首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Studies have been made on water soluble antigens of the retina from man and some animals. In the bovine retina, immunochemical analysis reveals, apart from antigens with a broad and narrow interorganic specificity, organospecific alpha 1- and rho-globulins. Immunochemically, the bovine alpha 1-globulin is partially identical with the same protein of the human retina and completely identical to retinal antigens from cattle; rho-globulin is characterized as an interspecific antigen in man and mammals. Molecules of organospecific alpha 1-globulins from the retina of man and some animals (sheep, camel, horse, cow, pig) do not contain the determinants related to the retinal antigens from fishes, reptiles and birds. In human and mammalian retina, acid neurospecific alpha 1-glycoprotein was found which is topical of the cerebral tissue. Organospecific alpha 1-globulin of the bovine retina is located in the pigment epithelium, in the zone of outer and inner photoreceptor segments; organospecific rho-globulin is distributed in the outer synaptic layer of the retina.  相似文献   

2.
Three serum and twelve tissue antigens were revealed in adult chick iris by immunodiffusion and immunoelectrophoresis. Among the tissue antigens five were characteristic of the eye tissues alone: a specific iris antigen, an antigen revealed in the iris and the retina, and three antigens characteristic of the lens (the alpha-, beta- and delta-crystallines). The rest seven antigens were interorganic differing by their distribution in the tissues and organs investigated; among them one was specific of muscle tissue.  相似文献   

3.
Control of cell proliferation is vital for the normal development of the neural retina. Gap junctional communication has been implicated in the control of retinal cell proliferation. We have previously shown that the expression of the gap junction protein Connexin 43 closely correlates with the first wave of cell proliferation in the retina. Preventing its expression using antisense oligonucleotides in the developing eye and surrounding tissues, produces a reduction in cell number and the formation of a small eye. In order to examine this in more detail we have developed a new means of manipulating connexin expression in the developing chick embryo. We have generated pIRES vectors which use cyclomegalovirus (CMV) to promote the expression of a green fluorescent protein (EGFP) and either wild type Cx43 or a dominant negative form ofthis connexin. Following injection ofthese constructs into the ventricles ofthe stage 10-11 chick embryo they can be incorporated into one side of the chick brain or optic vesicle using an electroporation technique, leaving the other side as a control. EGFP expression can be seen on the electroporated side of the chick brain within 24 hours. Expression of the dominant negative construct in cultures of chick limb bud mesenchyme results in total block of cascade blue transfer when injected into transfected cells. Expression of both wild type and dominant negative constructs in the developing chick retina perturbs the normal development of the eye.  相似文献   

4.
Control of cell proliferation is vital for the normal development of the neural retina. Gap junctional communication has been implicated in the control of retinal cell proliferation. We have previously shown that the expression of the gap junction protein Connexin 43 closely correlates with the first wave of cell proliferation in the retina. Preventing its expression using antisense oligonucleotides in the developing eye and surrounding tissues, produces a reduction in cell number and the formation of a small eye. In order to examine this in more detail we have developed a new means of manipulating connexin expression in the developing chick embryo. We have generated pIRES vectors which use cyclomegalovirus (CMV) to promote the expression of a green fluorescent protein (EGFP) and either wild type Cx43 or a dominant negative form of this connexin. Following injection of these constructs into the ventricles of the stage 10-11 chick embryo they can be incorporated into one side of the chick brain or optic vesicle using an electroporation technique, leaving the other side as a control. EGFP expression can be seen on the electroporated side of the chick brain within 24hours. Expression of the dominant negative construct in cultures of chick limb bud mesenchyme results in total block of cascade blue transfer when injected into transfected cells. Expression of both wild type and dominant negative constructs in the developing chick retina perturbs the normal development of the eye.  相似文献   

