首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to prepare and characterize beads of Gelucire 43/01 for floating delivery of metformin hydrochloride (MH). The beads were evaluated for particle size, surface morphology, percent drug entrapment, percent yield, differential scanning calorimetry (DSC), in vitro floating ability, and in vitro drug release. Aging effect on storage was evaluated using hot stage microscopy (HSM), DSC, scanning electron microscopy, and in vitro floating ability. The formed beads were sufficiently hard and spherical in shape. Photomicrographs show that the surface was porous in nature. The average particle diameter of beads was found to be in the size range of 3.85 to 3.95 mm, and percent entrapment was 83.07% to 86.13%. The beads demonstrated favorable in vitro floating ability. The analysis of DSC thermograms revealed no physical interaction between the lipid and the drug in the prepared beads. Prepared formulations showed better controlled release behavior when compared with its conventional dosage form and comparable release profile with marketed sustained release product. HSM photomicrograph showed presence of some unmelted portion even at 43°C and completely melts on 51°C in aged sample. It was found that there was no significant effect on floating ability of aged beads since it remains floats up to 8 h study period. Thus, it is concluded that beads of Gelucire 43/01 could be serve as an effective carrier for highly water-soluble antihyperglycemic drugs like MH for the controlled delivery.  相似文献   

2.
The present work investigates the feasibility of the design of a novel floating elementary osmotic pump tablet (FEOPT) to prolong the gastric residence of a highly water-soluble drug. Diethylcarbamazine citrate (DEC) was chosen as a model drug. The FEOPT consisted of an osmotic core (DEC, mannitol, and hydrophilic polymers) coated with a semipermeable layer (cellulose acetate) and a gas-generating gelling layer (sodium bicarbonate, hydrophilic polymers) followed by a polymeric film (Eudragit RL 30D). The effect of formulation variables such as concentration of polymers, types of diluent, and coat thickness of semipermeable membrane was evaluated in terms of physical parameters, floating lag time, duration of floatation, and in vitro drug release. The Fourier transform infrared and X-ray diffraction analysis were carried out to study the physicochemical changes in the drug excipients powder blend. The integrity of the orifice and polymeric film layer was confirmed from scanning electron microscopy image. All the developed FEOPT showed floating lag time of less than 8 min and floating duration of 24 h. A zero-order drug release could be attained for DEC. The formulations were found to be stable up to 3 months of stability testing at 40°C/75% relative humidity.  相似文献   

3.
Preventive and therapeutic efficacies of resveratrol on several lower gastrointestinal (GI) diseases (e.g., colorectal cancer, colitis) are well documented. To overcome the problems due to its rapid absorption and metabolism at the upper GI tract, a delayed release formulation of resveratrol was designed to treat these lower GI diseases. The current study aimed to develop a delayed release formulation of resveratrol as multiparticulate pectinate beads by varying different formulation parameters. Zinc-pectinate (Zn-pectinate) beads exhibited better delayed drug release pattern than calcium-pectinate (Ca-pectinate) beads. The effects of the formulation parameters were investigated on shape, size, Zn content, moisture content, drug encapsulation efficiency, swelling–erosion, and resveratrol retention pattern of the formulated beads. Upon optimization of the formulation parameters in relative to the drug release profiles, the optimized beads were further subjected to morphological, chemical interaction, enzymatic degradation, and stability studies. Almost all prepared beads were spherical with ∼1 mm diameter and efficiently encapsulated resveratrol. The formulation parameters revealed great influence on resveratrol retention and swelling–erosion behavior. In most of the cases, the drug release data more appropriately fitted with zero-order equation. This study demonstrates that the optimized Zn-pectinate beads can encapsulate very high amount of resveratrol and can be used as delayed release formulation of resveratrol.  相似文献   

