首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the relationship between host defense and specialization by parasites in comparative analyses of bird fleas and T-cell mediated immune response of their avian hosts, showing that fleas with few main host species exploited hosts with weak or strong immune defenses, whereas flea species that parasitized a large number of host species only exploited hosts with weak immune responses. Hosts with strong immune responses were exploited by a larger number of flea species than hosts with weak responses. A path analysis model with an effect of T-cell response on the number of host species, or a model with host coloniality directly affecting host T-cell response, which in turn affected the number of host species used by fleas, best explained the data. Therefore, parasite specialization may have evolved in response to strong host defenses.  相似文献   

2.
Brood parasitic birds, their foster species and their ectoparasites form a complex coevolving system composed of three hierarchical levels. However, effects of hosts’ brood parasitic life‐style on the evolution of their louse (Phthiraptera: Amblycera, Ischnocera) lineages have never been tested. We present two phylogenetic analyses of ectoparasite richness of brood parasitic clades. Our hypothesis was that brood parasitic life‐style affects louse richness negatively across all avian clades due to the lack of vertical transmission routes. Then, narrowing our scope to brood parasitic cuckoos, we explored macroevolutionary factors responsible for the variability of their louse richness. Our results show that taxonomic richness of lice is lower on brood parasitic clades than on their nonparasitic sister clades. However, we found a positive covariation between the richness of cuckoos’ Ischnoceran lice and the number of their foster species, possibly due to the complex and dynamic subpopulation structure of cuckoo species that utilize several host species. We documented diversity interactions across a three‐level host parasite system and we found evidence that brood parasitism has opposing effects on louse richness at two slightly differing macroevolutionary scales, namely the species richness and the genera richness.  相似文献   

3.
Host resources govern the specificity of swiftlet lice: size matters   总被引:1,自引:0,他引:1  
1. An important component of parasite diversity is the specificity for particular host taxa shown by many parasites. Specificity is often assumed to imply adaptive specialization by the parasite to its host, such that parasites are incapable of surviving and reproducing on 'foreign' hosts.
2. Specificity, however, need not be due to adaptation to particular hosts. Some parasites may be specific simply because they are incapable of dispersing among host taxa. For example, 'permanent' parasites like chewing lice spend their entire lifecycle on the body of the host and require direct contact between hosts for dispersal.
3. The role of adaptive constraints in parasite host-specificity has seldom been tested in natural populations. We conducted such a test by comparing the relative fitness of host-specific lice experimentally transferred among closely related species of cave swiftlets in northern Borneo.
4. The survival of lice in most of these transfers was significantly reduced in proportion to the mean difference in feather barb size between the donor and recipient species of hosts. Thus, adaptation to a particular resource on the body of the host does appear to govern the specificity of swiftlet lice.
5. In transfers where lice survived, microhabitat shifting on the body of the host was observed, whereby the mean barb diameter of the feathers on which the lice occurred was held 'constant'.  相似文献   

4.
Ponlet N  Chaisiri K  Claude J  Morand S 《Parasitology》2011,138(13):1804-1814
Parasite diversity is hypothesized to act on host life-history traits through investment in immunity. In order to incorporate the diversity of the parasite community that an individual host or a host species may face, two indices can be used: Taxonomic Species Richness and Taxonomic Entropy, where the taxonomic information is incorporated with the taxonomic weight. We tested whether these indices correlate with several morphological traits potentially implicated in immune defence and in reproduction, using data on gastrointestinal helminths and their rodent hosts sampled in Southeast Asia. We found no relationship between parasite diversity indices and either spleen mass or testes size at the intraspecific level, i.e. at the level of individuals. At the interspecific level, we found no relationship between the parasite diversity indices and testes size. However, we found that female spleen mass is significantly influenced by the specific species richness of parasites, whereas male spleen mass is influenced by individual mean parasite diversity indices. We concluded that female spleen mass may have evolved in response to gastrointestinal helminth pressure acting at species levels, while in males, the individual spleen mass could be constrained by other factors, such as the blood storage function of the spleen.  相似文献   

