concentrations of amiloride analogs sufficient to inhibit the Na+/H+ antiport and prevent intracellular alkalinization. These data suggest that although the antiport is activated by binding of IL 2 to its receptor, intracellular alkalinization is not essential for IL 2-dependent proliferation. It seems unlikely that either cytoplasmic alkalinization or activation of the Na+/H+ antiport are triggers for T cell proliferation.  相似文献   

20.
J S Wu  J E Lever 《Biochemistry》1989,28(7):2980-2984
N5-Methyl-N5-isobutylamiloride (MIA) is one of a series of 5-N-substituted amiloride analogues which exhibit high affinity and specificity for inhibition of Na+/H+ antiport. Amiloride-sensitive [3H]MIA binding to renal brush border membranes exhibited a Kd of 250 nM and a Bmax of 8.6 pmol/mg of protein. Specific binding was optimal at pH 7.5 and inhibited in the presence of Na+ and Li+. Inhibition by amiloride exhibited biphasic kinetics. After resolution of solubilized membranes by high-pressure liquid chromatography, MIA binding activity cofractionated together with Na+/H+ antiport activity, measured after reconstitution in asolectin vesicles, into a major and a minor peak. When fractions containing the major peak of Na+/H+ antiport activity were incubated with [3H]MIA and then photolyzed with a mercury arc lamp, covalent incorporation of label into polypeptides of apparent molecular mass 81 and 107 kDa was observed. These photolabeled bands were also observed in intact brush border membranes in addition to labeled polypeptides of apparent molecular mass 60 and 46 kDa, respectively. Labeling was inhibited by amiloride, reduced in the presence of Na+, and not observed in the absence of photolysis. These data point to the 81- and 107-kDa polypeptides as candidates for identification as components of a Na+/H+ antiport system in renal brush border membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号