首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths worldwide. More than 90% of primary HCC is HCC. Hepatitis C virus (HCV) infection and alcohol consumption have been widely accepted as two major risk factors for developing HCC. Herein, we aimed to identify DNA methylation genes related to both HCV infection and alcohol consumption. In this study, we identified methylation genes that were associated with the risk of HCV infection and alcohol consumption, respectively, by a large-scale bioinformatic analysis. Through PPI network analysis, we revealed the associations between the two types of genes and found six hub genes—TAF1, SAT1, Phospholipase C-beta 2, FGD1, ARHGAP4, and ARHGEF9—that may be associated with both HCV infection and alcohol consumption. Gene Ontology enrichment analysis was used to analyze the function which these genes in the network enriched. Among them, TAF1, SAT1, and ARHGEF9 were methylated genes that have been found to be related to tumor progression in HCC patients. Through independent data sets, we verified the methylation pattern of these six genes in HCC samples that had both HCV infection and alcohol consumption risks. Furthermore, we found that three of the six methylated genes were also associated with the prognosis of HCC patients. To summarize, we identified six hub genes that were associated with both HCV infection and alcohol consumption in the progress of HCC. The six methylation genes that might play an important role in both HCV infection and alcohol consumption would be potential therapy targets for HCC.  相似文献   

2.
Epidemiological studies have validated the association between hepatitis C virus (HCV) infection and hepatocellular carcinoma (HCC). An increasing number of studies show that protein-protein interactions (PPIs) between HCV proteins and host proteins play a vital role in infection and mediate HCC progression. In this work, we collected all published interaction between HCV and human proteins, which include 455 unique human proteins participating in 524 HCV-human interactions. Then, we construct the HCV-human and HCV-HCC protein interaction networks, which display the biological knowledge regarding the mechanism of HCV pathogenesis, particularly with respect to pathogenesis of HCC. Through in-depth analysis of the HCV-HCC interaction network, we found that interactors are enriched in the JAK/STAT, p53, MAPK, TNF, Wnt, and cell cycle pathways. Using a random walk with restart algorithm, we predicted the importance of each protein in the HCV-HCC network and found that AKT1 may play a key role in the HCC progression. Moreover, we found that NS5A promotes HCC cells proliferation and metastasis by activating AKT/GSK3β/β-catenin pathway. This work provides a basis for a detailed map tracking new cellular interactions of HCV and identifying potential targets for HCV-related hepatocellular carcinoma treatment.  相似文献   

3.
Epigenetic silencing of tumour suppressor genes has been observed in various cancers. Looking at hepatocellular carcinoma (HCC) specific protein silencing was previously demonstrated to be associated with the Hepatitis C virus (HCV). However, the proposed HCV dependent promoter methylation of DNA mismatch repair (MMR) genes and thereby enhanced progression of hepatocarcinogenesis has been the subject of controversial discussion. We investigated promoter methylation pattern of the MMR genes MLH1, MSH2 and PMS2 as well as the cyclin-dependent kinase inhibitor 2A gene (p16) in 61 well characterized patients with HCCs associated with HCV, Hepatitis B virus infection or alcoholic liver disease. DNA was isolated from formalin-fixed, paraffin-embedded tumour and non-tumour adjacent tissue and analysed by methylation-specific PCR. Moreover, microsatellite analysis was performed in tissues showing methylation in MMR gene promoters. Our data demonstrated that promoter methylation of MLH1, MSH2, PMS2 and p16 is present among all considered HCCs. Hereby, promoter silencing was detectable more frequently in advanced-stage HCCs than in low-stage ones. However, there was no significant correlation between aberrant DNA methylation of MMR genes or p16 and HCV infection in related HCC specimens. In summary, we show that promoter methylation of essential MMR genes and p16 is detectable in HCCs most dominantly in pT3 stage tumour cases. Since loss of MMR proteins was previously described to be not only responsible for tumour development but also for chemotherapy resistance, the knowledge of mechanisms jointly responsible for HCC progression might enable significant improvement of individual HCC therapy in the future.  相似文献   