5.
Ecological immunology aims to explain variation among hosts in the strength and efficacy of immunological defenses. However, a shortcoming has been the failure to link host immune responses to actual parasites under natural conditions. Here, we present one of the first experimental demonstrations of a parasite‐induced immune response in a wild bird population. The recently introduced ectoparasitic nest fly Philornis downsi severely impacts the fitness of Darwin's finches and other land birds in the Galápagos Islands. An earlier study showed that female medium ground finches (Geospiza fortis) had P. downsi‐binding antibodies correlating with presumed variation in fly exposure over time. In the current study, we experimentally manipulated fly abundance to test whether the fly does, in fact, cause changes in antibody levels. We manipulated P. downsi abundance in nests and quantified P. downsi‐binding antibody levels of medium ground finch mothers, fathers, and nestlings. We also quantified host behaviors, such as preening, which can integrate with antibody‐mediated defenses against ectoparasites. Philornis downsi‐binding antibody levels were significantly higher among mothers at parasitized nests, compared to mothers at (fumigated) nonparasitized nests. Mothers with higher antibody levels tended to have fewer parasites in their nests, suggesting that antibodies play a role in defense against parasites. Mothers showed no behavioral changes that would enhance the effectiveness of the immune response. Neither adult males, nor nestlings, had P. downsi‐induced immunological or behavioral responses that would enhance defense against flies. None of the parasitized nests fledged any offspring, despite the immune response by mothers. Thus, this study shows that, while the immune response of mothers appeared to be defensive, it was not sufficient to rescue current reproductive fitness. This study further shows the importance of testing the fitness consequences of immune defenses, rather than assuming that such responses increase host fitness.  相似文献   

6.
Studies of biodiversity traditionally focus on charismatic megafauna. By comparison, little is known about parasite biodiversity. Recent studies suggest that co-extinction of host specific parasites with their hosts should be common and that parasites may even go extinct before their hosts. The few studies examining the relationship between parasite diversity and habitat quality have focused on parasites that require intermediate hosts and pathogens that require vectors to complete their life-cycles. Declines in parasite and pathogen richness in these systems could be due to the decline of any of the definitive hosts, intermediate hosts, or vectors. Here we focus on avian ectoparasites, primarily lice, which are host specific parasites with simple, direct, life-cycles. By focusing on these parasites we gain a clearer understanding of how parasites are linked to their hosts and their hosts’ environment. We compare parasite richness on birds from fragmented forests in southern China. We show that parasite richness correlates with forest size, even among birds that are locally common. The absence of some ectoparasite genera in small forests suggests that parasites can go locally extinct even if their hosts persist. Our data suggest that the conservation of parasite biodiversity may require preservation of habitat fragments that are sufficiently large to maintain parasite populations, not just their host populations.  相似文献   

7.
Poulin R  Mouillot D 《Oecologia》2004,140(2):372-378
Positive relationships are commonly observed between the abundance of a species in a locality and the frequency of its occurrence among localities on a larger scale. This pattern may not hold for parasitic organisms when the average abundance of a parasite among its hosts is related to the number of host species in which it occurs, because of the additive investment in specific adaptations to counter host immune responses required for each host species in a parasites repertoire. For a rigorous test of the hypothesis that there is a trade-off between the number of host species that can be successfully exploited and the average abundance of parasites in those hosts, one needs to take into account the phylogenetic (or taxonomic) distances among the host species used by a parasite. Differences in immune responses are likely to increase with increasing phylogenetic distances. The trade-off hypothesis was tested in a comparative analysis of 393 species of trematodes, cestodes and nematodes parasitic in birds surveyed from the same geographical area, using an index of host specificity that measures the average taxonomic distances between a parasites known host species. After correcting for the influences of parasite phylogeny and other potential confounding variables, mean abundance was negatively correlated with the average taxonomic distance among host species for nematodes, and with the variance in taxonomic distances among hosts for cestodes. In the case of trematodes, these variables covaried positively. The trade-off between average infection success and how taxonomically distant a parasites host species are from each other was only found in two of the three groups of helminths investigated, possibly because of compensating features in trematodes, such as their ability to multiply asexually in intermediate hosts. These results provide empirical evidence consistent with the hypothesis that specialization allows greater local adaptation and therefore greater local population abundance, supporting key predictions regarding the evolution of ecological specialization.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

8.
In invertebrate–parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host–parasite system with a well‐established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host–parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity.  相似文献   