4.
The aim of the study was to develop single-unit tablet in capsule system of aceclofenac for the treatment of late night pain and morning stiffness associated with rheumatoid arthritis. The system was conceptualized as a three-component design (1) a hard gelatin enteric-coated capsule (for carrying two pulses), (2) first-pulse granules (for rapid release in intestine), and (2) second-pulse matrix tablet (for slow release in colon). An appropriate integration of pH-sensitive (Eudragit S100) and bacteria-responsive (inulin) functions, on the basis of 32 factorial design, led to formulation of TICS 1–9 that were screened for in vitro release. TICS 2 with biphasic drug release of 98.64% from first-pulse granules in simulated intestinal fluid (12 h) and 97.82% from second-pulse matrix tablet in simulated colonic fluid (24 h) was the optimized formulation that exhibited Fickian diffusion of drug (n = 0.363). In vivo fluoroscopy in rats traced the intact tablet to colon in 7.5 h that got eroded at the tenth hour. This demonstrated the colon-specific delivery of the matrix tablet affirming the potential of the system to obviate the need for two-time administration of drug at odd hours. The experimental design was validated by extra design check point, and diffuse reflectance spectroscopy and DSC revealed absence of chemical interaction between the formulation excipients.KEY WORDS: aceclofenac, in vitro release, in vivo fluoroscopy, multipulse delivery, tablet in capsule system  相似文献   

5.
Frequent instillation of terbinafine hydrochloride (T HCl) eye drops (0.25%, w/v) is necessary to maintain effective aqueous humor concentrations for treatment of fungal keratitis. The current approach aimed at developing potential positively charged controlled-release polymeric nanoparticles (NPs) of T HCl. The estimation of the drug pharmacokinetics in the aqueous humor following ocular instillation of the best-achieved NPs in rabbits was another goal. Eighteen drug-loaded (0.50%, w/v) formulae were fabricated by the nanopreciptation method using Eudragit® RS100 and chitosan (0.25%, 0.5%, and 1%, w/v). Soybean lecithin (1%, w/v) and Pluronic® F68 (0.5%, 1%, and 1.5%, w/v) were incorporated in the alcoholic and aqueous phases, respectively. The NPs were evaluated for particle size, zeta potential, entrapment efficiency percentage (EE%), morphological examination, drug release in simulated tear fluid (pH 7.4), Fourier-transform IR (FT-IR), X-ray diffraction (XRD), physical stability (2 months, 4°C and 25°C), and drug pharmacokinetics in the rabbit aqueous humor relative to an oily drug solution. Spherical, discrete NPs were successfully developed with mean particle size and zeta potential ranging from 73.29 to 320.15 nm and +20.51 to +40.32 mV, respectively. Higher EE% were achieved with Eudragit® RS100-based NPs. The duration of drug release was extended to more than 8 h. FT-IR and XRD revealed compatibility between inactive formulation ingredients and T HCl and permanence of the latter’s crystallinity, respectively. The NPs were physically stable, for at least 2 months, when refrigerated. F5-NP suspension significantly (P < 0.05) increased drug mean residence time and improved its ocular bioavailability; 1.657-fold.Key words: aqueous humor, chitosan, Eudragit® RS100, nanoparticles, terbinafine hydrochloride  相似文献   

6.
The aim of this work was to evaluate capability of site-specific delivery of a transdermal patch through determination of letrozole in local tissues disposition in female mice. After transdermal administration, the letrozole levels in skin, muscle, and plasma were 10.4–49.3 μg/g, 1.64–6.89 μg/g, and 0.35–1.64 μg/mL, respectively. However, after the mice received letrozole suspension, the drug concentration of plasma and muscle were 0.20–4.80 μg/mL and 0.15–2.38 μg/g. There was even no drug determined in skin through all experiments. Compared with oral administration, the transdermal patch for site-specific delivery of letrozole could produce high drug concentrations in skin and muscle and meanwhile obtain low drug level in plasma. These findings show that letrozole transdermal patch is an appropriate delivery system for application to the breast tumor region for site-specific drug delivery to obtain a high local drug concentration and low circulating drug concentrations avoiding the risk of systemic side effects.  相似文献   

