首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) is a proven oncogene that is essential for transformation of human B cells by the virus. LMP1 induces constitutive activation of several signal transduction pathways involving nuclear factor kappaB, phosphatidylinositol 3-kinase/Akt, and the mitogen-activated protein kinases (MAPK) p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (Erk). Sequencing of LMP1 isolated from a panel of EBV+ B cell lymphomas identified three different variants of LMP1, each distinct from the B95.8 prototype isoform. All tumor variants of LMP1 as well as the B95.8 LMP1 isoform were able to induce rapid p38 phosphorylation as well as Akt and JNK activation. Additionally all variants showed similar ability to activate nuclear factor kappaB. In contrast, only tumor-derived LMP1 variants induced prolonged Erk activation and c-Fos expression. Sequence analysis revealed only two amino acids, 212 and 366, shared by the tumor variants but distinct from B95.8. Point mutation of either amino acids 212 (glycine to serine) or 366 (serine to threonine) from the B95.8 isoform to the tumor variant version of LMP1 was sufficient for gain of function characterized by sustained activation of Erk and subsequent c-Fos induction and binding to the AP1 site. Our results indicate that the enhanced ability of tumor-derived LMP1 to induce and stabilize the c-Fos oncogene can be localized to two amino acids in the C terminus of LMP1.  相似文献   

2.
Epstein-Barr virus (EBV), a human γ-herpesvirus, establishes lifelong infection by targeting the adaptive immune system of the host through memory B cells. Although normally benign, EBV contributes to lymphoid malignancies and lymphoproliferative syndromes in immunocompromised individuals. The viral oncoprotein latent membrane protein 1 (LMP-1) is essential for B lymphocyte immortalization by EBV. The constitutive signaling activity of LMP-1 is dependent on homo-oligomerization of its six-spanning hydrophobic transmembrane domain (TMD). However, the mechanism driving LMP-1 intermolecular interaction is poorly understood. Here, we show that the fifth transmembrane helix (TM5) of LMP-1 strongly self-associates, forming a homotrimeric complex mediated by a polar residue embedded in the membrane, D150. Replacement of this aspartic acid residue with alanine disrupts TM5 self-association in detergent micelles and bacterial cell membranes. A full-length LMP-1 variant harboring the D150A substitution is deficient in NFκB activation, supporting the key role of the fifth transmembrane helix in constitutive activation of signaling by this oncoprotein.  相似文献   

3.
This study examined the effect of naturally occurring Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) gene sequence variation on the LMP-1 half-life in epithelial cells. The LMP-1 half-life was not influenced by sequence variation in amino acids 250 to 307 or amino acids 343 to 352. The LMP-1 half-life was short when the amino acid encoded at position 129 was methionine, the initiation codon product of lytic LMP-1 (lyLMP-1). The mutation of amino acid 129 to isoleucine greatly increased the LMP-1 half-life. Expression of lyLMP-1 in trans down-regulated the LMP-1 half-life in a dose-dependent manner and restored a short-half-life phenotype to the mutated LMP-1 construct lacking the cis ability to express lyLMP-1. This observed dominant negative effect of lyLMP-1 expression on the LMP-1 half-life in epithelial cells in vitro may have implications for EBV epithelial oncogenesis in vivo.  相似文献   

4.
Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs.  相似文献   

5.
The lytic cycle-associated lytic latent membrane protein-1 (lyLMP-1) of Epstein-Barr virus (EBV) is an amino-terminally truncated form of the oncogenic LMP-1. Although lyLMP-1 shares none of LMP-1's transforming and signal transducing activities, we recently reported that lyLMP-1 can negatively regulate LMP-1-stimulated NF-kappaB activation. The lyLMP-1 protein encoded by the B95-8 strain of EBV initiates from methionine 129 (Met129) of the LMP-1 open reading frame (ORF). The recent report that Met129 in the B95-8 LMP-1 ORF is not conserved in the Akata strain of EBV prompted us to screen a panel of EBV-positive cell lines for conservation of Met129 and lyLMP-1 expression. We found that 15 out of 16 tumor-associated virus isolates sequenced encoded an ATT or ACC codon in place of ATG in the LMP-1 ORF at position 129, and tumor cell lines harboring isolates lacking an ATG at codon 129 did not express the lyLMP-1 protein. In contrast, we found that EBV DNA from 22 out of 37 healthy seropositive donors retained the Met129 codon. Finally, the lyLMP-1 initiator occurs variably within distinct EBV strains and its presence cannot be predicted by EBV strain identity. Thus, Met129 is not peculiar to the B95-8 strain of EBV, but rather can be found in the background of several evolutionarily distinct EBV strains. Its absence from EBV isolates from tumors raises the possibility of selective pressure on Met129 in EBV-dependent tumors.  相似文献   