9.
10.
During the process of coevolution, social parasites have evolved sophisticated strategies to exploit the brood care behavior of their social hosts. Slave-making ant queens invade host colonies and kill or eject all adult host ants. Host workers, which eclose from the remaining brood, are tricked into caring for the parasite brood. Due to their high prevalence and frequent raids, following which stolen host broods are similarly enslaved, slave-making ants exert substantial selection upon their hosts, leading to the evolution of antiparasite adaptations. However, all host defenses shown to date are active before host workers are parasitized, whereas selection was thought to be unable to act on traits of already enslaved hosts. Yet, here we demonstrate the rebellion of enslaved Temnothorax workers, which kill two-thirds of the female pupae of the slave-making ant Protomognathus americanus . Thereby, slaves decrease the long-term parasite impact on surrounding related host colonies. This novel antiparasite strategy of enslaved workers constitutes a new level in the coevolutionary battle after host colony defense has failed. Our discovery is analogous to recent findings in hosts of avian brood parasites where perfect mimicry of parasite eggs leads to the evolution of chick recognition as a second line of defense.  相似文献   

11.
Host parents exhibit a variety of behaviors toward avian brood parasites, but not all of their actions have necessarily evolved in response to costs imposed by parasites. To investigate whether common waxbills (Estrilda astrild) have evolved defenses specifically against parasitic pin-tailed whydahs (Vidua macroura), I studied the specificity and flexibility of host behaviors toward nestlings at two sites that differed significantly in parasitism rates and intensities. I focused on documenting nestling survival because V. macroura young match the elaborate gape morphology of E. astrild nestlings, a pattern that suggests hosts may possess unique defenses against parasite chicks. Parasite young survived significantly worse than host young in mixed broods. However, this apparent discrimination was not associated with parasitism risk as would be expected if defenses had evolved specifically to counter parasitism. Parasite young may have survived poorly compared to host young because individual chicks were less able to stimulate sufficient care from foster parents or because they were more susceptible to nestling competition, disease, or reduced provisioning by hosts. Mortality may have also been exacerbated by poor timing of parasite egg laying. In nonparasitized and parasitized nests, rates of nestling survival were similar, further suggesting that parenting behaviors that result in chick mortality did not evolve solely in response to parasite young. In addition, orange-breasted waxbills (Amandava subflava) and zebra finches (Taeniopygia guttata), rarely parasitized and nonparasitized relatives of E. astrild, experience similar levels of nestling mortality presumably as a result of phylogenetically widespread parenting strategies. Despite the similarity of parasitic V. macroura nestlings and E. astrild nestlings, I found no evidence that E. astrild parents possess defenses that allow for specific discrimination against parasite chicks during the nestling period. Rather than being subject to host defenses evolved in an arms race, Vidua chicks may simply be imperfectly adapted to life in the nests of their hosts.  相似文献   

12.
Genetic variation in levels of parasitism of hosts is an underlying assumption of studies of coevolution, but few such estimates are available from the field. We studied genetic variation in the abundance of the chewing louse Hirundoecus malleus on its barn swallow host Hirundo rustica. These parasites are directly transmitted and a test of genetic variation of parasite abundance would thus provide a particularly strong test. The prevalence and the abundance of the chewing lice did not differ significantly between adult male and female hosts. The resemblance in parasite intensity of H. malleus of offspring and their parents was positive and highly significant, and an analysis of extra-pair paternity in the host allowed partitioning of this resemblance between genetic and common environment effects. There was no significant resemblance in parasite intensity between extra-pair offspring and their foster parents, although the resemblance remained for within-pair offspring. This provides evidence for the abundance of directly transmitted parasites having an additive genetic component. We found no evidence of common environment effects as parents did not resemble each other with respect to lice abundance.  相似文献   

13.
Moyer  Brett R.  Gardiner  David W.  Clayton  Dale H. 《Oecologia》2002,131(2):203-210

Animals possess a variety of well-documented defenses against ectoparasites, including morphological, behavioral, and immune responses. Another possible defense that has received relatively little attention is the shedding of the host's exterior. The conventional wisdom is that ectoparasite abundance is reduced when birds molt their feathers, mammals molt their hair, and reptiles shed their skin. We carried out an experimental test of this hypothesis for birds by manipulating molt in feral pigeons (Columba livia) infested with feather lice (Phthiraptera: Ischnocera). We used two standard methods, visual examination and body washing, to quantify the abundance of lice on the birds. The visual data indicated a significant effect of molt on lice. However, the more robust body washing method showed that molt had no effect on louse abundance. Two factors caused visual examination to underestimate the number of lice on molting birds. First, molt replaces worn feathers with new, lush plumage that obscures lice during visual examination. Second, we discovered that lice actively seek refuge inside the sheath that encases developing feathers, where the lice cannot be seen. The apparent reduction in louse abundance caused by these factors may account for the conventional wisdom that feather molt reduces ectoparasite abundance in birds. In light of our experimental results, we argue that it is necessary to reinterpret the conclusions of previous studies that were based on observational data. Additional experiments are needed to test whether shedding of the host's exterior reduces ectoparasites in other birds, mammals, and reptiles, similar to the impact of facultative leaf drop on herbivorous insects on trees.