7.
The objective of the present investigation was to reduce the bitterness with improved dissolution, in acidic medium (pH 1.2), of mefloquine hydrochloride (MFL). Microparticles were prepared by coacervation method using Eudragit E (EE) as polymer and sodium hydroxide as precipitant. A 32 full factorial design was used for optimization wherein the drug concentration (A) and polymer concentration (B) were selected as independent variables and the bitterness score, particle size and dissolution at various pH were selected as the dependent variables. The desirability function approach has been employed in order to find the best compromise between the different experimental responses. The model is further cross validated for bias. The optimized microparticles were characterized by FT-IR, DSC, XRPD and SEM. Bitterness score was evaluated by human gustatory sensation test. Multiple linear regression analysis revealed that the reduced bitterness of MFL can be obtained by controlling the dissolution of microparticles at pH 6.8 and increasing the EE concentration. The increase in polymer concentration leads to reduction in dissolution of microparticles at pH > 5 due to its insolubility. However the dissolution studies at pH 1.2 demonstrated enhanced dissolution of MFL from microparticles might be due to the high porosity of the microparticles, hydrophilic nature of the EE, and improved wettability, provided by the dissolved EE. The bitterness score of microparticles was decreased to zero compared to 3+ of pure ARM. In conclusion the bitterness of MFL was reduced with improved dissolution at acidic pH.  相似文献   

8.
The objective of the study was to investigate in vitro transdermal delivery of venlafaxine hydrochloride across the pigskin by passive diffusion and iontophoresis. For passive diffusion, experiments were carried out in Franz diffusion cell whereas for iontophoretic permeation, the diffusion cell was modified to contain both the donor and return electrode on the same side of skin. Anodal iontophoresis was carried out using a current density of 0.5 mA/cm2. Donor concentrations used were 585.5 mg/ml (saturated solution) and 100 mg/ml. Experiments initially performed to determine the transport efficiency of venlafaxine ions showed promising results. Iontophoresis increased the permeation rate at both concentration levels over their passive counterparts (P < 0.01), but surprisingly higher steady-state flux was obtained from lower donor drug load (P < 0.01). The favorable pH of the unsaturated solutions is suggested to be the cause for this effect. Mild synergistic effect was observed when iontophoresis was carried out incorporating peppermint oil in the donor but the same was not found in passive diffusion. Highest steady-state flux obtained in the experiment was 3.279 μmol/cm2/h when peppermint oil (0.1%) was included in the donor. As the maintenance requirement of venlafaxine hydrochloride is approximately 9.956 μmol/h, the results suggested that the drug is a promising candidate for iontophoretic delivery.  相似文献   

9.
Due to its extreme lipophilicity, the oral delivery of cinnarizine (CN) encounters several problems such as poor aqueous solubility and pH-dependent dissolution, which result in low and erratic bioavailability. The current study aims to design self-nanoemulsifying drug delivery systems (SNEDDS) of CN that circumvent such obstacles. Equilibrium solubility of CN was determined in a range of anhydrous and diluted lipid-based formulations. Dynamic dispersion tests were carried out to investigate the efficiency of drug release and magnitude of precipitation that could occur upon aqueous dilution. Droplet sizes of selected formulations, upon (1:1,000) aqueous dilution, were presented. The optimal formulations were enrolled in subsequent dissolution studies. The results showed that increasing lipid chain length and surfactant lipophilicity raised the formulation solvent capacity, while adding co-solvents provoked a negative influence. The inclusion of mixed glycerides and/or hydrophilic surfactants improved the drug release efficiency. Generally, no significant precipitation was observed upon aqueous dilution of the formulations. Five formulations were optimal in terms of their superior self-emulsifying efficiency, drug solubility, dispersion characteristics, and lower droplet size. Furthermore, the optimal formulations showed superior dissolution profile compared to the marketed (Stugeron®) tablet. Most importantly, they could resist the intensive precipitation observed with the marketed tablet upon shifting from acidic to alkaline media. However, SNEDDS containing medium-chain mixed glycerides showed the highest drug release rate and provide great potential to enhance the oral CN delivery. Accordingly, the lipid portion seems to be the most vital component in designing CN self-nanoemulsifying systems.  相似文献   