4.
Hepatocellular carcinomas (HCCs) are a heterogeneous group of tumors that differ in risk factors and genetic alterations. In Italy, particularly Southern Italy, chronic hepatitis C virus (HCV) infection represents the main cause of HCC. Using high-density oligoarrays, we identified consistent differences in gene-expression between HCC and normal liver tissue. Expression patterns in HCC were also readily distinguishable from those associated with liver metastases. To characterize molecular events relevant to hepatocarcinogenesis and identify biomarkers for early HCC detection, gene expression profiling of 71 liver biopsies from HCV-related primary HCC and corresponding HCV-positive non-HCC hepatic tissue, as well as gastrointestinal liver metastases paired with the apparently normal peri-tumoral liver tissue, were compared to 6 liver biopsies from healthy individuals. Characteristic gene signatures were identified when normal tissue was compared with HCV-related primary HCC, corresponding HCV-positive non-HCC as well as gastrointestinal liver metastases. Pathway analysis classified the cellular and biological functions of the genes differentially expressed as related to regulation of gene expression and post-translational modification in HCV-related primary HCC; cellular Growth and Proliferation, and Cell-To-Cell Signaling and Interaction in HCV-related non HCC samples; Cellular Growth and Proliferation and Cell Cycle in metastasis. Also characteristic gene signatures were identified of HCV-HCC progression for early HCC diagnosis.

Conclusions

A diagnostic molecular signature complementing conventional pathologic assessment was identified.  相似文献   

5.
Epigenetic mechanisms maintain heritable changes in gene expression and chromatin organization over many cell generations. Importantly, deregulated epigenetic mechanisms play a key role in a wide range of human malignancies, including liver cancer. Hepatocellular carcinoma (HCC), which originates from the hepatocytes, is by far the most common liver cancer, with rates and aetiology that show considerable geographic variation. Various environmental agents and lifestyles known to be risk factors for HCC (such as infection by hepatitis B virus (HBV) and hepatitis C virus (HCV), chronic alcohol intake, and aflatoxins) are suspected to promote its development by eliciting epigenetic changes, however the precise gene targets and underlying mechanisms have not been elucidated. Many recent studies have exploited conceptual and technological advances in epigenetics and epigenomics to investigate the role of epigenetic events induced by environmental factors in HCC tumors and non-tumor precancerous (cirrhotic) lesions. These studies have identified a large number of genes and pathways that are targeted by epigenetic deregulation (changes in DNA methylation, histone modifications and RNA-mediated gene silencing) during the development and progression of HCC. Frequent identification of aberrant epigenetic changes in specific genes in cirrhotic tissue is consistent with the notion that epigenetic deregulation of selected genes in pre-malignant lesions precedes and promotes the development of HCC. In addition, several lines of evidence argue that some environmental factors (such as HBV virus) may abrogate cellular defense systems, induce silencing of host genes and promote HCC development via an "epigenetic strategy". Finally, profiling studies reveal that HCC tumors and pre-cancerous lesions may exhibit epigenetic signatures associated with specific risk factors and tumor progression stage. Together, recent evidence underscores the importance of aberrant epigenetic events induced by environmental factors in liver cancer and highlights potential targets for biomarker discovery and future preventive and therapeutic strategies.  相似文献   

6.
Hepatitis C virus core protein: intriguing properties and functional relevance   总被引:21,自引:0,他引:21  
Hepatitis C virus (HCV) often causes a prolonged and persistent infection, and an association between hepatocellular carcinoma (HCC) and HCV infection has been noted. The pathogenesis of liver damage is at least in part related to virus-mediated factors. Understanding the molecular basis of pathogenesis is a major challenge in gaining insight into HCV-associated disease progression. Recent experimental evidence using HCV cloned genomic regions suggests that the core protein has numerous functional activities. These include its likely role in encapsidation of viral RNA, a regulatory effect on cellular and unrelated viral promoters, interactions with a number of cellular proteins, an modulatory role in programmed cell death or apoptosis under certain conditions, involvement in cell growth promotion and immortalization, induction of HCC in transgenic mice, and a possible immunoregulatory role. These intriguing properties suggest that the core protein, in concert with cellular factors, may contribute to pathogenesis during persistent HCV infection.  相似文献   

