共查询到20条相似文献,搜索用时 15 毫秒
1.
Kyoung-Jin Chung Ioannis Mitroulis Johannes R. Wiessner Ying Yi Zheng Gabriele Siegert Markus Sperandio Triantafyllos Chavakis 《Molecular biology of the cell》2014,25(19):2948-2955
Rapid β2-integrin activation is indispensable for leukocyte adhesion and recruitment to sites of infection and is mediated by chemokine- or P-selectin glycoprotein ligand-1–induced inside-out signaling. Here we uncovered a novel pathway for rapid activation of integrin-dependent leukocyte adhesion, triggered by toll-like receptor (TLR)–mediated signaling. TLR2 or TLR5 ligation rapidly activated integrin-dependent leukocyte adhesion to immobilized ICAM-1 and fibronectin. Consistently, in vivo administration of the TLR2-ligand Pam3CSK4 increased integrin-dependent slow rolling and adhesion to endothelium within minutes, as identified by intravital microscopy in the cremaster model. TLR2 and TLR5 ligation increased β2-integrin affinity, as assessed by the detection of activation-dependent neoepitopes. TLR2- and TLR5-triggered integrin activation in leukocytes required enhanced Rap1 GTPase activity, which was mediated by Rac1 activation and NADPH oxidase-2–dependent reactive oxygen species production. This novel direct pathway linking initial pathogen recognition by TLRs to rapid β2-integrin activation may critically regulate acute leukocyte infiltration to sites of pathogen invasion. 相似文献
2.
Micromanipulation of adhesion of phorbol 12-myristate-13-acetate-stimulated T lymphocytes to planar membranes containing intercellular adhesion molecule-1. 下载免费PDF全文
A Tzeren L H Mackie M B Lawrence P Y Chan M L Dustin T A Springer 《Biophysical journal》1992,63(1):247-258
This paper presents an analytical and experimental methodology to determine the physical strength of cell adhesion to a planar membrane containing one set of adhesion molecules. In particular, the T lymphocyte adhesion due to the interaction of the lymphocyte function associated molecule 1 on the surface of the cell, with its counter-receptor, intercellular adhesion molecule-1 (ICAM-1), on the planar membrane, was investigated. A micromanipulation method and mathematical analysis of cell deformation were used to determine (a) the area of conjugation between the cell and the substrate and (b) the energy that must be supplied to detach a unit area of the cell membrane from its substrate. T lymphocytes stimulated with phorbol 12-myristate-13-acetate (PMA) conjugated strongly with the planar membrane containing purified ICAM-1. The T lymphocytes attached to the planar membrane deviated occasionally from their round configuration by extending pseudopods but without changing the size of the contact area. These adherent cells were dramatically deformed and then detached when pulled away from the planar membrane by a micropipette. Detachment occurred by a gradual decrease in the radius of the contact area. The physical strength of adhesion between a PMA-stimulated T lymphocyte and a planar membrane containing 1,000 ICAM-1 molecules/micron 2 was comparable to the strength of adhesion between a cytotoxic T cell and its target cell. The comparison of the adhesive energy density, measured at constant cell shape, with the model predictions suggests that the physical strength of cell adhesion may increase significantly when the adhesion bonds in the contact area are immobilized by the actin cytoskeleton. 相似文献
3.
Polymyxin B inhibits phorbol 12-myristate 13-acetate, but not chemotactic factor, induced effects in rabbit neutrophils 总被引:2,自引:0,他引:2
The addition of the amphipathic polycationic antibiotic polymyxin B to a suspension of rabbit neutrophils results in inhibiton of the agonist (secretion of secondary granules) and antagonist (inhibition of chemotactic factor induced degranulation) properties of phorbol 12-myristate 13-acetate. On the other hand, polymyxin B does not inhibit the degranulation of the neutrophils that is induced by chemotactic factors. These results imply that the role of protein kinase C in the initiation of neutrophil functions in response to the addition of chemotactic factors is less critical than previously thought. In addition, the reversal of the inhibitory properties of phorbol esters by polymyxin B indicates that the former are mediated by the ability of the tumor promoters to activate protein kinase C. These results thus strengthen the hypothesis that protein kinase C plays important roles in the regulation (as contrasted to initiation) of neutrophil functions. 相似文献
4.
