首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
运用吕梁山南段植物群落及其环境调查数据,比较研究不同稀有种处理(剔除稀有种、稀有种不做处理与降低稀有种权重3种方法处理)对典范对应分析(CCA)排序结果的影响,并用Spearman秩相关系数检验对应排序轴的相关性。结果表明3种方法的分析效果基本一致,但它们对环境因子的解释趋势有差异。基于环境数据、物种数据和样方数据的排序轴相关分析结果显示:未处理稀有种的CCA与降低稀有种权重的CCA吻合度高于剔除稀有种的CCA与降低稀有种权重的CCA的吻合度,未处理稀有种的CCA与降低稀有种权重的CCA的前4轴呈极显著的一一对应关系;剔除稀有种的CCA和降低稀有种权重的CCA仅在基于环境数据和样方数据分析时前3轴呈极显著的一一对应关系,而在基于物种数据的相关分析时前4轴的对应相关性不显著。从物种-环境关系的解释量上来看,降低稀有种权重的CCA最优,剔除稀有种的CCA和未处理稀有种的CCA次之。结合对应排序轴的相关性分析和物种-环境关系累计解释量来看,这3种稀有种处理方法在准确地揭示物种与环境关系时的顺序依次为:降低稀有种权重>对稀有种不做处理>剔除稀有种。  相似文献   

3.
Oxysterols are oxygenated derivatives of cholesterol generated by enzymatic reactions mediated by cytochrome P450 family enzymes or by inflammation-associated non-enzymatic reactions. Oxysterol binding proteins (OSBPs) are cytosolic high affinity receptors for oxysterols. We previously found that OSBPL-8 is upregulated in liver fluke (Opisthorchis viverrini)-induced hamster cholangiocarcinoma (CCA). Our aims were to determine the expression patterns of OSBP isoforms in human CCA tissues and to evaluate whether OSBPs could be used as molecular markers for the identification of blood-borne CCA metastasis. Expression levels of OSBP1, OSBP2, OSBPL-7 and OSBPL-8 in CCA tissues were detected using qRT-PCR and immunohistochemistry. Expression of OSBPs at mRNA level in the blood of CCA patients was also investigated. We confirmed increased expression of OSBPL-8 in O. viverrini -induced hamster CCA tissues. Moreover, increased expression of OSBP1, OSBP2, OSBPL-7 and OSBPL-8 was seen in human CCA tissues. Notably, a significant increased level of OSBPL-7 mRNA was observed in tumor compared to non-tumor liver tissue. Immunohistochemistry supported the mRNA results, in that OSBPL-7 protein was over-expressed in cancer cells and hepatocytes but not in normal biliary cells and surrounding inflammatory cells. Interestingly, in our preliminary results, significantly higher levels of OSBP2 and OSBPL-7 mRNA were seen in blood samples from CCA patients than in healthy controls. These results suggest that OSBP2 and OSBPL-7 might serve as molecular markers for the identification of CCA metastasis in the bloodstream.  相似文献   

4.
5.
Cholangiocarcinoma (CCA) is a severe malignancy usually producing a poor prognosis and high mortality rate. MicroRNAs (miRNAs) have been reported in association with CCA; however, the role miR-329 plays in the CCA condition still remains unclear. Therefore, this study was conducted to explore the underlying mechanism of which miR-329 is influencing the progression of CCA. This work studied the differential analysis of the expression chips of CCA obtained from the Gene Expression Omnibus database. Next, to determine both the expression and role of pituitary tumor transforming gene-1 (PTTG1) in CCA, the miRNAs regulating PTTG1 were predicted. In the CCA cells that had been intervened with miR-329 upregulation or inhibition, along with PTTG1 silencing, expression of miR-329, PTTG1, p-p38/p38, p-ERK5/ERK5, proliferating cell nuclear antigen (PCNA), Cyclin D1, Bcl-2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and caspase-3 were determined. The effects of both miR-329 and PTTG1 on cell proliferation, cell-cycle distribution, and apoptosis were also assayed. The miR-329 was likely to affect the CCA development through regulation of the PTTG1-mediated mitogen-activated protein kinase (MAPK) signaling pathway. The miR-329 targeted PTTG1, leading to inactivation of the MAPK signaling pathway. Upregulation of miR-329 and silencing of PTTG1 inhibited the CCA cell proliferation, induced cell-cycle arrest, and subsequently promoted apoptosis with elevations in Bax, cleaved caspase-3, and total caspase-3, but showed declines in PCNA, Cyclin D1, and Bcl-2. Moreover, miR-329 was also found to suppress the tumor growth by downregulation of PTTG1. To summarize, miR-329 inhibited the expression of PTTG1 to inactivate the MAPK signaling pathway, thus suppressing the CCA progression, thereby providing a therapeutic basis for the CCA treatment.  相似文献   

