首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Patterns in the size distribution and taxonomic composition of phytoplankton and zooplankton communities for 1974 in Georgian Bay and the North Channel are described. The Diatomeae predominate the phytoplankton in both areas. Copepods, particularly Calanoida, comprise the greatest fraction of the zooplankton biomass. Normalized plankton biomass spectra for both ecosystems are typical of those found in Lake Superior and offshore Lake Huron. The plankton communities of Georgian Bay and the North Channel are thus similar to the most oligotrophic of the Laurentian Great Lakes.  相似文献   

3.
Spatial and seasonal patterns in phytoplankton and zooplankton communities of Lake St. Clair from June through September, 1984 are described. Phytoplankton biomass averages 586 µg l-1 with the Diatomae and Chrysophyceae predominating. Zooplankton biomass averages 663 µg l- with small bosminid Cladocera being the most abundant organisms. Lake St. Clair zooplankton biomass is second only to that of Lake Erie amongst the St. Lawrence Great Lakes. Biomass size spectra are typical in structure for mesotrophic lakes but low explained variance in the annual normalized spectrum is indicative of a perturbed system. Since 1972/1973 there appears to have been a slight decrease in zooplankton abundance in the lake accompanied by a shift from dominance of rotifers to dominance of cladocerans. We hypothesize that high flushing rate and seasonal variability coupled with contaminant loadings have resulted in a plankton community reduced in taxonomic diversity and dominated by small-bodied species.  相似文献   

4.
Lake St. Clair phytoplankton and zooplankton abundance and composition was analyzed during the period of May to September 1984. In addition, size-fractionated primary productivity and other limnological parameters were measured. Highest phytoplankton biomass was observed during spring (May) with high values for the southern and southeastern regions of the lake. Seasonally, the mean phytoplankton biomass ranged between 0.17 and 1.18 g m-3 with high values recorded during spring (May, June) compared to summer. In the spring the phytoplankton was dominated by Diatomeae followed by Chrysophyceae and Cryptophyceae. During the summer the diatoms showed a decreasing trend due to the relative prevalence of Chrysophyceae, Cryptophyceae, and Chlorophyta. The species composition was oligotrophic-mesotrophic with mixed occurrence of some eutrophic species. The phytoplankton size composition indicated dominance of microplankton/netplankton (> 20 µm) and ultraplankton (< 20 µm) during spring and summer respectively. On an overall basis ultraplankton contributed overwhelmingly to primary productivity, as much as 75 percent in the summer.The mean zooplankton biomass ranged from 173.0 to 1306.0 mg l- dominated by Cladocerans (bosminids) in contrast to the other Great Lakes. Statistical evaluation of the phytoplankton — nutrient-contaminant interactions revealed positive correlations with heavy metals, suggestive of a physiological adaptation to contamination from the chemical valley. Based on low biomass, high Production/Biomass ratio, dominance of ultraplankton, characteristic species composition and plankton spectra, the lake appears to be an oligotrophic-mesotrophic perturbed ecosystem.  相似文献   

5.
Tri‐Lakes (Upper and Lower Camelot, Sherwood, Arrowhead) in Adams County, WI, USA are man‐made impoundments draining substantial agricultural lands and surrounded by considerable shoreline residential development. The planktonic algal community, as sampled from June to November 2000, was sparse‐to‐moderately dense, fairly diverse (69 genera from six divisions basin‐wide), and unremarkable in taxonomic composition. All sites sampled displayed the general algal successional trends expected from northern‐temperate, mildly eutrophic waters. These included sparse but taxonomically diverse communities in the spring; a late spring pulse of diatoms; a late summer pulse of green algae; and a steadily increasing component of Cyanobacteria leading to their community dominance by the end of the growing season. Upper Lake Camelot (55 genera) best represented this pattern. Lower Lake Camelot (53 genera) had a large green algal pulse but only a small diatom pulse. Lake Sherwood was the most taxonomically diverse body (63 genera) and had the most extreme pulses of diatoms and greens. Lake Arrowhead had the lowest taxonomic diversity (39 genera), was the most dominated by Cyanobacteria, and had only minor pulses of diatoms and greens. The algal communities indicate a mesotrophic to slightly eutrophic lake status. Continued agricultural and residential inputs of fertilizers and pesticides will likely exacerbate the cyanobacterial dominance leading to further reductions in aquatic health and aesthetic values. Previous chemical treatment and macrophyte removal have achieved limited success, and might have altered algal community dynamics. Remediation approaches that might improve water quality include: reducing upstream inputs via sediment traps or lagoons; reducing in‐lake nutrients via sediment removal; reducing residential inputs via improved septic/sanitation systems; and shoreline vegetation filter strips.  相似文献   