6.
7.
The origin and biological significance of deletions at the 3' end of the Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) gene are still controversial. We herein demonstrate that LMP-1 deletion mutants are highly associated with human immunodeficiency virus-related Hodgkin's lymphoma (HIV-HL) of Italian patients (29 of 31 cases; 93.5%), a phenomenon that is not due to a peculiar distribution of EBV strains in this area. In fact, although HIV-HL patients are infected by multiple EBV variants, we demonstrate that LMP-1 deletion mutants preferentially accumulate within neoplastic tissues. Subcloning and sequencing of the 3' LMP-1 ends of two HIV-HL genes in which both variants were present showed the presence of molecular signatures suggestive of a likely derivation of the LMP-1 deletion mutant from a nondeletion ancestor. This phenomenon likely occurs within tumor cells in vivo, as shown by the detection of both LMP-1 variants in single microdissected Reed-Sternberg cells, and may at least in part explain the high prevalence of LMP-1 deletions associated with HIV-HL.  相似文献   

8.
9.
We have previously shown that SNU-1103, which is a latency type III Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line (LCL) that was developed from a Korean cancer patient, resists serum starvation-induced G(1) arrest. In this study, we examined the role of latent membrane protein-1 (LMP-1) in serum starvation resistance, since LMP-1 is known to be essential for EBV-mediated immortalization of human B lymphocytes. The LMP-1 gene from SNU-1103 was introduced into the EBV-negative BJAB cell line, and shown to be associated with resistance to G(1) arrest during serum starvation. Western blot analyses of the LMP-1-transfected cells revealed several protein alterations as compared to vector-transfected control cells. The expression of key cell-cycle regulatory proteins was affected in the G(1) phase: the expression of cyclin D3, CDK2, p27, and E2F-4 was up-regulated, and the expression of cyclin D2, CDK6, p21, and p103 was down-regulated during serum starvation. These results imply that of the several EBV viral genes expressed in EBV-negative B lymphoma cells, LMP-1 mediates resistance to serum starvation-induced G(1) arrest. However, we cannot rule out the possibility that other EBV genes are also involved in the cell-cycle progression of the EBV-transformed LCL during serum starvation, since the altered protein expression profile of the LMP-1 transfectants was distinct from that of the SNU-1103 cells that expressed all of the EBV viral proteins.  相似文献   

10.
Epstein-Barr virus (EBV) strains from the highly HLA-A11-positive Chinese population are predominantly type 1 and show a variety of sequence changes (relative to the contemporary Caucasian prototype strain B95.8) in the nuclear antigen EBNA3B sequences encoding two immunodominant HLA-A11 epitopes, here called IVT and AVF. This has been interpreted by some as evidence of immune selection and by others as random genetic drift. To study epitope variation in a broader genomic context, we sequenced the whole of EBNA3B and parts of the EBNA2, 3A, and 3C genes from each of 31 Chinese EBV isolates. At each locus, type 1 viruses showed <2% nucleotide divergence from the B95.8 prototype while type 2 sequences remained even closer to the contemporary African prototype Ag876. However, type 1 isolates could clearly be divided into families based on linked patterns of sequence divergence from B95.8 across all four EBNA loci. Different patterns of IVT and AVF variation were associated with the different type 1 families, and there was additional epitope diversity within families. When the EBNA3 gene sequences of type 1 Chinese strains were subject to computer-based analysis, particular codons within the A11-epitope-coding region were among the few identified as being under positive or diversifying selection pressure. From these results, and the observation that mutant epitopes are consistently nonimmunogenic in vivo, we conclude that the immune selection hypothesis remains viable and worthy of further investigation.  相似文献   

