首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When Leuconostoc mesenteroides NCDO 1875 was grown in MRS broth and fixed for electron microscopy in the presence of ruthenium red, the cell wall appeared as a triple-layered structure similar to other, gram-positive bacteria. When such logarithmic-phase cultures were exposed to sucrose, the appearance and growth of a uniform layer of electron-dense material was evident on the surface of the cell wall. After 2 h in the presence of sucrose, the formation of this surface coat (110 to 130 nm thick) was complete. For 85 to 90% of the cells, continued exposure to sucrose did not produce any further change in their appearance, but the rest of the population began to accumulate insoluble capsular dextran at the surface of their coat material. Within 18 h, these cells had produced a large capsule (maximum diameter, 6 micrometer) composed mainly of an extensive reticulum of fine filaments. Periodate-reactive carbohydrate was localized cytochemically in the capsular dextran and in the surface coat of all cells. It is suggested that the surface coat of sucrose-grown cells represents a cell-bound dextran-dextransucrase complex and that the acapsulate cells produce the relatively soluble S dextran reported by previous workers.  相似文献   

2.
The development of the epidermal layer of roots of Zea is traced from the quiescent centre to the zone where root hairs develop. In the zone of cell division a three layered coat forms on the outside of the epidermal cells consisting of the outer epidermal walls, overlaid by a two-layered pellicle composed of a thick fibrillar inner layer of polysaccharide, and a thin fibrillar outer layer of protein. The epidermal cells divide several times in the same longitudinal file but rarely across a radius to give a new longitudinal file. Thus, the radial walls become much thicker than all but the original transverse walls, and packets of up to 32 daughter cells derived from a single initial may be distinguished. The pellicle develops during these divisions as a continuum over the outer walls of the daughter cells. It is proposed that the pellicle provides a stiffening to the forward end of the root which permits it to penetrate soil without bending. Support for this hypothesis is shown by the Zea mays mutant Ageotropic in which the pellicle is absent, the epidermal surface is disorganized, and which grows crookedly through soil. In the zone of extension growth of normal roots of two Zea species the pellicle thins and disappears. Circumferential strips of the pellicle were peeled off the young epidermal cells and could be stretched to twice their length. This deformation is partly the result of the pellicle stretching and breaking above the attachments of the radial walls. After normal thinning of the pellicle, detachment of the radial walls at their outer ends produces a corrugated surface in the proximal zone of the root tips. In dicotyledons (e.g., soybean), there is no similar pellicle, but a stiff root tip is produced by a long multi-layered root cap, the proximal portion of which covers the elongating epidermal surface.  相似文献   

3.
Exfoliated vaginal epithelial cells with attached bacteria, termed 'clue cells', which were procured from a patient with non-specific vaginitis, were stained with ruthenium red and examined by transmission electron microscopy. The attached bacteria appeared to adhere by means of an outer fibrillar coat. An epithelial tissue culture cell line (McCoy) and human red blood cells to which strains of Gardnerella vaginalis attached were similarly examined. The adherence of G. vaginalis to the epithelial cell line appeared to be mediated by an outer fibrillar coat while adherence to red cells appeared to be mediated by fimbriae. Transmission electron microscopy was performed on the Gardnerella strains used. Thin sections of tissue-culture-adherent strains revealed a dense outer fibrillar coat whereas the surface of the haemagglutinating strains showed fine fimbriae. Negative staining of haemagglutinating strains demonstrated fimbriae on a minority of organisms.  相似文献   

4.
Cytochemical and ultrastructural studies of Candida albicans   总被引:9,自引:0,他引:9  
Ultrastructural modifications of the cell wall coat of Candida albicans during adherence to host cells were investigated using various cytochemical techniques. Attachment of the fungus to buccal epithelial cells appeared to involve spatial rearrangement of their cell wall surface. In particular adhering yeast developed a fibrogranular surface layer visualized by the periodic acid — thiocarbohydrazide silver proteinate technique (a polysaccharide detectron technique); Concanavalin A binding sites detected on their cell wall coat were highly increased. Attachment of yeasts to epithelial cells appeared mediated by fibrillar structures or polysaccharidic granules distributed on the cell wall coat. But free extra-cell wall material containing mannoproteins released from the yeast surface suggested additional mechanisms.Abbreviations Con A Concanavalin A - Man-fer mannosyl ferritin - PATAg Periodic acid-thiocarbohydrazide-silver proteinate  相似文献   