7.
丙型肝炎是由丙型肝炎病毒(hepatitis C virus,HCV)引起的一种肝脏疾病。肝细胞癌(hepatocellular carcinoma,HCC)是人类最常见的恶性肿瘤之一。大量实验和临床研究表明,HCV的感染是导致肝细胞癌的主要因素之一。尽管目前可以通过直接抗病毒药物治疗HCV感染,但是患肝细胞癌的风险仍然存在。HCV诱发肝细胞癌是一个多步骤过程,其可能是通过病毒因子直接作用和/或通过引起慢性炎症诱发肝癌。因此,需要更好地了解HCV诱发肝细胞癌的分子机制,为肝细胞癌的防治提供研究基础。本文就近年来国内外对丙型肝炎病毒直接作用诱发肝细胞癌的分子机制进行综述,具体从血管生成、细胞凋亡、细胞增殖、上皮 间质转化、脂肪变性和氧化应激6个方面进行阐述,以期更好地了解HCV诱发肝细胞癌的分子机制,为肝细胞癌的防治提供研究基础。  相似文献   

8.
丙型肝炎是由丙型肝炎病毒(hepatitis C virus,HCV)引起的一种肝脏疾病。肝细胞癌(hepatocellular carcinoma,HCC)是人类最常见的恶性肿瘤之一。大量实验和临床研究表明,HCV的感染是导致肝细胞癌的主要因素之一。尽管目前可以通过直接抗病毒药物治疗HCV感染,但是患肝细胞癌的风险仍然存在。HCV诱发肝细胞癌是一个多步骤过程,其可能是通过病毒因子直接作用和/或通过引起慢性炎症诱发肝癌。因此,需要更好地了解HCV诱发肝细胞癌的分子机制,为肝细胞癌的防治提供研究基础。本文就近年来国内外对丙型肝炎病毒直接作用诱发肝细胞癌的分子机制进行综述,具体从血管生成、细胞凋亡、细胞增殖、上皮 间质转化、脂肪变性和氧化应激6个方面进行阐述,以期更好地了解HCV诱发肝细胞癌的分子机制,为肝细胞癌的防治提供研究基础。  相似文献   

9.
10.
Hepatitis C virus infection is one of the most common and chronic in the world, and hepatitis associated with HCV infection is a major risk factor for the development of cirrhosis and hepatocellular carcinoma (HCC). The rapidly growing number of viral-host and host protein-protein interactions is enabling more and more reliable network-based analyses of viral infection supported by omics data. The study of molecular interaction networks helps to elucidate the mechanistic pathways linking HCV molecular activities and the host response that modulates the stepwise hepatocarcinogenic process from preneoplastic lesions (cirrhosis and dysplasia) to HCC. Simulating the impact of HCV-host molecular interactions throughout the host protein-protein interaction (PPI) network, we ranked the host proteins in relation to their network proximity to viral targets. We observed that the set of proteins in the neighborhood of HCV targets in the host interactome is enriched in key players of the host response to HCV infection. In opposition to HCV targets, subnetworks of proteins in network proximity to HCV targets are significantly enriched in proteins reported as differentially expressed in preneoplastic and neoplastic liver samples by two independent studies. Using multi-objective optimization, we extracted subnetworks that are simultaneously “guilt-by-association” with HCV proteins and enriched in proteins differentially expressed. These subnetworks contain established, recently proposed and novel candidate proteins for the regulation of the mechanisms of liver cells response to chronic HCV infection.  相似文献   