10.
Hsc70s are constitutively synthesized members of the 70-kDa chaperone family; they are essential for viability and conserved among all organisms. When eukaryotic cells recover from stress, hsc70s accumulate in nucleoli by an unknown mechanism. Our studies were undertaken to characterize the signaling events and the targeting sequence required to concentrate hsc70 in the nucleoli of human cells. Here, we show that pharmacological inhibitors of phosphatidylinositol (PI) 3-kinase and MEK kinases as well as protein-tyrosine phosphatases abolished the stress-dependent nucleolar accumulation of hsc70. Furthermore, to identify the hsc70 nucleolar targeting sequence, green fluorescent protein-tagged fusion proteins with defined segments of hsc70 were generated and their subcellular distribution was analyzed in growing cells. These studies demonstrated that residues 225 to 297 serve as a heat-inducible nucleolar targeting signal. This segment directs green fluorescent protein to nucleoli in response to stress, but fails to do so under nonstress conditions. Fine mapping of the nucleolar targeting signal revealed that it has two separable functions. First, residues 225 to 262 direct reporter proteins constitutively to nucleoli, even without stress. Second, segment 263 to 287 functions as an autoinhibitory element that prevents hsc70 from concentrating in nucleoli when cells are not stressed. Taken together, PI 3-kinase and MEK kinase signaling as well as tyrosine dephosphorylation are essential for the accumulation of hsc70 in nucleoli of stressed cells. This process relies on a stress-dependent composite targeting signal that combines multiple functions.  相似文献   

11.
The mathematical model of Abdekhodaie and Wu (J Membr Sci 335:21–31, 2009) of glucose-responsive composite membranes for closed-loop insulin delivery is discussed. The glucose composite membrane contains nanoparticles of an anionic polymer, glucose oxidase and catalase embedded in a hydrophobic polymer. The model involves the system of nonlinear steady-state reaction–diffusion equations. Analytical expressions for the concentration of glucose, oxygen and gluconic acid are derived from these equations using the Adomian decomposition method. A comparison of the analytical approximation and numerical simulation is also presented. An agreement between analytical expressions and numerical results is observed.  相似文献   

12.
The purpose of this work was to design and optimize a novel vaginal drug delivery system for more effective treatment against vaginal candidiasis. Itraconazole was formulated in bioadhesive film formulations that could be retained in the vagina for prolonged intervals. The polymeric films were prepared by solvent evaporation and optimized for various physicodynamic and aesthetic properties. In addition, percentage drug retained on vaginal mucosa was evaluated using a simulated dynamic vaginal system as function of time. A polymeric film containing 100 mg itraconazole per unit (2.5 cm × 2.5 cm) have been developed using generally regarded as safe listed excipients. The pH of vaginal film was found to be slightly acidic (4.90 ± 0.04) in simulated vaginal fluid and alkaline (7.04 ± 0.07) in water. The little moisture content (7.66 ± 0.51% w/w) was present in the film, which helps them to remain stable and kept them from being completely dry and brittle. The mechanical properties, tensile strength, and percentage elongation at break (9.64 N/mm2 and 67.56% for ITRF65) reveal that the formulations were found to be soft and tough. The films (ITRF65) contained solid dispersion of itraconazole (2.5)/hydroxypropyl cellulose (1)/polyethylene glycol 400 (0.5), which was found to be the optimal composition for a novel bioadhesive vaginal formulation, as they showed good peelability, relatively good swelling index, and moderate tensile strength and retained vaginal mucosa up to 8 h. Also, the film did not markedly affect normal vaginal flora (lactobacillus) and was noncytotoxic as indicated by the negligible decrease in cell viability.  相似文献   

13.
The objective of this study was to investigate the combined influence of independent variables in the preparation of folic acid-chitosan-methotrexate nanoparticles (FA-Chi-MTX NPs). These NPs were designed and prepared for targeted drug delivery in tumor. The NPs of each batch were prepared by coaxial electrospray atomization method and evaluated for particle size (PS) and particle size distribution (PSD). The independent variables were selected to be concentration of FA-chitosan, ratio of shell solution flow rate to core solution flow rate, and applied voltage. The process design of experiments (DOE) was obtained with three factors in three levels by Design expert software. Box-Behnken design was used to select 15 batches of experiments randomly. The chemical structure of FA-chitosan was examined by FTIR. The NPs of each batch were collected separately, and morphologies of NPs were investigated by field emission scanning electron microscope (FE-SEM). The captured pictures of all batches were analyzed by ImageJ software. Mean PS and PSD were calculated for each batch. Polynomial equation was produced for each response. The FE-SEM results showed the mean diameter of the core-shell NPs was around 304 nm, and nearly 30% of the produced NPs are in the desirable range. Optimum formulations were selected. The validation of DOE optimization results showed errors around 2.5 and 2.3% for PS and PSD, respectively. Moreover, the feasibility of using prepared NPs to target tumor extracellular pH was shown, as drug release was greater in the pH of endosome (acidic medium). Finally, our results proved that FA-Chi-MTX NPs were active against the human epithelial cervical cancer (HeLa) cells.  相似文献   