11.
12.
The latent membrane protein 1 (LMP-1) of Epstein-Barr virus (EBV) functionally resembles a constitutively active, CD40-like receptor and contributes to the maintenance of proliferation of EBV-infected primary human B lymphocytes. LMP-1 is targeted to the plasma membrane, where it binds TRAF, TRADD, and JAK molecules to activate NF-kappaB-, AP-1-, and STAT-dependent pathways as does CD40. Yet LMP-1 appears to lack a ligand to regulate its signaling. We have found that LMP-1, when expressed at physiologic levels, inhibits gene expression detectably. Higher levels of LMP-1 expression eventually inhibit both the steady-state level of RNA produced from a BamHI C promoter reporter and general cellular protein synthesis. These findings indicate that LMP-1 can limit its signaling and that this control is manifest at two levels. The domain of LMP-1 that binds TRAF, TRADD, and JAK/STAT molecules is not required for this regulation. A derivative of LMP-1 that contains only its amino-terminal and membrane-spanning domains is sufficient to inhibit reporter activity when the reporter genes are expressed from the BamHI C and LMP-1 promoters. This same derivative of LMP-1 in parallel assays is sufficient to inhibit wild-type LMP-1's stimulation of NF-kappaB-dependent gene expression. We suggest that LMP-1 encodes stimulatory and inhibitory activities; the latter could limit signaling in the apparent absence of ligand-dependent down-regulation.  相似文献   

13.
The BNLF-1 open reading frame of Epstein-Barr virus (EBV) encodes two related proteins, latent membrane protein-1 (LMP-1) and lytic LMP-1 (lyLMP-1). LMP-1 is a latent protein required for immortalization of human B cells by EBV, whereas lyLMP-1 is expressed during the lytic cycle and is found in the EBV virion. We show here that, in contrast to LMP-1, lyLMP-1 is stable, with a half-life of >20 h in tetradecanoyl phorbol acetate- and butyrate-treated B95-8 cells. Although lyLMP-1 itself has negligible effects on NF-kappaB activity, it inhibits NF-kappaB activation by LMP-1 in a dose-dependent manner. The lyLMP-1 protein does not oligomerize with LMP-1, and the negative effect of lyLMP-1 on NF-kappaB activation by LMP-1 does not result from lyLMP-1-mediated disruption of LMP-1 oligomers. Modulation of LMP-1-activated signaling pathways is the first identified biological activity associated with lyLMP-1, and this activity may contribute to the progression of EBV's lytic cycle.  相似文献   

14.
An individual's CD8(+)-cytotoxic-T-lymphocyte (CTL) response to Epstein-Barr virus (EBV) latent cycle antigens focuses on a small number of immunodominant epitopes often presented by just one of the available HLA class I alleles; for example, HLA-A11-positive Caucasians frequently respond to two immunodominant HLA A11 epitopes, IVTDFSVIK (IVT) and AVFDRKSDAK (AVF), within the nuclear antigen EBNA3B. Here, we reexamine the spectrum of EBV strains present in the highly HLA-A11-positive Chinese population for sequence changes in these epitopes relative to the Caucasian type 1 prototype strain B95.8. The IVT epitope was altered in 61 of 64 Chinese type 1 viruses, with four different sequence variants being observed, and the AVF epitope was altered in 46 cases with six different sequence variants; by contrast, all 10 Chinese type 2 viruses retained the prototype 2 epitope sequences. All but one of the type 1 epitope variants were poorly recognized by IVT- or AVF-specific CTLs in pulse-chase assays of peptide-mediated target cell lysis. More importantly, we screened HLA-A11-positive Chinese donors carrying viruses with known epitope mutations for evidence of epitope-specific CTL memory by enzyme-linked immunospot assays: none of the type 1 variants tested, nor the type 2 prototype, appeared to be immunogenic in vivo. The data remain consistent with the possibility that, during virus-host coevolution, pressure from the host CTL-mediated immune response has given A11 epitope-loss viruses a selective advantage.  相似文献   

15.
16.
17.
Epstein-Barr virus (EBV) latency has been associated with a variety of human cancers. Latent membrane protein 1 (LMP-1) is one of the key viral proteins required for transformation of primary B cells in vitro and establishment of EBV latency. We have previously shown that LMP-1 induces the expression of several interferon (IFN)-stimulated genes and has antiviral effect (Zhang, J., Das, S. C., Kotalik, C., Pattnaik, A. K., and Zhang, L. (2004) J. Biol. Chem. 279, 46335-46342). In this report, a novel mechanism related to the antiviral effect of LMP-1 is identified. We show that EBV type III latency cells, in which LMP-1 is expressed, are primed to produce robust levels of endogenous IFNs upon infection of Sendai virus. The priming action is due to the expression of LMP-1 but not EBV nuclear antigen 2 (EBNA-2). The signaling events from the C-terminal activator regions of LMP-1 are essential to prime cells for high IFN production. LMP-1-mediated activation of NF-kappaB is apparently necessary and sufficient for LMP-1-mediated priming effect in DG75 cells, a human B cell line. IFN regulatory factor 7 (IRF-7) that can be activated by LMP-1 is also implicated in the priming action. Taken together, these data strongly suggest that LMP-1 may prime EBV latency cells for IFN production and that the antiviral property of LMP-1 may be an intrinsic part of EBV latency program, which may assist the establishment and/or maintenance of viral latency.  相似文献   

