首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B cells and antigen-presenting cells express a group of intracellular Toll-like receptors (TLRs) that recognize nucleic acids and can be accessed only when apoptotic debris or immune complexes are internalized by B-cell receptors or Fc receptors. This results in rapid cell activation and release of inflammatory mediators that perpetuate the autoantibody response. TLR-7 and TLR-9 are required to generate autoantibodies to RNA and DNA, respectively. Synthetic oligodeoxynucleotides that inhibit the activity of these intracellular TLRs attenuate systemic lupus erythematosus in mouse models and may be of therapeutic benefit in human systemic lupus erythematosus.  相似文献   

2.
3.
Few peribronchial mast cells are noted either in the lungs of naive mice or in the lungs of OVA-sensitized mice challenged acutely with OVA by inhalation. In this study, we demonstrate that OVA-sensitized mice exposed to repetitive OVA inhalation for 1-6 mo have a significant accumulation of peribronchial mast cells. This accumulation of peribronchial mast cells is associated with increased expression of the Th2 cell-derived mast cell growth factors, including IL-4 and IL-9, but not with the non-Th2 cell-derived mast cell growth factor, stem cell factor. Pretreating mice with immunostimulatory sequences (ISS) of DNA containing a CpG motif significantly inhibited the accumulation of peribronchial mast cells and the expression of IL-4 and IL-9. To determine whether mast cells express Toll-like receptor-9 (TLR-9; the receptor for ISS), TLR-9 expression by mouse bone marrow-derived mast cells (MBMMCs) was assessed by RT-PCR. MBMMCs strongly expressed TLR-9 and bound rhodamine-labeled ISS. However, incubation of MBMMCs with ISS in vitro neither inhibited MBMMC proliferation nor inhibited Ag/IgE-mediated MBMMC degranulation, but they did induce IL-6. Overall these studies demonstrate that mice exposed to repetitive OVA challenge, but not acute OVA challenge, have an accumulation of peribronchial mast cells and express increased levels of mast cell growth factors in the lung. Although mast cells express TLR-9, ISS does not directly inhibit mast cell proliferation in vitro, suggesting that ISS inhibits accumulation of peribronchial mast cells in vivo by indirect mechanism(s), which include inhibiting the lung expression of Th2 cell-derived mast cell growth factors.  相似文献   

4.
We evaluated the innate immune response to various synthetic CpG-containing oligodeoxynucleotides (CpG ODNs) by measuring nitric oxide production in the peripheral blood monocytes from turkey poults. The results indicate that the presence of the CpG dinucleotide in ODNs was a prerequisite for activation of turkey monocytes and induction of nitric oxide (NO) synthesis. CpG motifs and sequence structure of the ODNs were also found to influence stimulatory activity greatly. The most potent CpG ODN to induce NO synthesis in turkey monocytes was human-specific CpG ODN M362, followed by CpG ODN 2006 (human), CpG ODN#17 (chicken) and CpG ODN 1826 (mouse). The optimal CpG motif for NO induction was GTCGTT. Phosphorothioate modification of CpG ODNs also significantly increased stimulatory activity. Compared with chicken monocytes, turkey monocytes appeared to be less sensitive to CpG motif variation, whereas chicken monocytes were found to respond more strictly to human-specific CpG ODNs or ODNs that contain GTCGTT motifs.  相似文献   

5.
Bacterial CpG-containing (CpG) DNA promotes survival of murine macrophages and triggers production of proinflammatory mediators. The CpG DNA-induced inflammatory response is mediated via TLR9, whereas a recent study reported that activation of the Akt prosurvival pathway occurs via DNA-dependent protein kinase (DNA-PK) and independently of TLR9. We show, in this study, that Akt activation and survival of murine bone marrow-derived macrophages (BMM) triggered by CpG-containing phosphodiester oligodeoxynucleotides or CpG-containing phosphorothioate oligodeoxynucleotides was completely dependent on TLR9. In addition, survival triggered by CpG-containing phosphodiester oligodeoxynucleotides was not compromised in BMM from SCID mice that express a catalytically inactive form of DNA-PK. CpG DNA-induced survival of BMM was inhibited by the PI3K inhibitor, LY294002, but not by the MEK1/2 inhibitor, PD98059. The effect of LY294002 was specific to survival, because treatment of BMM with LY294002 affected CpG DNA-induced TNF-alpha production only modestly. Therefore, CpG DNA activates macrophage survival via TLR9 and the PI3K-Akt pathway and independently of DNA-PK and MEK-ERK.  相似文献   