Phosphorylation of the major leukocyte surface sialoglycoprotein, leukosialin, is increased by phorbol 12-myristate 13-acetate 总被引:6,自引:0,他引:6
Leukosialin (CD43) is a heavily O-glycosylated membrane glycoprotein present on all leukocytes and on platelets. We found that leukosialin is phosphorylated in erythroid, myeloid, and T-lymphoid cell lines, as well as in platelets and peripheral blood lymphocytes. Leukosialin phosphorylation was increased 2.5-15-fold following phorbol ester treatment. The phosphorylation could be inhibited with the protein kinase C inhibitor staurosporine but not with HA 1004 that inhibits cAMP- or cGMP-dependent protein kinases. The phosphoamino acid analysis showed that serine residues were exclusively phosphorylated, either with or without phorbol ester treatment. Two-dimensional peptide maps of phosphorylated leukosialin from K562 and Jurkat cells gave almost identical patterns. The number of labeled peptides increased after treatment with phorbol ester, indicating that new sites were phosphorylated. The major phosphorylation site on leukosialin was identified as Ser-332 in a region of the cytoplasmic domain located 73 amino acids from the transmembrane portion. 相似文献
5.
Sphingosine inhibits phorbol 12-myristate 13-acetate-, but not serum-induced, activation of Na+/H+ exchange in mammalian cells 总被引:1,自引:0,他引:1
Addition of serum to quiescent mammalian cells in culture initiates a series of events which culminates in DNA replication and cell division. One of the earliest events in this sequence of events is activation of Na+/H+ exchange, which can result in an increase in intracellular pH (pHin). The regulation of this change in activity is not known. Since treatment of 3T3 cells with activators of protein kinase C (kinase C) can result in an increased pHin, it has been hypothesized that serum stimulation of kinase C is responsible for activation of Na+/H+ exchange. Recently, sphingolipids have been discovered to inhibit kinase C both in vitro and in vivo. Therefore, we undertook the present study to ask whether or not inhibition of kinase C using sphingolipids prevents mitogen-induced alkalinization in 3T3 cells. Our results indicate that activators of kinase C stimulate Na+/H+ exchange in normal human fibroblasts (BoGi), but not in mouse embryo (3T3) cells. Addition of serum to BoGi cells, on top of saturating doses of phorbol 12-myristate 13-acetate (PMA), results in a further cytoplasmic alkalinization. Furthermore, sphingosine prevents the PMA-induced increase in pHin in BoGi cells, and phosphorylation of an 80 kDa protein in 3T3 cells, but not the serum-induced alkalinization in either BoGi or 3T3 cells. These data indicate that activation of kinase C does not participate in the physiological activation of Na+/H+ exchange in human fibroblasts or mouse embryo cells by serum. 相似文献
6.
PKCdelta-dependent cleavage and nuclear translocation of annexin A1 by phorbol 12-myristate 13-acetate. 总被引:1,自引:0,他引:1
Yoon S Kim Jesang Ko In S Kim Sung-Wuk Jang Ho J Sung Hye J Lee Si Y Lee Youngho Kim Doe S Na 《European journal of biochemistry》2003,270(20):4089-4094
Annexin A1 (ANX-1), a calcium-dependent, phospholipid binding protein, is known to be involved in diverse cellular processes, including regulation of cell growth and differentiation, apoptosis, and inflammation. The mitogen phorbol 12-myristate 13-acetate (PMA) induces expression and phosphorylation of ANX-1. However, the roles of ANX-1 in PMA-induced signal transduction is unknown. Here, we study the cellular localization of ANX-1 in the PMA-induced signal transduction process. We have found that PMA induces the cleavage of ANX-1 in human embryonic kidney (HEK) 293 cells, and that the cleaved form of ANX-1 translocates to the nucleus. The PMA-induced nuclear translocation of ANX-1 was inhibited by the protein kinase C (PKC)delta-specific inhibitor rottlerin, indicating that PKCdelta plays a role in nuclear translocation of the cleaved ANX-1. We propose a novel mechanism of PMA-induced translocation of ANX-1 to the nucleus that may participate in the regulation of cell proliferation and differentiation. 相似文献
7.