18.
Epstein-Barr virus (EBV) infection is associated with several human cancers. Latent membrane protein 1 (LMP-1) is one of the key viral proteins required for transformation of primary B cells in vitro and establishment of EBV latency. In this report, we show that LMP-1 is able to induce the expression of several interferon (IFN)-stimulated genes (ISGs) with antiviral properties such as 2'-5' oligoadenylate synthetase (OAS), stimulated trans-acting factor of 50 kDa (STAF-50), and ISG-15. LMP-1 inhibits vesicular stomatitis virus (VSV) replication at low multiplicity of infection (0.1 pfu/cell). The antiviral effect of LMP-1 is associated with the ability of LMP-1 to induce ISGs; an LMP-1 mutant that cannot induce ISGs fails to induce an antiviral state. High levels of ISGs are expressed in EBV latency cells in which LMP-1 is expressed. EBV latency cells have antiviral activity that inhibits replication of superinfecting VSV. The antiviral activity of LMP-1 is apparently not related to IFN production in our experimental systems. In addition, EBV latency is responsive to viral superinfection: LMP-1 is induced and EBV latency is disrupted by EBV lytic replication during VSV superinfection of EBV latency cells. These data suggest that LMP-1 has antiviral effect, which may be an intrinsic part of EBV latency program to assist the establishment and/or maintenance of EBV latency.  相似文献   

19.
Epstein-Barr virus (EBV) infection in vitro immortalizes primary B cells and generates B lymphoblastoid cell lines (LCLs). These EBV-LCLs have been used for several purposes in immunological and genetic studies, but some trials involving these transformations fail for unknown reasons, and several EBV-LCLs do not grow in normal culture. In this study, we improved the immortalization method by CD19 and B-cell receptor (BCR) co-ligation. This method shortens the time required for the immortalization and generation of EBV-LCLs but does not alter the cell phenotype of the LCLs nor the expression of the EBV genes. In particular, the CD19 and BCR co-ligation method was found to be the most effective method examined. EBV-infected B cells induced by CD19 and/or BCR ligation expressed the intracellular latent membrane protein LMP-1 earlier than EBV-infected B cells, and the expression of intracellular LMP-1 was found to be closely related to the time of immortalization. These results suggest that the modified method, using CD19 and/or BCR ligation, may efficiently generate EBV-LCLs, by expressing intracellular LMP-1 at an early stage.  相似文献   

20.
Characterization of LMP-1's association with TRAF1, TRAF2, and TRAF3.   总被引:11,自引:5,他引:11       下载免费PDF全文
The latent membrane protein 1 (LMP-1) of Epstein-Barr virus (EBV) contributes to the immortalizing activity of EBV in primary, human B lymphocytes. LMP-1 is targeted to the plasma membrane, where it influences signaling pathways of infected cells. LMP-1 has been found to associate with members of the tumor necrosis factor receptor-associated factor (TRAF) family of proteins. As with LMP-1, the TRAF molecules have been shown to participate in cell signaling pathways. We have characterized and mapped in detail a region of LMP-1 that associates with TRAF1, TRAF2, and TRAF3. TRAF3 alone associates with LMP-1 in a yeast two-hybrid assay, whereas all three TRAF molecules associate with LMP-1 under various conditions when they are assayed in extracts of human cells. TRAF1, TRAF2, and TRAF3 appear to associate independently with LMP-1 but bind an overlapping target site. TRAF3 associates with LMP-1 most avidly and can compete with TRAF1 and TRAF2 for binding to LMP-1. TRAF2 associates with truncated derivatives of the carboxy terminus of LMP-1 more efficiently than with the intact terminus, indicating that LMP-1's conformation may regulate its association with TRAF2. Finally, point mutations that decrease LMP-1's association with the three TRAF molecules to 3 to 20% of wild-type levels do not detectably affect otherwise intact LMP-1's induction of NF-kappaB activity. Therefore, these associations are not necessary for the majority of intact LMP-1's induction of this signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号