6.
Oligodeoxynucleotides (ODN) with the CpG motif have been shown to be potent stimulators of innate immunity. A theoretical concern is that uncontrolled stimulation of the innate immune system through the TLR-9 receptor could induce, or worsen, some autoimmune diseases such as adjuvant arthritis or systemic lupus erythematosus. Safe therapeutic use of such ODN could be enhanced if one could regulate some of their stimulatory activities. We have designed a group of synthetic ODNs, which were able to inhibit the induction of NK lytic activity, IL-12p40 and IFN-gamma cytokine secretion by type A (D)-CpG-ODNs. Inhibition occurred in both DNA-sequence and dose-dependent fashion. Fifty percent inhibition was achieved with ~10-nM concentration of the most potent inhibitory ODNs. Delayed addition of these ODNs for up to 2 h was still able to profoundly affect CpG-induced IL-12p40 production at 18 h. Inhibitory DNA motif consists of two nucleotide triplets, a proximal pyrimidine-rich CCT sequence and a more distal GGG triplet. Optimal distance between these blocks is between three to five nucleotides. The linker sequence between the CCT and GGG blocks can additionally modify the activity of inhibitory ODNs, in both a positive and in negative way. When the order of CCT and GGG blocks is reversed, inhibition is completely lost. These findings suggest that CpG regulation of innate immunity can itself be regulated by particular motifs, which could be of therapeutic benefit in autoimmune diseases.  相似文献   

7.
Different DNA motifs are required for optimal stimulation of mouse and human immune cells by CpG oligodeoxynucleotides (ODN). These species differences presumably reflect sequence differences in TLR9, the CpG DNA receptor. In this study, we show that this sequence specificity is restricted to phosphorothioate (PS)-modified ODN and is not observed when a natural phosphodiester backbone is used. Thus, human and mouse cells have not evolved to recognize different CpG motifs in natural DNA. Nonoptimal PS-ODN (i.e., mouse CpG motif on human cells and vice versa) gave delayed and less sustained phosphorylation of p38 MAPK than optimal motifs. When the CpG dinucleotide was inverted to GC in each ODN, some residual activity of the PS-ODN was retained in a species-specific, TLR-9-dependent manner. Thus, TLR9 may be responsible for mediating many published CpG-independent responses to PS-ODN.  相似文献   

8.
Aberrant activation of autoreactive T cells is one of the major causes of autoimmune disease. Autoantigens are sequestered and in many cases weak immunogens. For example, in experimental autoimmune uveitis, immunization of naive rats with autologous interphotoreceptor retinoid-binding protein (IRBP) fails to induce intraocular inflammation or a strong T cell response, whereas bovine IRBP is a strong inducer of experimental autoimmune uveitis. Such observations challenge the view that the autoantigen alone is responsible for the development of autoimmunity. Here, we demonstrate that autologous rat IRBP is converted to a strong immunogen in the presence of a small dose of CpG-containing oligodeoxynucleotides. Our results indicate that specific CpG-containing oligodeoxynucleotides may play an important role in the activation and expansion of autoreactive T cells in vivo, leading to autoimmune disease.  相似文献   

9.
DNAzymes of the 10-23 family represent an important class of antisense molecules with implications for therapeutic treatment of diseases. These molecules are single-stranded oligodeoxynucleotides combining the high specificity of oligonucleotide base pairing with an inherent RNA-cleaving enzymatic activity. However, like other oligonucleotide-based molecules these substances might exert so-called off-target effects, which have not been investigated so far for this molecule class. Therefore, the present study investigates putative off-target effects of DNAzymes on innate immune mechanisms using GATA-3-specific DNAzymes that have recently been developed as novel therapeutic approach for the treatment of allergic diseases including allergic asthma. The conserved catalytic domain of 10-23 DNAzymes contains a CpG motif that may stimulate innate immune cells via Toll-like receptor 9 (TLR-9). Therefore, potential TLR-9-mediated as well as TLR-9 independent cell activation was investigated using TLR-9-transfected HEK293 cells, macrophage cell lines and primary innate immune cells. Furthermore, putative effects of GATA-3-specific DNAzymes on the activation of neutrophil granulocytes and degranulation of mast cells/basophils were analyzed. In summary, no innate immune cell-stimulating activities of the tested DNAzymes were observed in any of the systems. Consequently, use of GATA-3-specific DNAzymes may represent a novel and highly specific approach for the treatment of allergic diseases.  相似文献   