6.
Analysis of aquatic ecosystem data collected from large water bodies must consider spatial variations. A suite of pelagic survey stations exists for the Laurentian Great Lakes, but little is known about their redundancy. We present a strategy to delineate the lakes into zones based on water quality and phytoplankton biovolume. Water samples were collected from 72 sites in two seasons (spring and summer) from 2007 to 2010 in all five lakes. Integrated samples were analyzed for phytoplankton biovolume and nine water quality parameters. We conducted cluster analysis, principal components analysis and non-metric multidimensional scaling methods for water quality and phytoplankton taxon-specific biovolume for the Great Lakes basin and for each lake separately. There were significant lake-to-lake differences, and based on lake-specific analyses, Lake Superior, Lake Michigan and Lake Erie were each divided into three zones; Lake Huron and Lake Ontario were each grouped into two zones. The zones identified by water quality and phytoplankton provide an understanding of spatial distributions for evaluating monitoring data.  相似文献   

7.
A methodological approach was developed for the quantification of the structural changes of phytoplankton communities induced by marine eutrophication. The lognormal equation assigning species abundance to doubling intervals (octaves) of individuals formed the basis of the proposed methodology and the field validation process was based on phytoplankton enumeration and classification data characteristic of eutrophic, mesotrophic and oligotrophic waters. Five octave sets with different sizes were tested for goodness of fit against field data and the set with the smallest size of doubling intervals was selected for further consideration. The application of the lognormal equation was evaluated statistically with field data and it was considered satisfactory at the 87% level. The changes in the shape of the lognormal equation induced by eutrophication were expressed by three characteristic parameters of the equation: the number of the modal octave, the number of species in the modal octave, and the shaping factor. Significant differences were observed for the three parameters among eutrophic, mesotrophic, and oligotrophic waters; the number of the modal octave was high in eutrophic and mesotrophic waters, the number of species in the modal octave has shown a trend of low values under mesotrophic conditions and the shaping factor has shown a considerable increase from eutrophic to oligotrophic waters. Handling editor: L. Naselli-Flores  相似文献   

8.
J. Kristiansen 《Hydrobiologia》1988,161(1):171-184
The seasonal occurrence of silica-scaled chrysophytes (Paraphysomonadaceae and Mallomonadaceae) in the eutrophic lake Tystrup Sø, was examined during 1979–1981 in relation to temperature and to overall phytoplankton biomass and composition. The 33 species recorded represent three seasonality types, with occurrence in spring alone, spring and autumn, and during a greater or lesser part of the whole year, including summer. The great majority of the species have their main occurrence in early spring and at low temperatures, perhaps due to effects of the high phytoplankton biomass, especially cyanophytes, during summer and autumn.  相似文献   

9.
1. In an attempt to discern long‐term regional patterns in phytoplankton community composition we analysed data from five deep peri‐alpine lake basins that have been included in long‐term monitoring programmes since the beginning of the 1970s. Local management measures have led to synchronous declines in phosphorus concentrations by more than 50% in all four lakes. Their trophic state now ranges from mesotrophic to oligotrophic. 2. No coherence in phytoplankton biomass was observed among lakes, or any significant decrease in response to phosphorus (P)‐reduction (oligotrophication), except in Lakes Constance and Walen. 3. Multivariate analyses identified long‐term changes in phytoplankton composition, which occurred coherently in all lakes despite the differing absolute phosphorus concentrations. 4. In all lakes, the phytoplankton species benefiting from oligotrophication included mixotrophic species and/or species indicative of oligo‐mesotrophic conditions. 5. A major change in community composition occurred in all lakes at the end of the 1980s. During this period there was also a major shift in climatic conditions during winter and early spring, suggesting an impact of climatic factors. 6. Our results provide evidence that synchronous long‐term changes in geographically separated phytoplankton communities may occur even when overall biomass changes are not synchronous.  相似文献   