5.
A T Mikha?lov 《Ontogenez》1984,15(5):542-547
Eye vesicles were isolated from the early chick embryos (stage 9+ after Hamburger and Hamilton, 1951) and combined with the Rana temporaria early gastrula ectoderm (EGE) in vitro. The tissues were jointly incubated in medium 199 diluted twice with deionized water at 22 +/- 1 degree for 7-8 days or the eye vesicles were removed from the EGE ectoderm within 16-18 h. At the joint long-term incubation of these tissues, a toxic effect of the chick embryonic tissues on the EGE cells was noted. In none of the experiments, the inducing effect of the eye vesicle on the EGE was found. Similar data were obtained when the EGE was jointly cultivated with the brain (stage 9-10) and retina (stage 15) of chick embryos. The brain of the chick embryos at stage 15 exerted a weak neuralizing effect on the EGE. In the control experiments, the eye vesicles explanted with the chick embryonic ectoderm remained viable till the end of cultivation but no lentoids formed in the ectoderm. The absence of lens-inducing effect at the joint cultivation of the chick embryonic eye vesicles with the EGE is considered as a result of disturbance of the synthesis or secretion of the corresponding agents rather than a sequence of the species "incompatibility" of the inductor and reacting tissue. Hence, the use of "xenogenic" tissue recombinants is not justified when analyzing the lens-inducing activity of the eye vesicles.  相似文献   

6.
Glycerol Phosphate Dehydrogenase in Developing Chick Retina and Brain   总被引:1,自引:1,他引:0  
Abstract: The development of cytoplasmic glycerol phosphate dehydrogenase (GPDH) activity in chick neural retina is compared with that in brain. GPDH converts dihydroxyacetone phosphate to glycerol 3-phosphate, an intermediate in phospholipid synthesis. The enzyme is known to be under corticosteroid control in rat brain and spinal cord (but not muscle or liver) and in primary oligodendrocyte cultures. It has not been previously studied in the eye. In chick brain the GDPH specific activity rises fivefold from the early embryo to the adult, with nearly all the increase occurring between embryonic day 14 and hatching. This time course correlates well with the known maturation of chick adrenal cortex (which produces corticosteroids). On the other hand, in chick retina the GPDH specific activity remains at a low basal level throughout development. Furthermore, adult rat and beef retinas show much lower enzyme activity than do the corresponding brain tissues. GPDH can be induced precociously by hydrocortisone in embryonic chick brain from days 12 through 16, both in the intact embryo and in tissue culture; however, GPDH is not at all inducible in chick retina. The developmental increase in chick brain GPDH can be correlated qualitatively with myelin formation, as shown by luxol fast blue staining, whereas no myelin is seen in retina at any age. Our results are consistent with recent immunocytochemical studies demonstrating that GPDH in rat brain is associated with myelin-producing oligodendroglial cells, absent in retina. In comparison, another glial enzyme, glutamine synthetase (GS), known to be inducible in both chick brain and retina, is localized in brain astrocytes and retinal Müller cells.  相似文献   

7.
A A Zotin 《Ontogenez》1981,12(6):579-588
Antisera were obtained against six electrophoretic fractions of the rat bone marrow extract. With their help, 18 tissular antigens and 11 antigens immunologically similar to the blood serum proteins were revealed in the rat bone marrow. All tissular antigens are divided in five groups by the degree of organ specificity: 1) bone marrow organospecific antigens (4 antigens), 2) antigens present in the bone marrow, spleen and lung extracts (2), 3) "granulocytic" antigens (4), 4) antigens common for many rat organs, but not found in the extracts of blood formed elements, skeletal muscle, heart, brain, eyes (3), 5) antigens present in all the organs studied (5). The bone marrow organospecific antigens may be specific antigens of hemopoietic cell precursors. The possibility of utilization of antisera against the bone marrow water soluble proteins for labelling hemopoietic cells of different lines of differentiation is discussed.  相似文献   

8.
Tissue-specific cell-surface antigens in embryonic cells   总被引:12,自引:1,他引:11  
With the use of antisera prepared in rabbits against suspensions of live embryonic chick tissue cells, qualitative differences in cell surface antigens were demonstrated on cells from different embryonic chick tissues by immune agglutination and immunofluorescence. Unabsorbed antisera reacted with both homologous and nonhomologous cells; thorough absorption of the antisera with heterologous tissues removed cross-reacting antibodies, and the antisera acquired a high degree of tissue specificity. Thus, antiretina cell serum absorbed with nonretina cells or tissues, agglutinated only neural retina cells, and was shown by immunofluorescence tests to react specifically with the surface of retina cells, both in cell suspensions and in frozen tissue sections. Comparable results with antisera against cells from embryonic liver and other tissues demonstrated the existence of tissue-specific, phenotypic disparities in the antigenicities of embryonic cell surfaces, in addition to the presence of cell-surface antigens shared by certain classes of cells, and of antigens common to all cells in the embryo. The results are discussed in terms of the possible involvement of such phenotypic determinants in the specification of cell surfaces, in relation to cell recognition and developmental interactions.  相似文献   