10.
Antisense strategies to inhibit restenosis.   总被引:8,自引:0,他引:8  
  相似文献   

11.
We have previously shown that macrophages (Mphi) can be activated by CD40 ligation to become cytotoxic against tumor cells in vitro. Here we show that treatment of mice with agonistic anti-CD40 mAb (anti-CD40) induced up-regulation of intracellular TLR9 in Mphi and primed them to respond to CpG-containing oligodeoxynucleotides (CpG), resulting in synergistic activation. The synergy between anti-CD40 and CpG was evidenced by increased production of IFN-gamma, IL-12, TNF-alpha, and NO by Mphi, as well as by augmented apoptogenic effects of Mphi against tumor cells in vitro. The activation of cytotoxic Mphi after anti-CD40 plus CpG treatment was dependent on IFN-gamma but not TNF-alpha or NO, and did not require T cells and NK cells. Anti-CD40 and CpG also synergized in vivo in retardation of tumor growth in both immunocompetent and immunodeficient mice. Inactivation of Mphi in SCID/beige mice by silica treatment abrogated the antitumor effect. Taken together, our results show that Mphi can be activated via CD40/TLR9 ligation to kill tumor cells in vitro and inhibit tumor growth in vivo even in immunocompromised tumor-bearing hosts, indicating that this Mphi-based immunotherapeutic strategy may be appropriate for clinical testing.  相似文献   

12.
Toll-like receptor ligands directly promote activated CD4+ T cell survival   总被引:15,自引:0,他引:15  
Toll-like receptor (TLR) engagement by pathogen-associated molecular patterns (PAMPs) is an important mechanism for optimal cellular immune responses. APC TLR engagement indirectly enhances activated CD4(+) T cell proliferation, differentiation, and survival by promoting the up-regulation of costimulatory molecules and the secretion of proinflammatory cytokines. However, TLRs are also expressed on CD4(+) T cells, suggesting that PAMPs may also act directly on activated CD4(+) T cells to mediate functional responses. In this study, we show that activated mouse CD4(+) T cells express TLR-3 and TLR-9 but not TLR-2 and TLR-4. Treatment of highly purified activated CD4(+) T cells with the dsRNA synthetic analog poly(I:C) and CpG oligodeoxynucleotides (CpG DNA), respective ligands for TLR-3 and TLR-9, directly enhanced their survival without augmenting proliferation. In contrast, peptidoglycan and LPS, respective ligands for TLR-2 and TLR-4 had no effect. Enhanced survival mediated by either poly(I:C) or CpG DNA required NF-kappaB activation and was associated with Bcl-x(L) up-regulation. However, only CpG DNA, but not poly(I:C)-mediated effects on activated CD4(+) T cells required the TLR/IL-1R domain containing adaptor molecule myeloid differentiation factor 88. Collectively, our results demonstrate that PAMPs can directly promote activated CD4(+) T cell survival, suggesting that TLRs on T cells can directly modulate adaptive immune responses.  相似文献   

13.
Hyaluronic acid (HA) may exert different action depending on its degree of polymerization. Small HA fragments induce proinflammatory responses, while highly polymerized HA exerts a protective effect in inflammatory pathologies such as rheumatoid arthritis. In both cases the toll-like receptor 4 (TLR-4) seems to be involved in the modulation of the inflammation process. The aim of this study was to investigate the influence of short HA oligosaccharides (HA 4-mers) and high molecular weight HA (HMWHA) in the inflammatory response in normal mouse chondrocytes. Messenger RNA and related protein levels were measured for TLR-4, tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and interleukin-18 (IL-18) in cells with and without the addition of HA. NF-kB activation was also evaluated. 4-mer HA treatment produced a significant up-regulation of all parameters considered while HMWHA did not exert any activity in untreated cells although it was able to reduce the effects of 4- mers HA significantly. Specific TLR-4 small interference RNA (siRNA) was used to confirm TLR-4 as the target of HA action. This study suggests that HA may modulate proinflammatory cytokines via its different degree of polymerization and inflammatory action may be modulated as a result of the interaction between HA and TLR-4.  相似文献   