Reedquist KA Ross E Koop EA Wolthuis RM Zwartkruis FJ van Kooyk Y Salmon M Buckley CD Bos JL 《The Journal of cell biology》2000,148(6):1151-1158
Integrin-mediated leukocyte adhesion is a critical aspect of leukocyte function that is tightly regulated by diverse stimuli, including chemokines, antigen receptors, and adhesion receptors. How cellular signals from CD31 and other adhesion amplifiers are integrated with those from classical mitogenic stimuli to regulate leukocyte function remains poorly understood. Here, we show that the cytoplasmic tail of CD31, an important integrin adhesion amplifier, propagates signals that induce T cell adhesion via beta1 (VLA-4) and beta2 (LFA-1) integrins. We identify the small GTPase, Rap1, as a critical mediator of this effect. Importantly, CD31 selectively activated the small Ras-related GTPase, Rap1, but not Ras, R-Ras, or Rap2. An activated Rap1 mutant stimulated T lymphocyte adhesion to intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), as did the Rap1 guanine nucleotide exchange factor C3G and a catalytically inactive mutant of RapGAP. Conversely, negative regulators of Rap1 signaling blocked CD31-dependent adhesion. These findings identify a novel important role for Rap1 in regulating ligand-induced cell adhesion and suggest that Rap1 may play a more general role in coordinating adhesion-dependent signals during leukocyte migration and extravasation. Our findings also suggest an alternative mechanism, distinct from interference with Ras-proximal signaling, by which Rap1 might mediate transformation reversion. 相似文献
8.
Greco F Ciana A Pietra D Balduini C Minetti G Torti M 《Biochimica et biophysica acta》2006,1763(3):330-335
Recent studies have suggested that Rap1 and Rap2 small GTP-binding proteins are both expressed in human red blood cells (RBCs). In this work, we carefully examined the expression of Rap proteins in leukocytes- and platelets-depleted RBCs, whose purity was established on the basis of the selective expression of the beta2 subunit of the Na+/K+ -ATPase, as verified according to the recently proposed "beta-profiling test" [J.F. Hoffman, A. Wickrema, O. Potapova, M. Milanick, D.R. Yingst, Na pump isoforms in human erythroid progenitor cells and mature erythrocytes, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 14572-14577]. In pure RBCs preparations, Rap2, but not Rap1 was detected immunologically. RT-PCR analysis of mRNA extracted from highly purified reticulocytes confirmed the expression of Rap2b, but not Rap2a, Rap2c, Rap1a or Rap1b. In RBCs, Rap2 was membrane-associated and was rapidly activated upon treatment with Ca2+/Ca2+ -ionophore. In addition, Rap2 segregated and was selectively enriched into microvesicles released by Ca2+ -activated RBCs, suggesting a possible role for this GTPase in membrane shedding. 相似文献
9.
