首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,5,5-Trisubstituted oxazolones were identified as potent inhibitors of 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). The synthesis, structure-activity relationship and metabolic stability of these compounds are presented.  相似文献   

2.
Several series of pyridine amides were identified as selective and potent 11beta-HSD1 inhibitors. The most potent inhibitors feature 2,6- or 3,5-disubstitution on the pyridine core. Various linkers (CH(2)SO(2), CH(2)S, CH(2)O, S, O, N, bond) between the distal aryl and central pyridyl groups are tolerated, and lipophilic amide groups are generally favored. On the distal aryl group, a number of substitutions are well tolerated. A crystal structure was obtained for a complex between 11beta-HSD1 and the most potent inhibitor in this series.  相似文献   

3.
Twelve novel fenfuram-diarylether hybrids were designed, synthesized and characterized by 1H NMR and MS. Their in vitro antifungal activities were evaluated against five phytopathogenic fungi by mycelial growth inhibition method. Most compounds showed significant antifungal effect on Rhizoctonia solani and Sclerotinia sclerotiorum. Compound 1c exhibited the most potent antifungal effect on R. solani with an EC50 value of 0.242 mg/L, superior to the commercial fungicide boscalid (EC50 = 1.758 mg/L) and the lead fungicide fenfuram (EC50 = 7.691 mg/L). Molecular docking revealed that compound 1c featured a higher affinity for succinate dehydrogenase (SDH) than fenfuram. Furthermore, it was shown that the 2-chlorophenyl group of compound 1c formed a π-π stacking with D/Tyr-128 and a Cl-π interaction with B/His-249, which made compound 1c more active than fenfuram against SDH.  相似文献   

4.
5.
Cyclization by double reductive amination of L-arabino-hexos-5-ulose with suitably protected D- as well as L-lysine derivatives provided 1-deoxygalactonojirimycin lysine hybrids without any observable epimer formation at C-5. Modifications on the lysine moiety by acylation gave access to lipophilic derivatives which exhibited excellent D-galactosidase inhibitory activities.  相似文献   

6.
A product of p-xylene auto-oxidation, p-methylbenzyl hydroperoxide, acts as a very strong reversible inhibitor of the ethanol dehydrogenating activity of horse liver alcohol dehydrogenase. Concentrations of hydroperoxide as low as that of the enzyme active site (about 10(-8) mol.dm-3) in the assay depresses the activity by 50%. Somewhat less potent is benzyl hydroperoxide (derived from toluene) while the (secondary) hydroperoxide derived from ethylbenzene and tert.butyl hydroperoxide and cumyl hydroperoxide do not inhibit HLAD appreciably.  相似文献   

7.
An activity was identified in a phosphate buffer extract of calf liver acetone powder which utilized 2-mercaptoethanol and NAD+ as substrates and formed NADH as one product. The activity responsible for catalyzing this reaction is associated with calf liver alcohol dehydrogenase based on copurification, similarity in pH optima, and similarity in response to chelating agents and other inactivating agents. Crystalline horse liver alcohol dehydrogenase also catalyzes the formation of NADH from NAD+ using 2-mercaptoethanol as the substrate. Although the Km for mercaptoethanol is much lower than that for ethanol, 30 μm as compared to 0.625 mm, the maximum velocity with mercaptoethanol as the substrate is only 7% of that when ethanol is the substrate. Because of this difference in maximum velocity, 2-mercaptoethanol is an apparent competitive inhibitor with respect to ethanol with crystalline horse liver alcohol dehydrogenase, consistent with ethanol and 2-mercaptoethanol binding at the same site. The apparent Ki for 2-mercaptoethanol is 14 μm. 2-Butanethiol is a competitive inhibitor with respect to both 2-mercaptoethanol and ethanol with horse and beef liver alcohol dehydrogenases.  相似文献   

8.
A novel series of trisubstituted ureas has been identified as potent and selective mPGES-1 inhibitors. These compounds are selective over other prostanoid enzymes such as PGF synthase and TX synthase. This series of inhibitors was developed by lead optimization of a hit from an internal HTS campaign. Lead compound 42 is potent in A549 cell assay (IC50 of 0.34 μM) and in human whole blood assay (IC50 of 2.1 μM). An efficient and versatile one-pot strategy for the formation of ureas, involving a reductive amination, was developed to generate these inhibitors.  相似文献   

9.
In this study, we aimed to investigate the effect of some coumarin and benzoxazinone derivatives on the activity of human PON1. Human serum paraoxonase 1 was purified from fresh human serum blood by two-step procedures that are ammonium sulfate precipitation (60–80%) and then hydrophobic interaction chromatography (Sepharose 4B, L-tyrosine and 1-napthylamine). The enzyme was purified 232-fold with a final specific activity of 27.1?U/mg. In vitro effects of some previously synthesized ionic coumarin or benzoxazinone derivatives (121) on purified PON1 activity were investigated. Compound 14 (1-(2,3,4,5,6)-pentamethylbenzyl-3-(6,8-dimethyl-2H-chromen-2-one-4-yl))benzimidazolium chloride was found out as the strongest inhibitor (IC50?=?7.84?μM) for PON1 among the compounds. Kinetic investigation and molecular docking study were evaluated for one of the most active compounds (compound 12) and obtained data showed that this compound is competitive inhibitor of PON1 and interact with Leu262 and Ser263 in the active site of PON1. Moreover, coumarin derivatives were found out as the more potent inhibitors for PON1 than benzoxazinone derivatives.  相似文献   