5.
Summary The surface coat of the dinoflagellateAmphidinium carterae Hulburt was examined by fluorescence and transmission electron microscopy, using various fluorochromes and cationic dyes. The overall results showed cell-surface reactions typical of acid mucopolysaccharides. The cationic dye staining revealed an outer fine fibrillar layer (15–70 nm thick) overlying a dense anionic coat (40–60 nm thick) which appeared to thicken progressively with age. In general, the structure of the amphiesmal vesicles was similar to that previously described by other investigators. However, an acidic mucopolysaccharide layer was observed on the inner surface of these vesicles. Each of these structures is traversed by 1–3 pores and at least 2 types of extrusomes are formed, the spindle trichocysts and the mucocysts. Cell to cell adhesion through the surface coat was frequently observed. Evidence was also obtained for internalization of all the surface-coat markers used.This investigation forms part of a doctoral thesis submitted by the first author to the University of British Columbia, Vancouver, B.C.  相似文献   

6.
Remsen, C. C. (Swiss Federation Institute of Technology, Zurich, Switzerland), and D. G. Lundgren. Electron microscopy of the cell envelope of Ferrobacillus ferrooxidans prepared by freeze-etching and chemical fixation techniques. J. Bacteriol. 92:1765-1771. 1966.-A comparison was made of the fine structure of the cell envelope of the gram-negative bacterium Ferrobacillus ferrooxidans when cells were prepared for microscopy by freeze-etching and chemical fixation techniques. Cell envelopes of chemically fixed cells appeared as five separate layers distinguishable by their location and electron density. Frozen-etched cells showed a three-layered complex with each layer measuring approximately 100 A in thickness. The latter technique is considered to be "artifact-free" and, as a technique, yields purely morphological information on the natural state. The three layers revealed by freeze-etching are: the outer layer, a lipoprotein-lipopolysaccharide layer; the middle layer, a layer composed of globular protein attached to fibrillar mucopeptide; and the innermost layer, the cytoplasmic membrane. The latter was covered with 100 to 120 A particles. The relationship of the aforementioned layers to those seen in chemically fixed cells is discussed.  相似文献   

7.
A trypsin-sensitive 200-kDa protein has been reported to be exclusively associated with haemagglutinating isolates of Moraxella (Branhamella) catarrhalis. Transmission electron microscopy studies revealed that haemagglutination by M. catarrhalis to both human and rabbit erythrocytes was mediated by a trypsin-sensitive outer fibrillar coat. This fibrillar layer was absent on non-haemagglutinating isolates examined. Immuno-electron microscopy, using a polyclonal antiserum containing antibodies to the 200-kDa protein as a probe, showed that the 200-kDa protein is present on the outer fibrillar layer of the bacterium. These findings suggest that the haemagglutinin of M. catarrhalis is a 200-kDa protein present on the outer fibrillar coat.  相似文献   

8.
Embryogenic units of friable maize callus are formed as globular or oblong packets of tightly associated meristematic cells. These units are surrounded by conspicuous cell walls visible in light microscopy after staining with basic fuchsin. Transmission electron microscopy revealed that embryogenic cells are rich in endoplasmic reticulum, polysomes and small protein bodies, and that the outermost layer of their cell walls is composed of fibrillar material. Electron microscopy has also shown that this material covers the surface of embryogenic cells as a distinct layer which we denote as extracellular matrix surface network (ECMSN). Employing histochemical staining with β-glucosyl Yariv phenylglycoside, we localized arabinogalactan-proteins (AGPs) to the outer cell walls of embryogenic units including ECMSN. The most prominent staining was found in cell-cell junction domains. Large non-embryogenic callus cells were not stained with this AGP-specific dye. Immunofluorescence and silver-enhanced immunogold labelling using monoclonal antibody JIM4 has shown that the ECMSN of embryogenic cells is equipped with JIM4 epitope, while non-embryogenic callus cells are devoid of this epitope. We propose that some specific AGPs of the ECMSN might be relevant for cell-cell adhesion and recognition of embryogenic cells during early embryogenic stages, and that the JIM4 antibody can serve as an early marker of embryogenic competence in maize callus culture. Received: 13 March 1998 / Revision received: 6 June 1998 / Accepted: 1 July 1998  相似文献   