11.
12.
miR-122是在肝脏特异高表达的一种microRNA。研究表明:生理状态下,miR-122 在调控肝脏的细胞发育、诱导细胞分化、调节细胞代谢、参与肝细胞应急应答等生命活动过程中发挥重要作用;而在病理状态下,miR-122 与丙型肝炎病毒(HCV)和肝细胞肝癌(HCC)密切相关,可能促进HCV RNA 复制,并在HCC发生、发展过程中发挥抑癌基因样作用,可能对HCC 临床诊断和预后具有重要价值。鉴于miR-122 参与调控肝脏生理及肝脏重大疾病的发生、发展等过程,文章详细阐述并讨论miR-122 在肝脏中的生物学特性和功能,以及可能的作用机制。肝脏特异性miR-122 有可能作为治疗人类肝脏疾病的关键靶点。  相似文献   

13.
Hepatocellular carcinoma (HCC) is a major cause of death in Japan. It has been suggested that hepatitis C virus (HCV) plays an important role in hepatocarcinogenesis, because of high incidence among the patients. To understand the mechanism of hepatocarcinogenesis after HCV infection, we performed a comparative study on the protein profiles between tumorous and nontumorous specimens from the patients infected with HCV by means of two-dimensional electrophoresis. Eleven spots were decreased in HCC tissues from over 50% of the patients. Eight proteins out of 11 spots were identified using peptide mass fingerprinting with matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. These proteins were liver type aldolase, tropomyosin beta-chain, ketohexokinase, enoyl-CoA hydratase, albumin, smoothelin, ferritin light chain, and arginase 1. The intensity of enoyl-CoA hydratase, tropomyosin beta-chain, ketohexokinase, liver type aldolase, and arginase 1 was significantly different (p < 0.05). The decrease of 8 proteins was characteristic in HCC. We will discuss the implication of these proteins for the loss of function of hepatocytes and for the possibility of carcinogenesis of HCV-related HCC.  相似文献   

14.
Lai YH  Li ZC  Chen LL  Dai Z  Zou XY 《Journal of Proteomics》2012,75(8):2500-2513
A proteome-wide network approach was performed to characterize significant patterns of influenza A virus (IAV)-human interactions, and to further identify potentially valuable targets for prophylactic and therapeutic interventions. Topological analysis demonstrated a strong tendency for IAV to interplay with highly connected and central proteins located in sparsely connected sub-networks. Additionally, functional analysis based on biological process revealed a number of functional groups overrepresented for IAV interactions, in which regulation of cell death and apoptosis, and phosphorus metabolic process is the most highly enriched. In order to investigate whether these topological and biological features are significant enough to distinguish IAV targets from human proteome, a discrimination model was constructed based on these features using support vector machine coupled with genetic algorithm. The average result of overall prediction accuracy is 71.04% by leave-one-out across validation test. The optimized classifier was then applied to 9706 human proteins. As a result, 1418 novel genes were identified from human interactome, some of which were experimentally validated by others' works to be important for IAV infection. The findings presented in this study might be important in discovering new drug targets for therapeutic treatments as well as revealing topological features and functional properties specific for viral infection.  相似文献   

15.
Hepatocellular carcinoma (HCC) is one of the most frequent malignancies in humans and in most cases a consequence of chronic infection of the liver by hepatotropic viruses (Hepatitis B Virus (HBV) and possibly Hepatitis C Virus (HCV)). Formation of HCC results from a stepwise process involving different preneoplastic lesions that reflect multiple genetic events, like protooncogene activation, tumor suppressor gene inactivation, and growth factor overor reexpression. Recent investigations have gained new insights into how these factors are activated and may interact. In addition, improved knowledge of the molecular biology of HBV has led to better understanding of its pleiotropic effects on induction and progression in hepatocarcinogenesis  相似文献   