9.
The eyes of the marine snail Bulla gouldiana act as circadian pacemakers. The eyes exhibit a circadian variation in spontaneous optic nerve compound action potential frequency in constant darkness, and are involved in controlling circadian rhythms in behavioral activity expressed by the animal. To initiate an investigation of the molecular aspects of circadian rhythmicity in the Bulla eye and to identify specific molecular markers in the nervous system, we raised monoclonal antibodies (MAb) to the eye and screened them for specific patterns of staining in the eye and brain. Several MAb recognize antigens specific to groups of neurons in the brain, whereas others stain antigens found only in the eye. In addition, some antigens are shared by the eye and the brain. The antigens described here include molecules that mark the lens, retina, neural pathways between the eye and the brain, specific groups of neurons within the central ganglia, and an antigen that is shared by basal retinal neurons (putative ocular circadian pacemaker cells) and glia. These molecular markers may have utility in identifying functionally related groups of neurons, elucidating molecular specializations of the retina, and highlighting pathways used in transmission of information between the retina and the brain.  相似文献   

10.
Xenogeneic antisera raised in rabbits have been used to detect compositional changes at the cell surfaces of differentiating embryonic chick skeletal muscle. In this report, we present the serological characterization of antiserum (Anti-M-24) against muscle tissue and developmental stage-specific cell surface antigens of the prefusion myoblast. Cells from primary cultures of 12-d-old embryonic chick hindlimb muscle were injected into rabbits, and the resulting antisera were selectively absorbed to obtain immunological specificity. Cytotoxicity and immunohistochemical assays were used to test this antiserum. Absorption with embryonic or adult chick heart, brain, retina, liver, erythrocytes, or skeletal muscle fibroblasts failed to remove all reactivity of Anti-M-24 for myogenic cells at all stages of development. After absorption with embryonic myotubes, however, Anti-M-24 no longer reacted with differentiated myofibers, but did react with prefusion myoblasts. The myoblast surface antigens detected with Anti-M-24 are components of the muscle cell membrane: (a) these macromolecules are free to diffuse laterally within the myoblast membrane; (b) Anti-M-24, in the presence of complement, induced lysis of the muscle cell membrane; and (c) intact monolayers of viable myoblasts completely absorbed reactivity of Anti-M-24 for myoblasts. These antigens are not loosely adsorbed culture medium components or an artifact of tissue culture because: (a) absorption of Anti-M-24 with homogenized embryonic muscle removed all antibodies to cultured myoblasts; (b) Anti-M-24 reacted with myoblast surfaces in vivo; and (c) absorption of Anti-M-24 with culture media did not affect the titer of this antiserum for myoblasts. We conclude that myogenic cells at all stages of development possess externally exposed antigens which are undetected on other embryonic and adult chick tissues. In addition, myoblasts exhibit surface antigenic determinants that are either masked, absent, or present in very low concentrations on skeletal muscle fibroblasts, embryonic myotubes, or adult myofibers. These antigens are free to diffuse laterally within the myoblast membrane and may be modulated in response to appropriate environmental cues during myodifferentiation.  相似文献   