Junctional adhesion molecule 1 regulates epithelial cell morphology through effects on beta1 integrins and Rap1 activity 总被引:10,自引:0,他引:10
Mandell KJ Babbin BA Nusrat A Parkos CA 《The Journal of biological chemistry》2005,280(12):11665-11674
Epithelial tight junctions form a selectively permeable barrier to ions and small molecules. Junctional adhesion molecule 1 (JAM1/JAM-A/F11R) is a tight junction-associated transmembrane protein that has been shown to participate in the regulation of epithelial barrier function. In a recent study, we presented evidence suggesting that JAM1 homodimer formation is critical for epithelial barrier function (Mandell, K. J., McCall, I. C., and Parkos, C. A. (2004) J. Biol. Chem. 279, 16254-16262). Here we have used small interfering RNA to investigate the effect of the loss of JAM1 expression on epithelial cell function. Consistent with our previous study, knockdown of JAM1 was observed to increase paracellular permeability in epithelial monolayers. Interestingly, knockdown of JAM1 also produced dramatic changes in cell morphology, and a similar effect was observed with expression of a JAM1 mutant lacking the putative homodimer interface. Further studies revealed that JAM1 knockdown decreased cell-matrix adhesion and spreading on matrix proteins that are ligands of beta1 integrins. These changes were characterized by a decrease in beta1 integrin protein levels and loss of beta1 integrin staining at the cell surface. Immunolabeling of cells for the small GTPase Rap1, a known activator of beta1 integrins, revealed colocalization of Rap1 with JAM1 at intercellular junctions, and knockdown of JAM1 resulted in decreased Rap1 activity. Lastly, knockdown of Rap1b resulted in diminished beta1 integrin expression and altered cell morphology analogous to that observed with knockdown of JAM1. Together, these results suggest that JAM1 regulates epithelial cell morphology and beta1 integrin expression by modulating activity of the small GTPase Rap1. 相似文献
10.
Small GTPase Rab21 regulates cell adhesion and controls endosomal traffic of beta1-integrins 下载免费PDF全文
Pellinen T Arjonen A Vuoriluoto K Kallio K Fransen JA Ivaska J 《The Journal of cell biology》2006,173(5):767-780
Dynamic turnover of integrin cell adhesion molecules to and from the cell surface is central to cell migration. We report for the first time an association between integrins and Rab proteins, which are small GTPases involved in the traffic of endocytotic vesicles. Rab21 (and Rab5) associate with the cytoplasmic domains of alpha-integrin chains, and their expression influences the endo/exocytic traffic of integrins. This function of Rab21 is dependent on its GTP/GDP cycle and proper membrane targeting. Knock down of Rab21 impairs integrin-mediated cell adhesion and motility, whereas its overexpression stimulates cell migration and cancer cell adhesion to collagen and human bone. Finally, overexpression of Rab21 fails to induce cell adhesion via an integrin point mutant deficient in Rab21 association. These data provide mechanistic insight into how integrins are targeted to intracellular compartments and how their traffic regulates cell adhesion. 相似文献
11.
12.
Xu H Ni P Chen C Yao Y Zhao X Qian G Fan X Ge S 《Molecular and cellular biochemistry》2011,355(1-2):9-15
There is a growing evidence that regucalcin (RGN) plays a multifunctional role in liver cancer cells. Previous reports showed that the presence of phorbol 12-myristate 13-acetate (PMA) caused a significant increase in RGN mRNA expression and promoter activity in rat hepatoma cells. In this study, we confirmed that human RGN is also up-regulated by PMA treatment independent of translation, and we identified the mechanism by which PMA up-regulates the expression of human RGN via driving SP1 away from a SP1 motif located within -188/-180 of the promoter in HepG2 cells. Overexpression of SP1 dramatically reduces PMA-induced up-regulation of both internal expression of mRNA and promoter activity, whereas knockdown of SP1 has the opposite effect. Therefore, the present study delineates the fundamental elements in the promoter which will be helpful in the future studies on the regulation of RGN expression in liver cancer. 相似文献
13.