6.
7.
Controversy exists regarding the suitability of fully developed versus measured inlet velocity profiles for image-based computational fluid dynamics (CFD) studies of carotid bifurcation hemodynamics. Here, we attempt to resolve this by investigating the impact of the reconstructed common carotid artery (CCA) inlet length on computed metrics of "disturbed" flow. Twelve normal carotid bifurcation geometries were reconstructed from contrast-enhanced angiograms acquired as part of the Vascular Aging--The Link That Bridges Age to Atherosclerosis study (VALIDATE). The right carotid artery lumen geometry was reconstructed from its brachiocephalic origin to well above the bifurcation, and the CCA was truncated objectively at locations one, three, five, and seven diameters proximal to where it flares into the bifurcation. Relative to the simulations carried out using the full CCA, models truncated at one CCA diameter strongly overestimated the amount of disturbed flow. Substantial improvement was offered by using three CCA diameters, with only minor further improvement using five CCA diameters. With seven CCA diameters, the amounts of disturbed flow agreed unambiguously with those predicted by the corresponding full-length models. Based on these findings, we recommend that image-based CFD models of the carotid bifurcation should incorporate at least three diameters of CCA length if fully developed velocity profiles are to be imposed at the inlet. The need for imposing measured inlet velocity profiles would seem to be relevant only for those cases where the CCA is severely truncated.  相似文献   

8.
Cholangiocellular carcinoma (CCA) of the liver was the target of more interest, recently, due mainly to its increased incidence and possible association to new environmental factors. Somatic mitochondrial DNA (mtDNA) mutations have been found in several cancers. Some of these malignancies contain changes of mtDNA, which are not or, very rarely, found in the mtDNA databases. In terms of evolutionary genetics and oncology, these data are extremely interesting and may be considered a sign of poor fitness, which may conduct in some way to different cellular processes, including carcinogenesis. MitoChip analysis is a strong tool for investigations in experimental oncology and was carried out on three CCA cell lines (HuCCT1, Huh-28 and OZ) with different outcome in human and a Papova-immortalized normal hepatocyte cell line (THLE-3). Real time quantitative PCR, western blot analysis, transmission electron microscopy, confocal laser microscopy, and metabolic assays including L-Lactate and NAD+/NADH assays were meticulously used to identify mtDNA copy number, oxidative phosphorylation (OXPHOS) content, ultrastructural morphology, mitochondrial membrane potential (ΔΨm), and differential composition of metabolites, respectively. Among 102 mtDNA changes observed in the CCA cell lines, 28 were non-synonymous coding region alterations resulting in an amino acid change. Thirty-eight were synonymous and 30 involved ribosomal RNA (rRNA) and transfer RNA (tRNA) regions. We found three new heteroplasmic mutations in two CCA cell lines (HuCCT1 and Huh-28). Interestingly, mtDNA copy number was decreased in all three CCA cell lines, while complexes I and III were decreased with depolarization of mitochondria. L-Lactate and NAD+/NADH assays were increased in all three CCA cell lines. MtDNA alterations seem to be a common event in CCA. This is the first study using MitoChip analysis with comprehensive metabolic studies in CCA cell lines potentially creating a platform for future studies on the interactions between normal and neoplastic cells.  相似文献   

9.
The universally conserved CCA sequence is present at the 3′ terminal 74–76 positions of all active tRNA molecules as a functional tag to participate in ribosome protein synthesis. The CCA enzyme catalyzes CCA synthesis in three sequential steps of nucleotide addition at rapid and identical rates. However, the kinetic determinant of each addition is unknown, thus limiting the insights into the kinetic basis of CCA addition. Using our recently developed single turnover kinetics of Escherichia coli CCA enzyme as a model, we show here that the identical rate of the stepwise CCA addition is determined by distinct kinetic parameters. Specifically, the kinetics of C74 and C75 addition is controlled by the chemistry of nucleotidyl transfer, whereas the kinetics of A76 addition is controlled by a prechemistry conformational transition of the active site. In multiple turnover condition, all three steps are controlled by slow product release, indicating enzyme processivity from one addition to the next. However, the processivity decreases as the enzyme progresses to complete the CCA synthesis. Together, these results suggest the existence of a network of diverse kinetic parameters that determines the overall rate of CCA addition for tRNA maturation.  相似文献   