14.
Management of moderate or severe chronic pain conditions is the burden of clinicians dealing with patients trying to improve their quality of life and diminish their suffering. Although not a new opioid, tramadol has been recently rediscovered and widely used; this may be due to its favorable chronic safety and dependence profiles together with its high potency. Tramadol is a centrally acting analgesic with half-life of ~6 h; therefore, it requires frequent dosing. It is freely soluble in water; hence, judicious selection of retarding formulations is necessary. The current study is focused on the innovation of a novel, simple, monolayer, easy-to-use, cost-effective, and aesthetically acceptable bioadhesive transdermal delivery system overcoming the defects of the conventional “patch” as carrier system for tramadol, ensuring its adequate delivery, along with the physicochemical evaluation of the designed formulations. Monolithic tramadol matrix films of chitosan, different types of Eudragit®, and binary mixtures of both were prepared. As a single-polymer film, chitosan film showed best properties except for somewhat high moisture uptake capacity, insufficient strength and rapid release, and permeation. Polymer blends were monitored in order to optimize both properties and performance. Promising results were obtained, with chitosan–Eudragit® NE30D (1:1) film showing the most desirable combined, sufficiently rapid as well as prolonged release and permeation profiles along with satisfactory organoleptic and physicochemical properties.  相似文献   

15.
This study is an extrapolation of our previous one (part I) concerned with the formulation and physicochemical evaluation of a novel, simple, monolayer, easy-to-use, cost-effective, and aesthetically acceptable bioadhesive transdermal patch for tramadol hydrochloride. The current work is focused on bioadhesion, skin tolerability, and pharmacodynamic evaluation. Using naked rat skin, chitosan–Eudragit® NE30D (1:1) film attained best bioadhesive properties. During in vivo studies, it also showed a significantly extended analgesic effect compared to both oral formula and chitosan single polymeric film using the hot plate test method. All the polymeric films were skin tolerable for the intended period of application according to the Draize test. The success of our approach can proudly, positively contribute into the world of pain management and arguably push transdermal delivery to realize its great promise.  相似文献   

16.
The purpose of our investigation was to develop and optimize the drug entrapment efficiency and bioadhesion properties of mucoadhesive chitosan microspheres containing ranitidine HCl prepared by an ionotropic gelation method as a gastroretentive delivery system; thus, we improved their protective and therapeutic gastric effects in an ulcer model. A 3?×?22 full factorial design was adopted to study the effect of three different factors, i.e., the type of polymer at three levels (chitosan, chitosan/hydroxypropylmethylcellulose, and chitosan/methylcellulose), the type of solvent at two levels (acetic acid and lactic acid), and the type of chitosan at two levels (low molecular weight (LMW) and high molecular weight (HMW)). The studied responses were particle size, swelling index, drug entrapment efficiency, bioadhesion (as determined by wash-off and rinsing tests), and T 80% of drug release. Studies of the in vivo mucoadhesion and in vivo protective and healing effects of the optimized formula against gastric ulcers were carried out using albino rats (with induced gastric ulceration) and were compared to the effects of free ranitidine powder. A pharmacokinetic study in rabbits showed a significant, 2.1-fold increase in theAUC0–24of the ranitidine microspheres compared to free ranitidine after oral administration. The optimized formula showed higher drug entrapment efficiency and mucoadhesion properties and had more protective and healing effects on induced gastric ulcers in rats than ranitidine powder. In conclusion, the prolonged gastrointestinal residence time and the stability of the mucoadhesive microspheres of ranitidine as well as the synergistic healing effect of chitosan could contribute to increasing the potential of its anti-gastric ulcer activity.  相似文献   