  相似文献   

14.
Although most parasites show at least some degree of host specificity, factors governing the evolution of specificity remain poorly understood. Many different groups of host-specific parasites show a striking correlation between parasite and host body size, suggesting that size reinforces specificity. We tested this hypothesis by measuring the relative fitness of host-specific feather lice transferred to pigeons and doves that differ in size by an order of magnitude. To test the general influence of size, we transferred unrelated groups of wing and body lice, which are specialized for different regions of the host. Lice were transferred in both directions, from a large native host species, the rock pigeon (Columba livia), to several progressively smaller hosts, and from a small native host species, the common ground dove (Columbina passerina), to several larger hosts. We measured the relative fitness (population size) of lice transferred to these novel host species after two louse generations. Neither wing lice nor body lice could survive on novel host species that were smaller in size than the native host. However, when host defense (preening behavior) was blocked, both groups survived and reproduced on all novel hosts tested. Thus, host defense interacted with host size to govern the ability of lice to establish on small hosts. Neither wing lice nor body lice could survive on larger hosts, even when preening was blocked. In summary, host size influenced the fitness of both types of feather lice, but through different mechanisms, depending on the direction of the transfer. Our results indicate that host switching is most likely between hosts of similar body size. This finding has important implications for studies of host-parasite coevolution at both the micro- and macroevolutionary scales.  相似文献   

15.
Sex-biased parasitism is rarely investigated in relation to host tolerance and resistance, which are two defense strategies hosts can adopt when challenged by parasites. Health or fitness deteriorations in less tolerant individuals with increasing parasite burden would be faster than those in more tolerant ones. Hence, the body condition and reproductive potential of an infected individual host can be considered proxies for tolerance to parasitism. We studied Mediterranean populations of the wood mouse (Apodemus sylvaticus) and its helminth parasites. We assessed their resistance using the phytohemagglutinin test and spleen size, and their tolerance using body condition in males and females and testes mass in males. In order to avoid spurious correlations, we took into account the phylogeographic structure of the Mediterranean wood mouse populations. We used a mixed model adapted from the animal model used in quantitative genetics. While helminth infection did not differ between the two sexes, females and males differed in their measured defenses. Females seem to invest more in immune defense with increasing risk of parasite diversity, but also appear to be potentially more tolerant of parasitic diversity. These results suggest the existence of sexual differences in resistance and tolerance, and that measurements of parasitic loads alone could be insufficient to detect any underlying sexual differences in the two strategies that have evolved in response to multiple parasitic attacks.  相似文献   

16.
Local, regional and global influences on the patterns of parasite species richness of 39 freshwater fish species from Central Europe were investigated. Host local abundance and host occurrence were considered respectively as local and regional factors, while host geographical range in longitude and latitude was considered as a global factor. Influences of size, ecology and behavior of hosts were also included in a comparative analysis using the independent contrasts method. We considered host habitat, host diet, host shoaling behavior and mobility. We found a positive relationship between local occurrence of fish and global range of their distribution. We confirmed previous findings showing the importance of host behavior and ecology on the variability of parasite species richness. Second, we showed how a global pattern, such as host geographical range, may affect the variability in parasite species richness through its effects on local abundance and distribution of hosts. A negative relationship between endoparasite species richness and host longitudinal range was found. This suggests that fish with eastern distribution live in the boundary of their distribution in Central Europe far from their center of distribution, which should also be characterized by a higher diversity of parasites.  相似文献   