10.
3-(p-Butoxyphenyl)propionamide, -thioamide and -hydrazide and the formamide of p-butoxybenzylamine were tested as inhibitors of cadmium(II) and cobalt(II) active-site substituted alcohol dehydrogenase. The results agree with a direct coordination of these inhibitors except for the hydrazide to the active-site metal ion, in the enzyme-NADH-inhibitor complex. The hydrazide might be situated at some distance from the metal ion without a direct coordination bond.  相似文献   

11.
1. Complex formation at the general anion-binding site of the liver alcohol dehydrogenase subunit has been characterized by transient-state kinetic methods, using NADH as a reporter ligand. Equilibrium dissociation constants for anion binding at the site are reported. They conform basically to the lyotropic series of affinity order, with exceptionally tight binding of sulphate. The particular specificity for sulphate might be a general characteristic of anion-binding enzymic arginyl sites. 2. Anionic species of phosphate and pyrophosphate buffer solutions do not interact significantly with the general anion-binding site over the pH range 8-10. At lower pH, phosphate binding becomes significant due to complex formation with the monovalent H2PO4 species. The latter interaction corresponds to a dissociation constant of about 60 mM, indicating that phosphate binding is comparatively weak also at low pH. 3. It is concluded that previously reported pH dependence data for coenzyme binding to liver alcohol dehydrogenase cannot be much affected by coenzyme-competitive effects of buffer anion binding. Kinetic parameter estimates now determined for NADH binding in weakly buffered solutions agree within experimental precision with those obtained previously from measurements made in buffer solutions of 0.1 M ionic strength.  相似文献   

12.
Kinetic studies of liver alcohol dehydrogenase   总被引:1,自引:8,他引:1       下载免费PDF全文
  相似文献   

13.
14.
15.
16.
We report the Raman spectrum of liver alcohol dehydrogenase in solution. The enzyme's secondary structure as determined from an examination of the Raman bands is slightly different than that found in crystals by X-ray diffraction.  相似文献   

17.
Polymorphism of horse liver alcohol dehydrogenase   总被引:1,自引:0,他引:1  
The properties of the most cathodal component of horse liver alcohol dehydrogenase (isozyme SS) have been found to vary. The variability is dependent on the livers from which the enzyme is isolated rather than on the purification procedure. Two distinct preparations, differing in catalytic properties, have been obtained and named S-type and A-type preparations. The preparations can be distinguished from each other by the ratio of activity with acetaldehyde to activity with the steroidal ketone 5β-dihydrotestosterone. This ratio is about one for the S-type and twenty for the A-type preparations.  相似文献   

18.
A single intraperitoneal administration of ethanol (3.5 g/kg) to rats induced a marked increase in lipid peroxidation and a decrease of antioxidative activity in the liver after 1 h when assessed by chemi-luminescence in liver homogenates. The pretreatment with aldehyde dehydrogenase inhibitor, disulfiram (200 mg/kg 24 hr before ethanol), caused a 10-fold elevation of the blood acetaldehyde levels, with no effect on the hepatic lipid peroxidation compared to control. Cyanamide (50 mg/kg, 2 h before the ethanol) increased approximately 100-fold the acetaldehyde levels, however, the changes in lipid peroxidation were not significantly different from that produced by ethanol alone. The present results suggest, that the metabolism of acetaldehyde and not acetaldehyde itself is responsible for the in vivo activation of lipid peroxidation during acute alcohol intoxication. Disulfiram prevents the ethanol-induced lipid peroxidation in the rat liver.  相似文献   

19.
Liver alcohol dehydrogenase (LADH; E.C. 1.1.1.1) provides an excellent system for probing the role of binding interactions with NAD(+) and alcohols as well as with NADH and the corresponding aldehydes. The enzyme catalyzes the transfer of hydride ion from an alcohol substrate to the NAD(+) cofactor, yielding the corresponding aldehyde and the reduced cofactor, NADH. The enzyme is also an excellent catalyst for the reverse reaction. X-ray crystallography has shown that the NAD(+) binds in an extended conformation with a distance of 15 A between the buried reacting carbon of the nicotinamide ring and the adenine ring near the surface of the horse liver enzyme. A major criticism of X-ray crystallographic studies of enzymes is that they do not provide dynamic information. Such data provide time-averaged and space-averaged models. Significantly, entries in the protein data bank contain both coordinates as well as temperature factors. However, enzyme function involves both dynamics and motion. The motions can be as large as a domain closure such as observed with liver alcohol dehydrogenase or as small as the vibrations of certain atoms in the active site where reactions take place. Ternary complexes produced during the reaction of the enzyme binary entity, E-NAD(+), with retinol (vitamin A alcohol) lead to retinal (vitamin A aldehyde) release and the enzyme binary entity E-NADH. Retinal is further metabolized via the E-NAD(+)-retinal ternary complex to retinoic acid (vitamin A acid). To unravel the mechanistic aspects of these transformations, the kinetics and energetics of interconversion between various ternary complexes are characterized. Proton transfers along hydrogen bond bridges and NADH hydride transfers along hydrophobic entities are considered in some detail. Secondary kinetic isotope effects with retinol are not particularly large with the wild-type form of alcohol dehydrogenase from horse liver. We analyze alcohol dehydrogenase catalysis through a re-examination of the reaction coordinates. The ground states of the binary and ternary complexes are shown to be related to the corresponding transition states through topology and free energy acting along the reaction path.  相似文献   

20.
Inhibition studies on liver alcohol dehydrogenase   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号