17.
A multiunit floating drug delivery system of rosiglitazone maleate has been developed by encapsulating the drug into Eudragit® RS100 through nonaqueous emulsification/solvent evaporation method. The in vitro performances of microspheres were evaluated by yield (%), particle size analysis, drug entrapment efficiency, in vitro floating behavior, surface topography, drug–polymer compatibility, crystallinity of the drug in the microspheres, and drug release studies. In vitro release was optimized by a {3, 3} simplex lattice mixture design to achieve predetermined target release. The in vivo performance of the optimized formulation was evaluated in streptozotocin-induced diabetic rats. The results showed that floating microspheres could be successfully prepared with good yields (69–75%), high entrapment (78-97%), narrow size distribution, and desired target release with the help of statistical design of experiments from very small number of formulations. In vivo evaluation in albino rats suggested that floating microspheres of rosiglitazone could be a promising approach for better glycemic control.  相似文献   

18.
The objective of the study was to optimize the proportion of different components for formulating oil in water microemulsion formulation meant for simultaneous transdermal delivery of two poorly soluble antihypertensive drugs. Surface response methodology of Box-Behnken design was utilized to evaluate the effect of two oils (Captex 500 - x1 and Capmul MCM - x2) and surfactant (Acrysol EL135 - x3) on response y1 (particle size), y2 (solubility of valsartan), and y3 (solubility of nifedipine). The important factors which significantly affected the responses were identified and validated using ANOVA. The model was diagnosed using normal plot of residuals and Box-Cox plot. The design revealed an inverse correlation between particle size and concentration of Capmul MCM and Acrysol EL 135. However, an increase in concentration of Captex 500 led to an increase in particle size of microemulsion. Solubility of valsartan decreased while that of nifedipine increased with increase in concentration of Captex 500. Capmul MCM played a significant role in increasing the solubility of valsartan. The effect of Acrysol EL 135 on solubility of both drugs, although significant, was only marginal as compared to that of Captex 500 and Capmul MCM. The optimized microemulsion was able to provide an enhancement ratio of 27.21 and 63.57-fold for valsartan and nifedipine, respectively, with respect to drug dispersion in aqueous surfactant system when evaluated for permeation studies. The current studies candidly suggest the scope of microemulsion systems for solubilizing as well as promoting the transport of both drugs across rat skin at an enhanced permeation rate.  相似文献   

19.
The aim of this study was to design a polyethylene oxide (PEO) binary hydrophilic matrix controlled system and investigate the most important influence(s) on the in vitro water-insoluble drug release behavior of this controlled system. Direct-compressed PEO binary matrix tablets were obtained from a variety of low viscosity hydrophilic materials as a sustained agent, using anhydrous drugs as a model drug. Water uptake rate, swelling rate, and erosion rate of matrices were investigated for the evaluation of the PEO hydrophilic matrix systems. The effect of the dose, the solubility of water-insoluble drug, and the rheology of polymers on in vitro release were also discussed. Based on the in vitro release kinetics study, three optimized PEO binary matrices were selected for further research. And, these PEO binary matrices had shown the similar release behavior that had been evaluated by the similarity factor f 2. Further study indicated that they had identical hydration, swelling, and erosion rate. Moreover, rheology study exhibited the similar rheological equation of Herschel–Bulkley and their viscosity was also within the same magnitude. Therefore, viscosity plays the most important role to control drug release compared to other factors in PEO binary matrix system. This research provides fundamental understanding of in vitro drug release of PEO binary hydrophilic matrix tablets and helps pharmaceutical workers to develop a hydrophilic controlled system, which will effectively shorten the process of formulation development by reducing trial-and-error.  相似文献   

20.
采用星点设计-效应面法优化杉木枝叶中穗花杉双黄酮和金松双黄酮的提取工艺.以乙醇体积分数、料液比、提取时间为自变量,穗花杉双黄酮和金松双黄酮转移率的归一化值为因变量,通过对自变量与因变量的二次多项式拟合,采用效应面法选取较优的工艺条件,并进行预测分析.最终确定穗花杉双黄酮和金松双黄酮的最佳提取工艺为:乙醇体积分数为50%,料液比为1∶13,超声提取3次,每次提取60 min,最佳工艺验证结果与模型预测值相差-2.55%.结果表明:星点设计-效应面法优选的穗花杉双黄酮和金松双黄酮的提取工艺,方法简便、可靠.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号