14.
We demonstrate a new design for immunomodulatory CpG DNA containing two sequences each with as few as five or six-nucleotides joined together via 3(')-3(') linkers. These do not require the -PuPu(Py)CGPyPy- hexameric motif generally found essential for CpG DNA immune stimulation. These novel, short-immunomers show potent immunostimulatory activity manifested by IL-12 and IL-6 secretion in murine spleen cell and PBMC cultures and splenomegaly in vivo. Short-immunomers show strong activation of NF-kappaB and stress-activated signaling pathways and induce cytokines in J774 cell cultures. The same sequences also induce cytokines in healthy human PBMC cultures whereas conventional CpG DNA requires different optimal sequences for murine and human immune cells. Additionally, short-immunomers inhibit IL-5 secretion and induce IFN-gamma secretion in conalbumin-sensitized mouse spleen cell cultures, suggesting reversal of established Th2 responses to Th1 type responses. Short-immunomer also inhibits growth of MCF-7 human tumor xenograft in nude mice. This is the first report of activity with such short DNA sequences and also of sequences lacking hexameric motifs proposed in earlier studies.  相似文献   

15.
We have shown previously that hyperinsulinemia inhibits interferon-alpha-dependent activation of phosphatidylinositol 3-kinase (PI3-kinase) through mammalian target of rapamycin (mTOR)-induced serine phosphorylation of insulin receptor substrate (IRS)-1. Here we report that chronic insulin and high glucose synergistically inhibit interleukin (IL)-4-dependent activation of PI3-kinase in macrophages via the mTOR pathway. Resident peritoneal macrophages (PerMPhis) from diabetic (db/db) mice showed a 44% reduction in IRS-2-associated PI3-kinase activity stimulated by IL-4 compared with PerMPhis from heterozygote (db/+) control mice. IRS-2 from db/db mouse PerMPhis also showed a 78% increase in Ser/Thr-Pro motif phosphorylation without a difference in IRS-2 mass. To investigate the mechanism of this PI3-kinase inhibition, 12-O-tetradecanoylphorbol-13-acetate-matured U937 cells were treated chronically with insulin (1 nm, 18 h) and high glucose (4.5 g/liter, 48 h). In these cells, IL-4-stimulated IRS-2-associated PI3-kinase activity was reduced by 37.5%. Importantly, chronic insulin or high glucose alone did not impact IL-4-activated IRS-2-associated PI3-kinase. Chronic insulin + high glucose did reduce IL-4-dependent IRS-2 tyrosine phosphorylation and p85 association by 54 and 37%, respectively, but did not effect IL-4-activated JAK/STAT signaling. When IRS-2 Ser/Thr-Pro motif phosphorylation was examined, chronic insulin + high glucose resulted in a 92% increase in IRS-2 Ser/Thr-Pro motif phosphorylation without a change in IRS-2 mass. Pretreatment of matured U937 cells with rapamycin blocked chronic insulin + high glucose-dependent IRS-2 Ser/Thr-Pro motif phosphorylation and restored IL-4-dependent IRS-2-associated PI3-kinase activity. Taken together these results indicate that IRS-2-dependent IL-4 signaling in macrophages is impaired in models of type 2 diabetes mellitus through a mechanism that relies on insulin/glucose-dependent Ser/Thr-Pro motif serine phosphorylation mediated by the mTOR pathway.  相似文献   

16.
Flagellin, the structural protein subunit of the bacterial flagellum, is specifically recognized by TLR-5 and has potent immunomodulatory effects. The antitumor effects of purified Salmonella typhimurium flagellin were evaluated in mice transplanted s.c. with a weakly immunogenic murine tumor or with its variant stably transfected to express the highly antigenic human HER-2 oncoprotein. Peritumoral administration of flagellin 8-10 days after tumor implantation did not affect the growth rate of the weakly immunogenic tumor but significantly inhibited growth of the antigenic variant tumor. In contrast, flagellin administered at the time of implantation of the antigenic tumor led to accelerated tumor growth. These contrasting effects of flagellin on tumor growth correlated with the type of immune response induced; i.e., late flagellin administration was associated with an increased IFN-gamma:IL-4 ratio and the decreased frequency of CD4+CD25+ T regulatory cells, whereas flagellin treatment at the time of tumor implantation decreased the IFN-gamma:IL-4 ratio and increased CD4+CD25+ T cell frequency. When the early flagellin treatment was combined with administration of CpG-containing oligodeoxynucleotides, tumor growth was completely suppressed, indicating synergy between flagellin and CpG-containing oligodeoxynucleotides. Together, these data provide evidence that flagellin can have contrasting effects on tumor growth.  相似文献   