9.
The ovipositor of striped bitterling Acheilognathus yamatsutae was subjected to ultrastructure and histochemical analysis during spawning season using light and electron microscopy. Although the ovipositor of A. yamatsutae is a long cylindrical tube with smooth external surface, it was possible to confirm the presence of well-developed fingerprint structure using scanning electron microscopy. Internal aspect analysis of ovipositor revealed formation of 5–8 longitudinal folds. Cross section analysis revealed that the ovipositor is composed of an outer epithelial layer, a mid connective tissue layer, and an inner epithelial layer. The outer epithelial layer contains 7–9 cell layers composed mainly of epithelial and mucous cells. Result of AB–PAS (pH 2.5) and AF–AB reaction showed that mucous cells contained mainly acidic carboxylated mucosubstances. The connective tissue layer was loose and made mainly of collagen fibers and some muscle fibers, along with blood vessels and a small number of chromatophores. The inner epithelial layer, which is a single layer, is composed of columnar epithelia. Observation under transmission electron microscope enabled distinction of the outer epithelial layer into superficial, intermediate and basal layers. Although the types of cells in the superficial tissue layer were diverse, they all shared the development of glycocalyx covered microridges. The majority of epithelial cells in the intermediate layer were cuboidal shaped, while those in the basal layer were columnar. Two types (A and B) of secretory cells were observed in the outer epithelial layer. The connective tissue layer had two types of chromatophores including xantophore and melanophore, in addition to a well-developed nerve fiber bundles. Columnar epithelial cells, mitochondria-rich cells and rodlet cells were observed in the inner epithelial layer. Microvilli were well developed on the free surface of columnar epithelial cells.  相似文献   

10.
B R Jones  B F Smith  W B LeFlore 《Microbios》1979,24(97-98):185-193
Scanning electron microscopy of the outer surface coat of the infective eggs of Hydatigera taeniaeformis examined at high magnifications revealed the presence of scale-like features. At low magnifications the surface of eggs appeared smooth. Eggs that were fractured showed a thick inner surface layer of ridges and striations. A second layer characterized by a smooth membrane surface presumably the basement membrane was observed beneath the innermost surface layer. When the eggs were treated with 0.02 M of EDTA the outer surface coat became distorted and the emerging hooks of the embryo could be seen. Small, spherical bosses were observed on the surface of some eggs. Other eggs possibly at an earlier stage of development contained pit-like depressions.  相似文献   

11.
The development of the floral bud, especially the ovule and seed coat, of Sinomanglietia glauca was observed. Floral buds were covered by eight to nine hypsophyll pieces. The hypsophyll nearest the tepal was closed completely and characterized by two arrays of densely stained cells with dense cytoplasm, which split longitudinally at flowering. The perianth consisted of 16 tepals arranged in three whorls. The gynoecium was composed of numerous apocarpous carpels; the ovule was anatropous with two integuments. Embryogenesis was of the Polygonum type, and the endosperm was nuclear. The inner integument degenerated during seed development. The seed of S. glauca had an endotestal seed coat comprised of a sclerotic layer derived from the inner adaxial epidermis of the outer integument and a sarcotesta derived mainly from the middle cells between the inner and outer epidermis of the outer integument. The embryo developed normally, so embryogenesis is not the cause of difficult regeneration.  相似文献   