10.
Phytoplankton structure in different lake types in central Finland   总被引:2,自引:0,他引:2  
Pertti Eloranta 《Ecography》1986,9(3):214-224
Phyloplankton structure and its relation to physical and chemical properties of the water was studied in 58 central Finnish lakes. The biomass ranged from 0.2 to 14.2 g m−3 and the number of taxa per sample ranged from 33 to 152. The lakes were grouped into 5 types according to their trophic state: eutrophic, dyseutrophic, mesotrophic, oligotrophic, and acid oligotrophic lakes. The average biomass in eutrophic lakes was 5.57 g m−3, in dyseutrophic 3.54 g m−3, 1.23 g m−3 in mesotrophic, 0.52 g m−3 in oligotrophic and 0.39 g −3 in acid oligotrophic lakes. The average number of taxa per sample in the corresponding lake types were 109. 1, 79.3, 97.9, 90.9 and 43.8, respectively. The phytoplankton communities in eutrophic lakes were characterized by blue-green algae (21.2% of total biomass) and green algae (18.7% of total biomass). In dyseutrophic lakes the proportion of green algae was much smaller (7.2% of total biomass) than in eutrophic lakes, whereas the proportion of diatoms and cryptophytes was higher (28.2 and 20.4% of total biomass, respectively). Chrysophytes dominated in the oligotrophic and mesotrophic lakes (27.3–39.9% of total biomass). The contribution of dinoflagellates to the total biomass was highest in the most oligotrophic acidified lakes and in those lakes the relative proportions of blue-green and green algae were much higher than in the typical oligotrophic lakes. The lakes were also grouped into 8 community types according to the dominating algal group. Cyanophyceae- and Chlorophyceae-types characterized the eutrophic lakes, whereas Chrysophyceae-Dinopheceae-type was typical for most oligotrophic lakes. The other 5 types occurred in mesotrophic and oligotrophic lakes but the physical and chemical properties of these lakes did not differ much.  相似文献   

11.
The eutrophic, freshwater diatom species Stephanodiscus binderanus (Kütz.) Willi Krieg. has long been considered a nuisance exotic alga introduced from Eurasia to the Great Lakes in North America in the early to mid‐20th century. However, our paleolimnological data from Lake Simcoe, Ontario, provide unequivocal evidence that this taxon has been present in the Great Lakes region since at least the late 17th century. Subfossil diatom valves were identified and enumerated at high resolution in 210Pb‐dated sediment cores from four sites across the lake. The taxonomic identification of S. binderanus was confirmed using SEM. The historical presence of this species in Lake Simcoe indicates somewhat naturally productive conditions and also refutes the idea that S. binderanus is a nonindigenous species to North America. This study underscores the caution that should be applied to questions of diatom (and protistan) distributions in time and space. Clearly, the absence of evidence is not evidence of absence.  相似文献   

12.
On the annual variation of phytoplankton biomass in Finnish inland waters   总被引:2,自引:1,他引:1  
Annual variations in phytoplankton biomass in 63 lakes in Southern and Central Finland are discussed. Biomass is rather small during winter (January–April), usually <0.05 mg l–1 (fresh weight) and there are no differences between oligotrophic and eutrophic lakes. In early spring and in autumn biomass varies widely, depending mainly on water temperature. Phytoplankton biomass is smaller in July than in June and August in oligotrophic lakes (biomass <0.20 mg l–1 fresh weight) and mesotrophic (biomass 1.0–2.5 mg l–1) lakes, but greater in eutrophic (biomass 2.5–10.0 mg l–1) and hypereutrophic (biomass >10.0 mg l–1) lakes. The standard deviation of phytoplankton biomass in Finnish inland waters is usually smallest in July, which facilitates the comparison of phytoplankton between different kinds of lakes.  相似文献   

13.
14.
Tátrai  I.  Tóth  G.  Ponyi  J. E.  Zlinskzky  J.  Istvánovics  V. 《Hydrobiologia》1990,200(1):167-175
Enclosures (17 m3) were used in the mesotrophic area of Lake Balaton to determine the impact of benthivorous bream (Abramis brama L.) on the lower trophic levels during summers of 1984–86. In enclosures with a fish biomass similar to the biomass in the eutrophic area of the lake, the number of phytoplankton species was highest. In enclosures with a low fish biomass the phytoplankton was dominated by the greens. A high biomass of bream in the mesotrophic basin caused bacterial production corresponding to that of the eutrophic part of the lake. Crustaceans were dominated by copepods and were unable to control phytoplankton peaks. Bottom-up effects of bream were more obvious than top-down effects and seem to be more important in the possible control of water quality.  相似文献   