17.
Mast cells are known for their roles in allergy, asthma, systemic anaphylaxis, and inflammatory disease. IL-10 can regulate inflammatory responses and may serve as a natural regulator of mast cell function. We examined the effects of IL-10 on in vitro-cultured mouse and human mast cells, and evaluated the effects of IL-10 on FcepsilonRI in vivo using mouse models. IgE receptor signaling events were also assessed in the presence or absence of IL-10. IL-10 inhibited mouse mast cell FcepsilonRI expression in vitro through a Stat3-dependent process. This down-regulation was consistent in mice tested in vivo, and also on cultured human mast cells. IL-10 diminished expression of the signaling molecules Syk, Fyn, Akt, and Stat5, which could explain its ability to inhibit IgE-mediated activation. Studies of passive systemic anaphylaxis in IL-10-transgenic mice showed that IL-10 overexpression reduced the IgE-mediated anaphylactic response. These data suggest an important regulatory role for IL-10 in dampening mast cell FcepsilonRI expression and function. IL-10 may hence serve as a mediator of mast cell homeostasis, preventing excessive activation and the development of chronic inflammation.  相似文献   

18.

Background

It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo.

Methods and results

Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantly increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury.

Conclusions

These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.  相似文献   

19.
Hyaluronan (HA) fragments are able to induce inflammation by stimulating both CD44 and toll-like receptor 4 (TLR-4). CD44 and TLR-4 activation stimulates the liberation of NF-kB and pro-inflammatory cytokine responses. The aim of this study was to investigate the effects of hyaluronidase (HYAL) treatment, which depolymerises HA into small fragments, and of the addition of specific hyaluronan synthases-1, 2, and 3 small interference RNA (HASs siRNA), which silence HASs activity, on normal mouse synovial fibroblasts (NSF) and on rheumatoid arthritis synovial fibroblasts (RASF) obtained from mice subjected to collagen induced arthritis (CIA). The addition of HYAL to NSF and/or RASF significantly increased the TLR-4, CD44 and NF-kB activity, as well as the pro-inflammatory cytokines, interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and interleukin-33 (IL-33) in both groups, but to a greater extent in RASF. The addition to NSF and/or RASF of the HASs siRNA, which block HASs activity and therefore the availability of HA substrate for HYAL, was able to reduce HYAL effects in both NSF and RASF. Finally, the HA evaluation confirmed the increment of HA at low molecular weight after HYAL treatment.  相似文献   

20.
Oppeltz RF  Rani M  Zhang Q  Schwacha MG 《Cytokine》2011,55(3):396-401
Burn is associated with profound inflammation and activation of the innate immune system in multiple organ beds, including the lung. Similarly, toll-like receptors (TLR) are associated with innate immune activation. Nonetheless, it is unclear what impact burn has on TLR-induced inflammatory responses in the lung.MethodsMale C57BL/6 mice were subjected to burn (3rd degree, 25% TBSA) or sham procedure and 1, 3 or 7 days thereafter, bronchoalveolar lavage (BAL) fluid was collected and cells were isolated and cultured in vitro with specific TLR agonists as follows: Zymosan (TLR-2), LPS (TLR-4) and CpG-ODN (TLR-9). Supernatants were collected 48 h later and assayed for inflammatory cytokine levels (IL-1β, IL-6, IL-10, IL-17, TNF-α, KC, MCP-1, MIP-1α, MIP-1β and RANTES) by Bioplex.ResultsBAL fluid from sham and burn mice did not contain detectable cytokine levels. BAL cells, irrespective of injury, were responsive to TLR-2 and TLR-4 activation. Seven days after burn, TLR-2 and TLR-4 mediated responses by BAL cells were enhanced as evidenced by increased production of IL-6, IL-17, TNF-α, MCP-1, MIP-1β and RANTES.ConclusionsBurn-induced changes in TLR-2 and TLR-4 reactivity may contribute to the development of post-burn complications, such as acute lung injury (ALI) and adult respiratory distress syndrome (ARDS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号