12.
The surfaces of the main cell body, tentacle shaft, and knob of Discophrya collini, a freshwater suctorian ciliate, were characterized using various cytochemical techniques. Cells prepared for conventional transmission electron microscopy exhibited a 50–60 nm thick fuzzy layer over the cell body surface; this layer was absent from the tentacle knob. A thick (240 nm), two-layered surface coat surrounding the main cell body was stained with ruthenium red. This heavy coat was absent from the surface of the knob where a thin, dense, ruthenium red-positive layer and projecting filaments were present. Freeze-etched material revealed a “particle region” (150–250 nm in thickness) closely associated with the outer cell surface of the suctorian. Fixed specimens were treated with four different lectins and analyzed with electron microscopy in order to obtain information about the carbohydrate composition of the outer surface of D. collini. Concanavalin A bound to the surface of the cell body and tentacle shaft as a dense, particulate layer (80 nm thick) but thinned to 13–16 nm over the surface of the knob. Wheat germ agglutinin-treated cells also displayed a heavy, electron-dense layer (128 nm thick) that surrounded the main cell body and tentacle shaft, but only scattered patches of bound wheat germ agglutinin were observed on the surface of the knob. Discophrya treated with Helix agglutinin or peanut agglutinin appeared similar to control cells. Suctorians were treated with lectins in vivo in an attempt to inhibit capture and ingestion of their prey, Tetrahymena pyriformis, by masking prey receptor sites on the knob. Concanavalin A and, to a lesser degree, wheat germ agglutinin, successfully inhibited attachment of the prey organism. Helix agglutinin and peanut agglutinin had little effect on prey capture.  相似文献   

13.
Summary Formation of melanosomes in melanophores of a teleost, Oryzias latipes, was studied by means of electron microscopy. Two distinct types of premelanosomes are observed in the same cell: (i) multivesicular premelanosomes, which later develop into melanosomes with electron-lucent hollows in the center, appear at early embryonic stages; (ii) premelanosomes with highly organized, fibrous internal structure are formed at later stages of development and give rise to melanosomes with a filamentous center. Melanosomes are generally ellipsoid in shape, and the difference in the dimensions of fibrillar premelanosomes, melanosomes in the cells at younger developmental stages and those developed fully in melanophores of adults indicates that these organelles grow during development. The growth is achieved by fusion of small unmelanized vesicles or fibrillar premelanosomes to preformed melanosome and by fusion of two or more premelanosomes to form a larger organelle. The addition of the matrix of fibrillar premelanosomes around preformed melanosomes, which are derived from either multivesicular or fibrillar premelanosomes, forms a concentric outer deposit, and the fusion of small vesicles produces electron-lucent pits which are scattered irregularly in mature melanosomes.  相似文献   

14.
SYNOPSIS. Living Trypanosoma musculi bloodstream trypomastigotes were agglutinated specifically with concanavalin A (ConA), wheat germ agglutinin (WGA), soybean agglutinin (SBA), and fucose-binding protein (FBP). The agglutination with these lectins of living cells from which the coat was removed by trypsinization was the same as with intact trypanosomes. Glutaraldehyde or formalin fixation did not affect the results with regard to agglutination with WGA, SBA, and FBP, but lower agglutination with ConA was observed upon fixation. By using a dense iron-dextran marker many fewer ConA marker particles were localized at the fine structural level in the intact than in trypsin-treated trypanosomes. On the basis of the results obtained by agglutination and electron microscopy, it is likely that fixation cross-links intact surface-coat components associated with the ConA binding sites. It is evident from the studies in which lectins were employed that ligands containing α-D-mannose, N-acetylglucosamine, N-acetylgalactosamine, and α-L-fucose are randomly distributed in the outer surface of the pellicular and flagellar membranes of T. musculi trypomastigotes. Results obtained with α-amylase- and dextranase-treated trypanosomes suggested that lectin-binding sugar ligands in the cell surface were not directly associated with α-1,4 or repetitive α-1,6 glucan-bonded polysaccharide moieties. Similar conclusions can be drawn on the basis of neuraminidase treatment with regard to N-acetylated neuraminic acids. After thorough washing, intact, but not trypsin-treated trypomastigotes were agglutinated specifically with antisera against whole mouse serum and against mouse IgG. Evidently, adsorbed constituents of mouse serum are regular components of the T. musculi surface coat. After incubation in dilute whole mouse serum or in mouse IgG solutions, also the trypsinized cells were agglutinated by the 2 antisera. No such results were obtained with trypsinized cells incubated in serum-free buffers. It was concluded that mouse serum proteins were readily readsorbed on, and firmly bound to the trypsinized cells' surfaces. Specific agglutinations were obtained with trypsinized cells after incubation in dilute rat, rabbit, bovine, and human sera and in solutions of rat and rabbit IgG in reactions with the corresponding antisera. It seems, therefore, that the host serum proteins are adsorbed nonspecifically to the cell surface of trypsinized T. musculi bloodstream forms. When examined by electron microscopy, the intact trypomastigotes were covered by an ununiform, slightly granular, fibrillar extracellular coat, applied to the entire outer lamina of the pellicular and flagellar membranes. No indication of such a coat was noted in the trypsinized organisms. Flocculent surface coat-like matrix could, however, be discerned in cells which, after trypsinization, were incubated in various sera.  相似文献   