11.
Summary Comparative studies of the aggregative behavior of cells dissociated from different areas of embryonic chick and mouse brains show that each of the regionally differentiated lobes (cerebrum, optic tectum, and cerebellum), and the stem areas (diencephalon and medulla), form characteristic aggregates distinctive in size and shape. Bispecific co-aggregates are produced by commingling dissociated mouse cerebrum cells with chick cells from various brain regions, or from non-nervous tissues; the size of these co-aggregates and the extent of internal sorting out of cell types is closely related to the degree of homology between the interacting cell populations, e.g. co-aggregates of the closely homologous mouse and chick cerebral cell types contain homogeneous tissue fabrics of intermingled mouse and chick cells. Cell surface constituents involved in selective recognition and association of nerve cells were sought and cell-free supernatant preparations were obtained from short-term monolayer cultures of embryonic cerebrum cells (of either mouse or chick origin) which caused a striking, specific enhancement of aggregation of homologous cerebrum cells. These materials had no such effect on heterologous tissues tested: optic tectum, cerebellum, medulla, neural retina, liver, kidney or limb bud. These findings are discussed in relation to control mechanisms governing normal brain histogenesis and to the specificity of neural associations. This work was supported by United States Public Health Service research grant HD-01253 to Aron Moscona and by the Louis Block Fund of the University of Chicago.  相似文献   

12.
The vertebrate eye consists of multiple tissues with distinct embryonic origins. To ensure formation of the eye as a functional organ, development of ocular tissues must be precisely coordinated. Besides intrinsic regulators, several extracellular pathways have been shown to participate in controlling critical steps during eye development. Many components of Wnt/Frizzled signaling pathways are expressed in developing ocular tissues, and substantial progress has been made in the past few years in understanding their function during vertebrate eye development. Here, I summarize recent work using functional experiments to elucidate the roles of Wnt/Frizzled pathways during development of ocular tissues in different vertebrates.Key words: eye, retina, ciliary body, lens, vasculature, Wnt, frizzled, mouse, frog, chick, zebrafish  相似文献   

13.
The water extracts from the retina and brain of 7-8-day old chick embryos were centrifuged at 20,000 g; sediments were discarded and supernatants were additionally centrifuged at 110,000 g. The inductive activity of supernatants (20,000 and 110,000 g) and sediments (110,000 g) was estimated in vitro on the Rana temporaria early gastrula ectoderm. The neutralizing activity was related exclusively to the soluble fractions of the extracts from the chick embryo retina and brain. The lens-inducing activity appeared to be characteristic of both the supernatants and the microsome fractions of these extracts. A comparative biochemical analysis of the extracts (isoelectrofocusing, electrophoresis in the presence of sodium dodecylsulfate, electroblotting) has shown that the chick embryo retina and brain are similar by the spectrum and properties of peptides. It is suggested that the similarity of the extracts inducing effect on the early gastrula ectoderm is due to the presence of the same proteins (peptides) in the retina and brain. Peptides with a positive immunohistochemical reaction to vimentin and peptides of neurofilaments were found in trace quantities in the retina and brain extracts by means of immunoelectroblotting.  相似文献   

14.
The antigenic structure of the livers of mice and rats after a single hepatocarcinogenic treatment was investigated using the immunodiffuse and immunofluorescent methods. The next day after carcinogen application changes characteristic of hepatocellular tumors were observed: decrease in the synthesis of organospecific antigens and intensification of the synthesis of heteroorganic antigens.  相似文献   

15.
Vertebrate eye development is a complex multistep process coordinated by signals from the lens, optic cup and periocular mesenchyme. Although chemokines are increasingly being recognized as key players in cell migration, proliferation, and differentiation during embryonic development, their potential role during eye development has not been examined. In this study, we demonstrate by section in situ hybridization that CXCL12 and CXCL14 are expressed during ocular development. CXCL12 is expressed in the periocular mesenchyme, ocular blood vessels, retina, and eyelid mesenchyme, and its expression pattern is conserved between chick and mouse in most tissues. Expression of CXCL14 is localized in the ocular ectoderm, limbal epithelium, scleral papillae, eyelid mesenchyme, corneal keratocytes, hair follicles, and retina, and it was only conserved in the upper eyelid ectoderm of chick and mouse. The unique and non-overlapping patterns of CXCL12 and CXCL14 expression in ocular tissues suggest that these two chemokines may interact and have important functions in cell proliferation, differentiation and migration during eye development.  相似文献   