15.
Kufel  Lech 《Hydrobiologia》2001,443(1-3):59-67
Total phosphorus and total nitrogen explained a low percentage of summer chlorophyll variability in epilimnia of the Great Masurian Lakes. Division of the whole data set into two subgroups of lakes improved approximation of the chlorophyll nutrient relationship but revealed also functional differences between the lakes distinguished in that way. Chlorophyll in eutrophic lakes correlated well with nitrogen and phosphorus, that in mesotrophic lakes (those with summer chlorophyll <=22 mg m–3 as calculated in the model) was related to none of the nutrients. Higher summer chlorophyll content in epilimnetic waters was accompanied by higher chl:PP and chl:PN ratios. Algal adaptation to poor light conditions in eutrophic lakes is postulated as a possible reason for that difference.Chlorophyll – nutrient relationships varied with the trophic status of lakes. Epilimnetic chlorophyll strictly followed phosphorus changes in eutrophic lakes but did not do so in mesotrophic ones. Detailed comparison of selected meso- and eutrophic lakes showed marked differences in the seasonal changes of chlorophyll and nutrient concentrations and in sedimentation rates, especially in spring. Nutrient limitation rather than zooplankton grazing is suggested as a possible mechanism of controlling algal abundance and the sequence of spring events in a eutrophic lake. It is hypothesised that phosphorus turnover in eutrophic lakes is dominated by seasonal vertical fluxes, while in mesotrophic lakes it is more conservative with consumption and regeneration restricted mostly to metalimnion. Possible consequences of such conclusion are discussed in the paper.  相似文献   

16.
Seasonal Dynamics of Periphyton in a Large Tropical Lake   总被引:1,自引:0,他引:1  
Tropical aquatic systems are generally assumed to have little seasonality in productivity patterns. However, this study indicated that there was substantial seasonal variation in epilithic productivity and biomass in tropical Lake Tanganyika, due primarily to seasonal patterns in lake hydrodynamics that influence nutrient availability. Although they support much of the lake’s biological diversity, epilithic algae made a minor contribution to the total energy budget in Lake Tanganyika. A comparison among large, oligotrophic lakes revealed no significant latitudinal trends in periphyton productivity or biomass. However, Lake Tanganyika has relatively low benthic algal biomass and is therefore more efficient at photosynthesis than the temperate lakes. The influence of wave action and consumer density and diversity may be important in moderating productivity of the epilithic community.  相似文献   

17.
Tryfon  E.  Moustaka-Gouni  M. 《Hydrobiologia》1997,351(1-3):61-75
The phytoplankton of Lake Mikri Prespa was studied atmonthly or biweekly intervals during the period May1990–September 1992. Its species composition,consisting of a great number of cyanophytes and a verysmall number of chrysophytes and desmids, may reflectthe eutrophic character of the lake. Moreover, themean annual biomass values (15.0 and 3.2 g m–3 inthe two years, respectively) and the maximum biomass(38.1, 6.4 and 9.6 g m–3), classify Mikri Prespaas a eutrophic lake. A tendency towards adouble-peaked pattern of biomass distribution in timewith one peak in autumn, composed mainly ofcyanophytes, and another in spring made up of diatoms,was observed. This pattern contrasts with the standardpattern in eutrophic, stratified temperate lakes,which exhibit a third biomass maximum in summer.Cyanophytes were the most important group in terms ofbiomass and were dominated by the species Microcystis aeruginosa, Microcystis wesenbergii,Anabaena lemmermannii var. minor and Aphanocapsa elachista var. conferta. Diatomsconstituted the second most important group, with main representative the species Cyclotellaocellata. Cyanophytes, diatoms, chlorophytes anddinophytes revealed annual periodicity whereas theother algal groups did not show any seasonality atall.The nanoplankton constituted an important part ofalgal biomass (38.9 and 49.9% in the two years,respectively) and revealed annual periodicity withmaximum values in winter and spring, mainly composedof diatoms and cryptophytes. Low temperature,increased rainfall and high DIN concentrations seemedto be the main factors influencing the seasonality.Although the percentage contribution of nanoplanktondecreased with the increase in total biomass,justifying the classification of Lake Mikri Prespaamong the eutrophic lakes, the nanoplankton biomassdid not correlate significantly with totalphytoplankton biomass.  相似文献   