15.
Transmission and scanning electron microscopy and histochemical and biochemical methods were used to investigate differences in cell structure and cell surface properties between the strain-specific TA3- St and nonstrain-specific TA3-Ha ascites sublines of the TA3 murine mammary adenocarcinoma. The TA3-St subline is lethal only to the syngeneic strain A mouse (the strain of origin), whereas the TA3-Ha subline is lethal even to foreign species. In contrast to the TA3-St cell surface, which has numerous folds and irregular microprojections, the TA3-Ha cell has abundant long microvilli of uniform dimensions. An extensive cell surface coat which resembles the "fuzz" coat found on microvilli of normal epithelium was present on the TA3-Ha, but not on the TA3-St cells. After routine fixation, the surface coat of the TA3- Ha cell usually appeared as a filamentous network extending 30-50 nm from the plasmalemma; occasionally, longer filamentous or rod-like structures were found extending 200-400 nm from the plasmalemma. The cell coat material was more extensive on the microvilli than on the intermicrovillous membranes. Free virus-like particles associated with TA3-Ha cells have a similar-appearing surface coat on their outer membranes. The density of surface anionic sites, determined with polycationic ferritin, was greater on the TA3-Ha than on the TA3-St cell surface, consistent with the presence at the TA3-Ha cell surface of several-fold more neuraminidase-susceptible sialic acid groups. The observed surface features of the nonstrain-specific TA3-Ha cell, in comparison to the strain-specific TA3-St cell, are consistent with the suggestion that sialic acid-rich glycoproteins at the TA3-Ha cell surface mask histocompatibility antigens and enhance the ability of malignant cells to invade foreign species.  相似文献   

16.
A variant ofLactobacillus hilgardii was immobilized by its own production of dextran gel, forming grains. The best rate of weight increase of the gel in continuous fermentation was 16.3±3.3%/h, at pH 4.8±0.1 and with a dilution rate of 0.22 to 0.26/h. Observation by scanning electron microscopy located most of the bacteria as microcolonies on the surface. A similar arrangement appeared in calcium alginate beads. The best population density (1010 cells/g) was obtained in grains at pH 5.8, after 30h. At a similar pH value, 4.8, the growth rate was higher in alginate beads than in dextran gel but the final population density was approximately the same. Acidification rate increased faster with mixed gel at pH 5.2 than with dextran at pH 5.8.  相似文献   

17.
Seed coat development of Harpagophytum procumbens (Devil's Claw) and the possible role of the mature seed coat in seed dormancy were studied by light microscopy (LM), transmission electron microscopy (TEM) and environmental scanning electron microscopy (ESEM). Very young ovules of H. procumbens have a single thick integument consisting of densely packed thin-walled parenchyma cells that are uniform in shape and size. During later developmental stages the parenchyma cells differentiate into 4 different zones. Zone 1 is the multi-layered inner epidermis of the single integument that eventually develops into a tough impenetrable covering that tightly encloses the embryo. The inner epidermis is delineated on the inside by a few layers of collapsed remnant endosperm cell wall layers and on the outside by remnant cell wall layers of zone 2, also called the middle layer. Together with the inner epidermis these remnant cell wall layers from collapsed cells may contribute towards seed coat impermeability. Zone 2 underneath the inner epidermis consists of large thin-walled parenchyma cells. Zone 3 is the sub-epidermal layers underneath the outer epidermis referred to as a hypodermis and zone 4 is the single outer seed coat epidermal layer. Both zones 3 and 4 develop unusual secondary wall thickenings. The primary cell walls of the outer epidermis and hypodermis disintegrated during the final stages of seed maturation, leaving only a scaffold of these secondary cell wall thickenings. In the mature seed coat the outer fibrillar seed coat consists of the outer epidermis and hypodermis and separates easily to reveal the dense, smooth inner epidermis of the seed coat. Outer epidermal and hypodermal wall thickenings develop over primary pit fields and arise from the deposition of secondary cell wall material in the form of alternative electron dense and electron lucent layers. ESEM studies showed that the outer epidermal and hypodermal seed coat layers are exceptionally hygroscopic. At 100% relative humidity within the ESEM chamber, drops of water readily condense on the seed surface and react in various ways with the seed coat components, resulting in the swelling and expansion of the wall thickenings. The flexible fibrous outer seed coat epidermis and hypodermis may enhance soil seed contact and retention of water, while the inner seed coat epidermis maintains structural and perhaps chemical seed dormancy due to the possible presence of inhibitors.  相似文献   