16.
Hydrocortisone (HC) induces glutamine synthetase in the embryonic chick neural retina. The binding of cytoplasmic receptor-hydrocortisone (R-HC) complexes to isolated retina nuclei has been studied in a cell-free system. Optimal conditions, specificity and quantitative aspects of binding were determined. The isolated nuclei retained binding specificity for the R-HC complex prepared from retina cytosol. Free HC, estradiol-receptor complexes from retina cytosol and HC-receptor complexes from mouse brain cytosol or from chick serum did not bind to the nuclei. Assuming monovalency of the binding sites, the number of nuclear acceptor sites per retina cell for the R-HC complex was estimated to be in the range of 1500. These sites were resistant to RNAse but sensitive to DNAse.  相似文献   

17.
After the discovery that in adult salamanders following lentectomy a new, functional lens develops by transdifferentiation (cell-type conversion) of previously depigmented epithelial cells of the iris (Wolffian lens regeneration), this phenomenon has been intensively studied by various experimental approaches. During the last two decades it was shown that pleiomorphic aggregates of atypical lens cells (lentoids) differentiated in reaggregates of dissociated cells of the chick neural retina and in spread cell cultures of the pigmented epithelium of the iris and retina, of the neural retina and the pineal gland of the chick embryo. The neural retina of human fetuses and adults also displayed this capacity. We showed that lentoids developed at a low incidence in renal isografts of rat embryonic shields or isolated embryonic ectoderm and of lentectomized eyes of rat fetuses, as well as in organ cultures of rat embryonic shields in chemically defined media. The addition of transferrin significantly increased the incidence of differentiation of lentoids in explants. In both renal isografts and explants in vitro a continuous transformation of retinal epithelial cells into atypical lens cells was observed. In renal isografts lentoids were also observed to originate from the ependyma of the brain ventricle. All tissues having the capacity to convert into lens cells belong to the diencephalon in a broad sense. Evolutionary aspects of this feature are discussed.  相似文献   

18.
In the mature eye, three distinct tissue fates, retina, ciliary body, and iris, arrange with a strict linear organization along the central (back) to peripheral (front) axis. The establishment of this topographical relationship within the optic vesicle is not well understood. We use a targeted vital labeling strategy to test the derivation of mature eye tissues from the optic vesicle of the chick embryo. Fate mapping uncovers two distinct origins of the neural retina. Contrary to expectations, the central neural retina has a discrete origin within the posterior optic vesicle. The peripheral retina derives from the distal optic vesicle, sharing a common origin with more peripheral tissue fates. This study identifies for the first time two distinct retinal sub-domains, central and peripheral, which arise during embryogenesis. Identification of these discrete retinal compartments provides a framework for understanding functional and disease processes throughout retinal tissue.  相似文献   

19.
An unsaturated fatty acid-binding protein has been isolated from the cytosol fraction of developing chick neural retina. It has a molecular weight of approximately 14,800 and specifically binds not only added radiolabeled arachidonic and oleic acids but has also been found to bind unsaturated fatty acids endogenously. This protein was detected in chick neural retina at all stages examined, from 8 to 16 days of development. It is also present in chick heart, brain, and retinal pigmented epithelium-choroid as well as in adult bovine neural retina. It is distinct from both cellular retinol-binding protein and cellular retinoic acid-binding protein on the bases of binding specificity and isoelectric point.  相似文献   

20.
Influenza is prevalent worldwide, and the teratogenic effects of influenza infection have been suspected to occur within the developing central nervous system. We herein report the sequelae of influenza B viral infection during early chick embryogenesis. Chick embryos at Hamburger-Hamilton stage 9 were infected by an in ovo injection under the blastoderm of influenza B virus (B/Taiwan/25/99). At 48 h after infection, gross malformations of the eye and brain, ranging from 25 to 58% of 168 infected embryos, were observed, in contrast to 3–6% among 71 mock-infected controls (p < 0.0001 for both eye and brain malformations). Histological analyses showed extensive tissue degeneration and aggregates of cells in the head mesenchyme, suggesting cell death and heterotopia. Influenza B viral RNA was directly localized by in situ hybridization with probes specific for the HA segment. Viral RNA was extensively detected in the head surface ectoderm and in the lung bud. In the developing brain, viral RNA was specifically located in the anterior neural retina, habenular area, mid-thalamus, and rhombencephalon. Our data show that influenza B virus can be a teratogenic agent in neural and nonneural embryonic tissues, raising concern for transplacental infection during early pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号