Hélène Brazier Géraldine Pawlak Virginie Vives Anne Blangy 《The international journal of biochemistry & cell biology》2009,41(6):1391-1401
An excess of osteoclastic bone resorption relative to osteoblastic bone formation results in progressive bone loss, characteristic of osteoporosis. Understanding the mechanisms of osteoclast differentiation is essential to develop novel therapeutic approaches to prevent and treat osteoporosis. We showed previously that Wrch1/RhoU is the only RhoGTPase whose expression is induced by RANKL during osteoclastogenesis. It associates with podosomes and the suppression of Wrch1 in osteoclast precursors leads to defective multinucleated cell formation. Here we further explore the functions of this RhoGTPase in osteoclasts, using RAW264.7 cells and bone marrow macrophages as osteoclast precursors. Suppression of Wrch1 did not prevent induction of classical osteoclastic markers such as NFATc1, Src, TRAP (Tartrate-Resistant Acid Phosphatase) or cathepsin K. ATP6v0d2 and DC-STAMP, which are essential for fusion, were also expressed normally. Similar to the effect of RANKL, we observed that Wrch1 expression increased osteoclast precursor aggregation and reduced their adhesion onto vitronectin but not onto fibronectin. We further found that Wrch1 could bind integrin ß3 cytoplasmic domain and interfered with adhesion-induced Pyk2 and paxillin phosphorylation. Wrch1 also acted as an inhibitor of M-CSF-induced prefusion osteoclast migration. In mature osteoclasts, high Wrch1 activity inhibited podosome belt formation. Nevertheless, it had no effect on mineralized matrix resorption. Our observations suggest that during osteoclastogenesis, Wrch1 potentially acts through the modulation of αvß3 signaling to regulate osteoclast precursor adhesion and migration and allow fusion. As an essential actor of osteoclast differentiation, the atypical RhoGTPase Wrch1/RhoU could be an interesting target for the development of novel antiresorptive drugs. 相似文献
14.
Deszo EL Brake DK Cengel KA Kelley KW Freund GG 《The Journal of biological chemistry》2001,276(13):10212-10217
The protein-tyrosine phosphatase CD45 is expressed on all monocytic cells, but its function in these cells is not well defined. Here we report that CD45 negatively regulates monocyte differentiation by inhibiting phorbol 12-myristate 13-acetate (PMA)-dependent activation of protein kinase C (PKC) delta. We found that antisense reduction of CD45 in U937 monocytic cells (CD45as cells) increased by 100% the ability of PMA to enlarge cell size, increase cell cytoplasmic process width and length, and induce surface expression of CD11b. In addition, reduction in CD45 expression caused the duration of peak PMA-induced MEK and extracellular signal-regulated kinase (ERK) 1/2 activity to increase from 5 min to 30 min while leading to a 4-fold increase in PMA-dependent PKCdelta activation. Importantly, PMA-dependent tyrosine phosphorylation of PKCdelta was also increased 4-fold in CD45as cells. Finally, inhibitors of MEK (PD98059) and PKCdelta (rottlerin) completely blocked PMA-induced monocytic cell differentiation. Taken together, these data indicate that CD45 inhibits PMA-dependent PKCdelta activation by impeding PMA-dependent PKCdelta tyrosine phosphorylation. Furthermore, this blunting of PKCdelta activation leads to an inhibition of PKCdelta-dependent activation of ERK1/2 and ERK1/2-dependent monocyte differentiation. These findings suggest that CD45 is a critical regulator of monocytic cell development. 相似文献
15.
Enserink JM Price LS Methi T Mahic M Sonnenberg A Bos JL Taskén K 《The Journal of biological chemistry》2004,279(43):44889-44896
Laminin-5 is an important constituent of the basal lamina. The receptors for laminin-5, the integrins alpha3beta1 and alpha6beta4, have been associated with epithelial wound migration and carcinoma invasion. The signal transduction mechanisms that regulate these integrins are not well understood. We report here that the small GTPase Rap1 regulates the adhesion of a number of cell lines to various extracellular matrix proteins including laminin-5. cAMP also mediates cell adhesion and spreading on laminin-5, a process that is independent of protein kinase A but rather dependent on Epac1, a cAMP-dependent exchange factor for Rap. Interestingly, although both alpha3beta1 and alpha6beta4 mediate adhesion to laminin-5, only alpha3beta1-dependent adhesion is dependent on Rap1. These results provide evidence for a function of the cAMP-Epac-Rap1 pathway in cell adhesion and spreading on different extracellular matrix proteins. They also define different roles for the laminin-binding integrins in regulated cell adhesion and subsequent cell spreading. 相似文献
16.