18.
Summary In the seed coat ofGasteria verrucosa the deposition of phytomelan takes place during seed development in three stages. Phytomelan is a black cell wall material which is chemically very inert. First the radial walls and part of the transverse cell wall of the outer epidermis of the outer integument become thickened by exocytosis of dictyosome vesicles. Callose is deposited at the tangential plasma membrane against those walls. After the callose deposition about two thirds of the original cell volume is filled with callose. During the second stage the callose is broken down, probably into glucose monomers or small polymers. At the same time cellulose is deposited at the outer tangential plasma membrane, forming a wall between the dissolving callose and the plasma membrane. In the third phase small granules appear in the solution of dissolved callose. which grow out and finally fuse to form a block of phytomelan, consisting of spherical 15-nm units. Remarkable is the function of the callose: it determines the size of the phytomelan block, and it probably functions as carbohydrate source for the phytomelan synthesis and/or for the cellulose inner layer. In this study transmission electron microscopy and cryo scanning electron microscopy are used to study the three developmental stages of the formation of the phytomelan layer.  相似文献   

19.
Summary The ultrastructural distibution and histochemical properties of sulfated glycoconjugates were investigated in the developing enamel of the adult newt, Triturus pyrrhogaster, by use of the high-iron diamine thiocarbohydrazide silver proteinate (HID-TCH-SP) staining and enzymatic digestion methods. Development and ultrastructure of the enamel were also studied. After deposition of the mantle dentin matrix to a certain thickness, the first enamel matrix, globular in shape, appeared in juxtaposition to the dental basement membrane and tended to be intermixed with the previously deposited dentin matrix. Subsequently, enamel matrix was deposited outside (ameloblastic side) of the dental basal lamina and formed a true enamel layer. Thus, developing enamel of the newt consists of two layers: (1) an inner layer made up of a dentin-enamel mixed matrix and (2) an outer layer composed of only true enamel matrix. HID-TCH-SP precipitates resulting from the abovementioned studies were found in the mixed matrix and were identified as chondroitin sulfates; in contrast, the true enamel matrix contained no sulfated glycoconjugates.  相似文献   

20.
Summary— The ultrastructural aspects of the association of microtubules (MTs) with the plasmalemma in epidermal tendon cells of the river crab, Polamon dehaani, were studied by thin-section electron microscopy combined with detergent treatment. In the tendon cell, MTs were linked laterally by anchoring filaments to the plasmalemma via a submembranous electron-dense layer called the plasmalemmal undercoat. To further clarify how such anchoring filaments are spatially related to the plasmalemma through the undercoat, we carefully examined and compared thin-section images obtained from various specimen preparations using saponin and Triton X-100. When the tissues were treated with saponin or Triton, electron-dense materials in the undercoat were extracted in varying degrees to expose internal substructures. The undercoat appeared to show a two-layer organization, the inner and outer layers. In more extracted samples, filamentous networks became prominent in the outer layer. Anchoring filaments were seen to attach to such filamentous networks, which in turn were linked to the plasmalemma proper. Thus, it may be reasonable to consider that the filamentous network constitutes the core structure of the plasmalemmal undercoat which is structurally reinforced by extractable electron-dense materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号