10.
11.
Herein, we have identified cross-talk between the Hippo and fibroblast growth factor receptor (FGFR) oncogenic signaling pathways in cholangiocarcinoma (CCA). Yes-associated protein (YAP) nuclear localization and up-regulation of canonical target genes was observed in CCA cell lines and a patient-derived xenograft (PDX). Expression of FGFR1, -2, and -4 was identified in human CCA cell lines, driven, in part, by YAP coactivation of TBX5. In turn, FGFR signaling in a cell line with minimal basal YAP expression induced its cellular protein expression and nuclear localization. Treatment of YAP-positive CCA cell lines with BGJ398, a pan-FGFR inhibitor, resulted in a decrease in YAP activation. FGFR activation of YAP appears to be driven largely by FGF5 activation of FGFR2, as siRNA silencing of this ligand or receptor, respectively, inhibited YAP nuclear localization. BGJ398 treatment of YAP-expressing cells induced cell death due to Mcl-1 depletion. In a YAP-associated mouse model of CCA, expression of FGFR 1, 2, and 4 was also significantly increased. Accordingly, BGJ398 treatment was tumor-suppressive in this model and in a YAP-positive PDX model. These preclinical data suggest not only that the YAP and Hippo signaling pathways culminate in an Mcl-1-regulated tumor survival pathway but also that nuclear YAP expression may be a biomarker to employ in FGFR-directed therapy.  相似文献   

12.
13.
Cholangiocarcinoma (CCA) is the second widespread liver tumor with relatively poor survival. Increasing evidence in recent studies showed long noncoding RNAs (lncRNAs) exert a crucial impact on the development and progression of CCA based on the mechanism of competing endogenous RNAs (ceRNAs). However, functional roles and regulatory mechanisms of lncRNA-regulated ceRNA in CCA, are only partially understood. The expression profile of messenger RNAs (mRNAs), lncRNAs, and microRNAs (miRNAs) downloaded from The Cancer Genome Atlas were comprehensively investigated. Differential expression of these three types of RNA between CCA and corresponding precancerous tissues were screened out for further analysis. On the basis of interactive information generated from miRDB, miRTarBase, TargetScan, and miRcode public databases, we then constructed an mRNA-miRNA-lncRNA regulatory network. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were conducted to identify the biological function of the ceRNA network involved in CCA. As a result, 2883 mRNAs, 136 miRNAs, and 993 lncRNAs were screened out as differentially expressed RNAs in CCA. In addition, a ceRNA network in CCA was constructed, composing of 50 up and 27 downregulated lncRNAs, 14 up and 7 downregulated miRNAs, 29 up and 25 downregulated mRNAs. Finally, gene set enrichment and pathway analysis indicated our CCA-specific ceRNA network was related with cancer-related pathway and molecular function. In conclusion, our research identified a novel lncRNA-related ceRNA network in CCA, which might act as a potential therapeutic target for patients with CCA.  相似文献   

14.
A fraction of the so-called mitochondrial soluble proteins was obtained after the destruction of purified mitochondria by sonication according to the previously found approach to the identification of protein subsets of the Bos taurus heart proteome. A tryptic destruction of these proteins was achieved. Approximately half of the tryptic hydrolysate was separated into two fractions of cysteine-containing and cysteine-free peptides by covalent chromatography on Thiopropyl Sepharose 4B. The cysteine-containing peptides were modified by iodoacetamide. The peptides were mass-spectrometrically identified in all the three fractions of tryptic hydrolysate, and the proteins were searched for in the amino acid sequence databases. There were 213 unique proteins reliably identified.  相似文献   