16.
Little is known about the mechanisms underlying hepatocellular carcinoma (HCC). Some studies have focused on the role of HCV viral proteins in hepatocyte transformation. In this work we have compiled and analysed current articles regarding the impact of polymorphisms in the HCV core gene and protein on the development of HCC. An exhaustive search for full-text articles until November 2016 in PubMed database was performed using the MeSH keywords: ‘hepatitis C’, ‘polymorphisms’, ‘core’, ‘hepatocellular cancer’ and ‘hepatocarcinogenesis’. Nineteen full-text articles published between 2000 and 2016 were considered. Different articles associate not only the HCC development with polymorphisms at residues 70 and 91 in the core protein, but more with mortality and treatment response. Also, different polymorphisms were found in core and other viral proteins related to HCC development. Eleven articles reported that HCC development is significantly associated with Gln/His70, four associated it with Leu91 and two more associated it with both markers together. Additional studies are necessary, including those in different types of populations worldwide, to validate the possibility of the usability and influence in chronically HCV-infected patients as well as to observe their interaction with other risk factors or prognosis and genetic markers of the host.  相似文献   

17.
Relationships among gene expression levels may be associated with the mechanisms of the disease. While identifying a direct association such as a difference in expression levels between case and control groups links genes to disease mechanisms, uncovering an indirect association in the form of a network structure may help reveal the underlying functional module associated with the disease under scrutiny. This paper presents a method to improve the biological relevance in functional module identification from the gene expression microarray data by enhancing the structure of a weighted gene co-expression network using minimum spanning tree. The enhanced network, which is called a backbone network, contains only the essential structural information to represent the gene co-expression network. The entire backbone network is decoupled into a number of coherent sub-networks, and then the functional modules are reconstructed from these sub-networks to ensure minimum redundancy. The method was tested with a simulated gene expression dataset and case-control expression datasets of autism spectrum disorder and colorectal cancer studies. The results indicate that the proposed method can accurately identify clusters in the simulated dataset, and the functional modules of the backbone network are more biologically relevant than those obtained from the original approach.  相似文献   

18.
In the more than two-decades since hepatitis C virus (HCV) was identified, there has been considerable improvement in our understanding of virus life cycle due largely to the development of in vitro culture systems for virus replication. Still challenges remain: HCV infection is a major risk factor for chronic hepatitis, liver cirrhosis and hepatocellular carcinoma worldwide; yet mechanistic details of HCV infection-associated hepatocarcinogenesis remain incompletely understood. A protective vaccine is not yet available, and current therapeutic options result in sustained virus clearance only in a subset of patients. Recent interest has focused on small non-protein coding RNAs, microRNAs (miRNAs), the dependence of virus replication on miRNAs, and miRNA-regulated genes in liver cancer. Functional analysis of the miRNA-targeted genes in liver cancer has advanced our understanding of the "oncomiRs" and their role in hepatocarcinogenesis. This review focuses on the dependence of HCV replication on miRNA and role of miRNA-targeted tumor suppressor genes as molecular markers of and possible targets for developing oncomiR-targeted therapy of chronic hepatitis and HCC. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.  相似文献   

19.
Hepatitis C virus (HCV) is a major cause of chronic liver disease worldwide. Here we attempt to further our understanding of the biological context of protein interactions in HCV pathogenesis, by investigating interactions between HCV proteins Core and NS4B and human host proteins. Using the yeast two-hybrid (Y2H) membrane protein system, eleven human host proteins interacting with Core and 45 interacting with NS4B were identified, most of which are novel. These interactions were used to infer overall protein interaction maps linking the viral proteins with components of the host cellular networks. Core and NS4B proteins contribute to highly compact interaction networks that may enable the virus to respond rapidly to host physiological responses to HCV infection. Analysis of the interaction networks highlighted enriched biological pathways likely influenced in HCV infection. Inspection of individual interactions offered further insights into the possible mechanisms that permit HCV to evade the host immune response and appropriate host metabolic machinery. Follow-up cellular assays with cell lines infected with HCV genotype 1b and 2a strains validated Core interacting proteins ENO1 and SLC25A5 and host protein PXN as novel regulators of HCV replication and viral production. ENO1 siRNA knockdown was found to inhibit HCV replication in both the HCV genotypes and viral RNA release in genotype 2a. PXN siRNA inhibition was observed to inhibit replication specifically in genotype 1b but not in genotype 2a, while SLC25A5 siRNA facilitated a minor increase in the viral RNA release in genotype 2a. Thus, our analysis can provide potential targets for more effective anti-HCV therapeutic intervention.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号