C Bijleveld M J Geelen M Houweling W J Vaartjes 《Biochemical and biophysical research communications》1988,151(1):193-200
Exogenous 1-oleoyl-2-acetylglycerol (OAG) is known to mimic the action of tumour-promoting phorbol esters in various cell types. However, in isolated rat hepatocytes OAG depressed the rate of de novo fatty acid synthesis and the activity of the key enzyme acetyl-CoA carboxylase (EC 6.4.1.2), in contrast to the pronounced stimulation of both parameters by phorbol 12-myristate 13-acetate (PMA). The inhibition by OAG appeared to be dose- and time-dependent. On the other hand, medium-chain 1,2-diacylglycerols like 1,2-dioctanoyl-sn-glycerol did mimic the stimulatory action of PMA. The anomalous effect of OAG may well be explained by its metabolic breakdown leading to liberation of oleate and subsequent inhibition of acetyl-CoA carboxylase activity by endogenously formed oleoyl-CoA. The stimulatory effects of both PMA and medium-chain diacylglycerols are likely to be mediated by protein kinase C. 相似文献
17.
Comparison of the effects of phorbol 12-myristate 13-acetate and prostaglandin E1 on calcium regulation in human platelets. 总被引:1,自引:1,他引:1 下载免费PDF全文
We compared the effects of phorbol 12-myristate 13-acetate (PMA) with those of prostaglandin E1 (PGE1) on the calcium transient in intact platelets and on 45Ca2+ uptake in saponin-treated platelets and microsomal fractions to determine the roles of protein kinase C and cyclic AMP in calcium sequestration. In intact platelets, PMA, like PGE1, stimulated the return of the calcium transient to resting values after a thrombin stimulus, but only the PGE1 effect was reversed by adrenaline. Both PMA and PGE1, when added before saponin, stimulated ATP-dependent 45Ca2+ uptake into the permeabilized platelets. Thrombin also stimulated 45Ca2+ uptake into saponin-treated platelets. Uptake of 45Ca2+ was increased in microsomal preparations from platelets pretreated with PMA or PGE1. PMA did not increase the cyclic AMP content of control or thrombin-treated platelets, and it induced a pattern of protein phosphorylation in 32P-labelled platelets different from that with PGE1. In correlation with the increased uptake of calcium in the saponin-treated preparation, we measured a rapid translocation of protein kinase C from supernatant to cell fraction after the addition of PMA. Our results suggest that activation of protein kinase C enhances calcium sequestration independently of an effect on cyclic AMP content in platelets. This activation could play a physiological role in the regulation of the calcium transient. 相似文献
18.
In the present study we demonstrate that interleukin 1 (IL 1) and phorbol 12-myristate 13-acetate (PMA) stimulate collagenase production by bovine chondrocytes in monolayer culture. Since it has been well established that PMA stimulates protein kinase C (PKC), we examined whether IL 1 and PMA also stimulate PKC in chondrocytes. In agreement with other studies, PMA induced the translocation of PKC, reflecting PKC activation by PMA. In contrast, IL 1 did not induce the translocation of PKC. Both IL 1 and PMA stimulated the release of [14C]arachidonic acid from chondrocyte phospholipids, suggesting that both agents stimulate phospholipase A2 (PLA2). Concomitantly, IL 1 and PMA also induced a pronounced increase in the production of PGE2. Pre-incubation of chondrocytes with staurosporine, a PKC inhibitor, did not affect the stimulation of collagenase production by IL 1 and only minimally that induced by PMA. Similarly, high concentrations of staurosporine did not inhibit prostaglandin E2 (PGE2) production induced by IL 1 or PMA. These data show that IL 1 and PMA stimulate the PLA2 pathway and collagenase production, however, these processes can occur in the absence of PKC activation. 相似文献
19.
G Perletti A Ghessi E Raffaldoni F Piccinini 《Biochemical and biophysical research communications》1991,181(1):348-352
Two protein kinase C isoenzymes were partially purified from the nuclei of human neutrophils, and identified as beta and alpha subtypes. Treatment of neutrophils with phorbol 12-myristate 13-acetate (PMA) caused a 3.8-fold increase of nuclear beta PKC activity, while a minor increase of alpha PKC was observed. This selective activation of beta PKC could help to understand the molecular events involved in phorbol ester-induced cellular modifications. 相似文献