17.
Parasite lineages commonly diverge when host lineages diverge. However, when large clades of hosts and parasites are analyzed, some cases suggest host switching as another major diversification mechanism. The first step in host switching is the appearance of a parasite on an atypical host, or “straggling.” We analyze the conditions associated with straggling events. We use five species of colonially nesting seabirds from the Galapagos Archipelago and two genera of highly specific ectoparasitic lice to examine host switching. We use both genetic and morphological identification of lice, together with measurements of spatial distribution of hosts in mixed breeding colonies, to test: (1) effects of local host community composition on straggling parasite identity; (2) effects of relative host density within a mixed colony on straggling frequency and parasite species identity; and (3) how straggling rates are influenced by the specifics of louse attachment. Finally, we determine whether there is evidence of breeding in cases where straggling adult lice were found, which may indicate a shift from straggling to the initial stages of host switching. We analyzed more than 5,000 parasite individuals and found that only ~1% of lice could be considered stragglers, with ~5% of 436 host individuals having straggling parasites. We found that the presence of the typical host and recipient host in the same locality influenced straggling. Additionally, parasites most likely to be found on alternate hosts are those that are smaller than the typical parasite of that host, implying that the ability of lice to attach to the host might limit host switching. Given that lice generally follow Harrison's rule, with larger parasites on larger hosts, parasites infecting the larger host species are less likely to successfully colonize smaller host species. Moreover, our study supports the general perception that successful colonization of a novel host is extremely rare, as we found only one nymph of a straggling species, which may indicate successful reproduction.  相似文献   

18.
Most studies exploring the effect of parasites on host fitness traits deal with a small subset of the parasite community, or with a single parasite species. The results of such studies may be difficult to interpret, because the potential effects of other parasites are not controlled for. If intensities of different parasite species tend to covary, any demonstrated effect by one parasite species could be caused by another, covarying species. In the current study we found that intensities of two different feather lice on willow ptarmigan were positively correlated. Moreover, ectoparasite intensities could be reliably predicted by endoparasite loads. This is unexpected since feather lice are controlled by preening, while endoparasites are kept in check by the immune system. Our results suggest a link between these two aspects of parasite defense, possibly mediated by endoparasite infections reducing host energy available for preening.  相似文献   

19.
Brood parasites dramatically reduce the reproductive successof their hosts, which therefore have developed defenses againstbrood parasites. The first line of defense is protecting thenest against adult parasites. When the parasite has successfullyparasitized a host nest, some hosts are able to recognize andreject the eggs of the brood parasite, which constitutes the secondline of defense. Both defense tactics are costly and would be counteractedby brood parasites. While a failure in nest defense implies successfulparasitism and therefore great reduction of reproductive successof hosts, a host that recognizes parasitic eggs has the opportunityto reduce the effect of parasitism by removing the parasiticegg. We hypothesized that, when nest defense is counteractedby the brood parasite, hosts that recognize cuckoo eggs shoulddefend their nests at a lower level than nonrecognizers becausethe former also recognize adult cuckoos. Magpie (Pica pica) hoststhat rejected model eggs of the brood parasitic great spottedcuckoo (Clamator glandarius) showed lower levels of nest defensewhen exposed to a great spotted cuckoo than when exposed toa nest predator (a carrion crow Corvus corone). Moreover, magpiesrejecting cuckoo eggs showed lower levels of nest defense againstgreat spotted cuckoos than nonrecognizer magpies, whereas differencesin levels of defense disappeared when exposed to a carrion crow.These results suggest that hosts specialize in antiparasitedefense and that different kinds of defense are antagonistically expressed.We suggest that nest-defense mechanisms are ancestral, whereasegg recognition and rejection is a subsequent stage in the coevolutionaryprocess. However, host recognition ability will not be expressedwhen brood parasites break this second line of defense.  相似文献   

20.
The distribution of parasites among hosts is often characterised by a high degree of heterogeneity with a small number of hosts harbouring the majority of parasites. Such patterns of aggregation have been linked to variation in host exposure and susceptibility as well as parasite traits and environmental factors. Host exposure and susceptibility may differ with sexes, reproductive effort and group size. Furthermore, environmental factors may affect both the host and parasite directly and contribute to temporal heterogeneities in parasite loads. We investigated the contributions of host and parasite traits as well as season on parasite loads in highveld mole-rats (Cryptomys hottentotus pretoriae). This cooperative breeder exhibits a reproductive division of labour and animals live in colonies of varying sizes that procreate seasonally. Mole-rats were parasitised by lice, mites, cestodes and nematodes with mites (Androlaelaps sp.) and cestodes (Mathevotaenia sp.) being the dominant ecto- and endoparasites, respectively. Sex and reproductive status contributed little to the observed parasite prevalence and abundances possibly as a result of the shared burrow system. Clear seasonal patterns of parasite prevalence and abundance emerged with peaks in summer for mites and in winter for cestodes. Group size correlated negatively with mite abundance while it had no effect on cestode burdens and group membership affected infestation with both parasites. We propose that the mode of transmission as well as social factors constrain parasite propagation generating parasite patterns deviating from those commonly predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号