18.
Claude Lang 《Hydrobiologia》1984,115(1):131-138
In 1978–80, oligochaete communities of meso-eutrophic Lake Léman (Lake of Geneva) were compared to those of mesotrophic Lake Neuchâtel. Worm species were classified into three groups corresponding to their increasing tolerance to eutrophication: (1) oligotrophic species, mostly Peloscolex velutinus, Stylodrilus heringianus; (2) mesotrophic species, mostly Potamothrix vejdovskyi, P. bedoti; (3) eutrophic species, mostly Potamothrix hammoniensis, P. heuscheri, Tubifex tubifex. In both lakes, eutrophic species constituted the bulk of the communities in terms of absolute abundance. However, relative abundance of mesotrophic and eutrophic species was higher in Lake Léman; oligotrophic species were more important in Lake Neuchâtel. These data confirmed the trophic classification of lakes based on chemical parameters. The number of zero values, which perturbated statistical analysis, was reduced by using species groupings instead of isolated species. Thus, making the lakes more comparable even if different species were present in each one. Relative density values based on all samples were distributed among 4 density classes for the 3 species groupings. The 12 resulting frequencies described the community structure expressed in terms of eutrophication. Furthermore, these frequencies may be used for comparison of eutrophication levels in several lakes.  相似文献   

19.
1. A method based on hierarchical clustering and Bayesian probabilities is used to identify phytoplankton assemblages and analyse their pattern of occurrence and temporal coherence in three deep, peri‐alpine lakes. The hierarchical properties of the method allowed ranking by order of importance of the effects of changes related to climate and to human activity on the phytoplankton structure. 2. The three deep, peri‐alpine lakes (the Lower Zurich, Upper Zurich and Walen lakes) investigated in this study have been monitored since 1972. During that period they have undergone oligotrophication as a result of management programmes and they have been subject to similar meteorological effects that have led to higher water temperatures since 1988. 3. The phytoplankton assemblages of the most eutrophic lake (Lower Zurich) differ strongly from those observed in the two meso‐oligotrophic lakes. Local environmental conditions appear to be the main factor responsible for species composition and change in climate characterised by the warmer water temperatures observed since 1988 have had a major impact on the winter composition of the lower basin of Lake Zurich by promoting Planktothrix rubescens. 4. Some phytoplankton assemblages are found in all the lakes. Their patterns of occurrence display strong synchrony at the annual and/or inter‐annual scales. However, temporal coherence between the lakes sometimes also involves different assemblages. 5. The reduction in phosphorus had a great influence on long‐term changes in composition. In all three lakes, decreases in phosphorus are associated with a community characterised by some mixotrophic species or species adapted to low nutrient concentrations or sensitive to transparency. In the Lower Lake Zurich the decrease in phosphorus has also led to the development of species adapted to low light intensities. 6. Seasonal meteorological forcing has also induced synchronous changes, but the same assemblages are not necessarily involved, because the pool of the well‐placed candidate taxa that may develop is determined by the local environmental conditions, and mainly by phosphorus concentrations. In the most eutrophic lake, the seasonal pattern is characterised by a succession of more stages. However, the seasonal assembly dynamics involve the succession of species sharing common selective advantages that make them relatively stronger under these nutrient and light conditions.  相似文献   

20.
Lakes Sorell and Crescent are closely adjacent shallow lakes on the Tasmanian Central Plateau. They have similar morphometry and similar climate, geology, soils and vegetation in their catchments. They are polymictic, oxygen-saturated and colourless but turbid. They have soft water with major ions Na, Ca, Mg, Cl, HCO3 present in almost equi-ionic quantities, and a slightly alkaline reaction. Chemically they are alike, the major difference being a 20% higher salinity in Crescent from 1967–69. During 1969–71 heavy rains reduced this difference. Water frequently flows from Sorell to Crescent in any year. Despite these similarities their phytoplankton populations differ markedly in every respect—species composition, population structure, population stability and total biomass. Lake Crescent has a standing crop 10 X that of Sorell. The former is eutrophic, the latter mesotrophic. Well marked seasonal cycles do not occur but sporadic fluctuations of biomass are brought about by hydrologic or other events. The pronounced differences in every aspect of plankton populations in two so similar and connected lakes cannot yet be explained. They remain a limnological paradox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号