15.
胆管癌是一种起病隐匿、侵袭性强、致死率高的原发性恶性肿瘤。多聚嘧啶区结合蛋白1(polypyrimidine tract-binding protein 1, PTBP1)已被报道,在多种类型肿瘤组织中异常高表达并参与癌症进展,但其在胆管癌中的作用仍未见报道。该研究旨在探讨PTBP1在胆管癌中的生物学功能,并初步解析其分子机制。本文利用公开的癌症基因组图谱(the cancer genome atlas, TCGA)数据,分析了胆管癌及癌旁组织中的PTBP1 mRNA表达水平。结果显示,PTBP1在胆管癌组织中的表达水平显著高于癌旁组织(P < 0.05)。随后,在胆管癌细胞系RBE和HuH28中,通过CCK-8和细胞平板克隆实验,评价了PTBP1对胆管癌细胞生长能力的影响。结果显示,过表达PTBP1可显著促进胆管癌细胞的生长(P < 0.01),而敲低PTBP1显著抑制胆管癌细胞的生长(P < 0.001)。Transwell和Invasion实验结果显示,过表达PTBP1可显著促进胆管癌细胞的迁移和侵袭(P < 0.001),而敲低PTBP1显著抑制胆管癌细胞的迁移和侵袭(P < 0.001)。转录物组测序和通路富集分析结果显示,在胆管癌细胞中,敲低PTBP1后上调表达的基因显著富集于p53信号通路;而下调表达的基因显著富集于胆固醇代谢、Rho GTPase和TGF-β等信号通路。基于上述转录物组测序数据,本文还分析发现,敲低PTBP1可导致一系列基因发生异常的mRNA可变剪接事件,例如参与TGF-β调控的TGIF1及与p53活性相关的GNAS基因等。综上所述,PTBP1可能通过调控一系列基因的可变剪接而影响多个癌症相关的信号通路,从而促进胆管癌的进展。  相似文献   

16.
17.
采用协惯量分析(PCA-CA COIA)和典范对应分析(CCA)两种排序方法, 对北京小龙门林场的黄檗 (Phellodendron amurense)群落进行了分析, 并用Spearman秩相关系数检验了对应排序轴的相关性。两种排序方法得出的结果基本一致, 两者的第一排序轴都反映了海拔高度和坡向对群落分布的影响, 而各自第二、第三排序轴所代表的环境意义有所差异, 并出现了交叉, 但是两者的前3个排序轴均反映了海拔、坡位、土壤厚度和凋落物层厚度的变化趋势, 说明在环境因子个数较少或共线性效应不明显的情况下, 协惯量分析也能达到CCA的分析效果, 并且在排序轴特征值解释量上高于典范对应分析。  相似文献   

18.
With the aim to evaluate the circulating cathodic antigen (CCA) levels in relation to the different clinical phases of Schistosoma sp. infection a sandwich ELISA using monoclonal antibody 5H11 was performed. The sera of three groups of 25 Brazilian patients with acute, intestinal and hepatosplenic forms of S. mansoni infection were tested and compared to a non-infected control group. Patients and control groups were matched for age and sex and the number of eggs per gram of feces was equally distributed among the three patient groups. Sensitivity of 100%, 72%, 52% of the assay was observed for the intestinal, hepatosplenic and acute toxemic groups respectively. The specificity was 100%. Intestinal and hepatosplenic groups presented CCA levels significantly higher in comparison to those observed for acute patients (F-ratio = 2,524; p = 0.000 and F-ratio = 6,314; p = 0.015 respectively). There was no significant difference of CCA serum levels between hepatosplenic and intestinal groups (F-ratio = 1,026; p = 0.316).  相似文献   

19.
In nucleic acid polymerization reaction, pyrophosphorolysis is the reversal of nucleotide addition, in which the terminal nucleotide is excised in the presence of inorganic pyrophosphate (PPi). The CCA enzymes are unusual RNA polymerases, which catalyze CCA addition to positions 74-76 at the tRNA 3′ end without using a nucleic acid template. To better understand the reaction mechanism of CCA addition, we tested pyrophosphorolysis of CCA enzymes, which are divided into two structurally distinct classes. Here, we show that only class II CCA enzymes catalyze pyrophosphorolysis and that the reaction can initiate from all three CCA positions and proceed processively until the removal of nucleotide C74. Pyrophosphorolysis of class II enzymes establishes a fundamental difference from class I enzymes, and it is achieved only with the tRNA structure and with specific divalent metal ions. Importantly, pyrophosphorolysis enables class II enzymes to efficiently remove an incorrect A75 nucleotide from the 3′ end, at a rate much faster than the rate of A75 incorporation, suggesting the ability to perform a previously unexpected quality control mechanism for CCA synthesis. Measurement of kinetic parameters of the class II Escherichia coli CCA enzyme reveals that the enzyme catalyzes pyrophosphorolysis slowly relative to the forward nucleotide addition and that it exhibits weak binding affinity to PPi relative to NTP, suggesting a mechanism in which PPi is rapidly released after each nucleotide addition as a driving force to promote the forward synthesis of CCA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号