首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delta1-pyrroline-5-carboxylate dehydrogenase (P5CDh) catalyzes the conversion of Delta1-pyrroline-5-carboxylate to glutamate in a reaction requiring NADP+ as a cofactor. Delta1-pyrroline-5-carboxylate is formed in liver from proline by proline oxidase (EC number not assigned) or from ornithine via ornithine aminotransferase. A spectrophotometric assay for P5CDh was shown to be valid if rotenone was included in the assay to prevent reoxidation of NADH. Using this new assay, liver was fractionated using differential centrifugation and the distribution of P5CDh was compared to that of appropriate marker enzymes. P5CDh is enriched only in the mitochondrial fractions, as are the mitochondrial enzymes, succinate cytochrome c reductase, proline oxidase, glutaminase, and ornithine aminotransferase. Thus, it can be concluded that P5CDh occurs only in mitochondria, not in both mitochondria and cytoplasm, as had previously been reported.  相似文献   

2.
Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDh) plays an important role in the metabolic pathway from proline to glutamate. It irreversibly catalyzes the oxidation of glutamate-gamma-semialdehyde, the product of the non-enzymatic hydrolysis of Delta(1)-pyrroline-5-carboxylate, into glutamate with the reduction of NAD(+) into NADH. We have confirmed the P5CDh activity of the Thermus thermophilus protein TT0033 (TtP5CDh), and determined the crystal structure of the enzyme in the ligand-free form at 1.4 A resolution. To investigate the structural basis of TtP5CDh function, the TtP5CDh structures with NAD(+), with NADH, and with its product glutamate were determined at 1.8 A, 1.9 A, and 1.4 A resolution, respectively. The solved structures suggest an overall view of the P5CDh catalytic mechanism and provide insights into the P5CDh deficiencies in the case of the human type II hyperprolinemia.  相似文献   

3.
The oxidation by mitochondria of various rat tissues of proline, pyrroline-5-carboxylate (P5C) and a number of aldehydes has been studied and ADP/O ratios determined for liver mitochondria. High oxidative activity for proline and P5C was found only in the liver and kidney. During the oxidation by liver and kidney mitochondria of proline and P5C; glutamate, ammonia, aspartate and some ornithine accumulated, thus suggesting that proline may normally be converted to ornithine by mitochondria. The oxidation of P5C (glutamic acid semialdehyde) by a mitochondrial dehydrogenase may be the same enzyme that oxidizes succinic acid semi-aldehyde but different from that oxidizing acetaldehyde.  相似文献   

4.
The oxidation of proline to glutamate in mitochondria requires two enzymes, proline oxidase and pyrroline 5-carboxylate (P5C) dehydrogenase. In this paper we report an 800-fold purification P5C dehydrogenase from rat liver mitochondria to yield an essentially homogenous protein. The protein, whose Mr is 59,000, is an alpha 2 dimer (Mr = 115,000) in solution with an isoionic point at pH 5.7. The substrates P5C and NAD+ have apparent dissociation constants of 0.16 and 1.0 mM, respectively. Studies have been conducted to see if the conversion of glutamate and NADH to P5C and NAD+ is catalyzed by this enzyme. These studies have established that if the reverse reaction occurs the rate is 1/15,000th of the rate at which P5C is oxidized to glutamate. The concentration of the substrates needed in the assay results in a high background that interferes with accurate spectrophotometric analysis of the rate of NADH production; therefore a radiochemical (2) or a new colorimetric (3) assay was used here. A number of aldehydes were tested as substrates. It was found that the rat and human enzymes (4) have similar requirements for an aldehyde to be a substrate. Both of these proteins interacted with a polyclonal rabbit anti-rat P5C dehydrogenase serum.  相似文献   

5.
Crystal structure of human pyrroline-5-carboxylate reductase   总被引:2,自引:0,他引:2  
Pyrroline-5-carboxylate reductase (P5CR) is a universal housekeeping enzyme that catalyzes the reduction of Delta(1)-pyrroline-5-carboxylate (P5C) to proline using NAD(P)H as the cofactor. The enzymatic cycle between P5C and proline is very important for the regulation of amino acid metabolism, intracellular redox potential, and apoptosis. Here, we present the 2.8 Angstroms resolution structure of the P5CR apo enzyme, its 3.1 Angstroms resolution ternary complex with NAD(P)H and substrate-analog. The refined structures demonstrate a decameric architecture with five homodimer subunits and ten catalytic sites arranged around a peripheral circular groove. Mutagenesis and kinetic studies reveal the pivotal roles of the dinucleotide-binding Rossmann motif and residue Glu221 in the human enzyme. Human P5CR is thermostable and the crystals were grown at 37 degrees C. The enzyme is implicated in oxidation of the anti-tumor drug thioproline.  相似文献   

6.
A method is described to express and purify human DNA (cytosine-5) methyltransferase (human DNMT1) using a protein splicing (intein) fusion partner in a baculovirus expression vector. The system produces approximately 1 mg of intact recombinant enzyme >95% pure per 1.5 x 10(9) insect cells. The protein lacks any affinity tag and is identical to the native enzyme except for the two C-terminal amino acids, proline and glycine, that were substituted for lysine and aspartic acid for optimal cleavage from the intein affinity tag. Human DNMT1 was used for steady-state kinetic analysis with poly(dI-dC).poly(dI-dC) and unmethylated and hemimethylated 36- and 75-mer oligonucleotides. The turnover number (k(cat)) was 131-237 h(-1) on poly(dI-dC).poly(dI-dC), 1.2-2.3 h(-1) on unmethylated DNA, and 8.3-49 h(-1) on hemimethylated DNA. The Michaelis constants for DNA (K(m)(CG)) and S-adenosyl-L-methionine (AdoMet) (K(m)(AdoMet)) ranged from 0.33-1.32 and 2.6-7.2 microM, respectively, whereas the ratio of k(cat)/K(m)(CG) ranged from 3.9 to 44 (237-336 for poly(dI-dC).poly(dI-dC)) x 10(6) M(-1) h(-1). The preference of the enzyme for hemimethylated, over unmethylated, DNA was 7-21-fold. The values of k(cat) on hemimethylated DNAs showed a 2-3-fold difference, depending upon which strand was pre-methylated. Furthermore, human DNMT1 formed covalent complexes with substrates containing 5-fluoro-CNG, indicating that substrate specificity extended beyond the canonical CG dinucleotide. These results show that, in addition to maintenance methylation, human DNMT1 may also carry out de novo and non-CG methyltransferase activities in vivo.  相似文献   

7.
Ornithine aminotransferase (OAT), proline oxidase (PO), Delta 1-pyrroline-5-carboxylate reductase (P5CR), and Delta 1-pyrroline-5-carboxylate dehydrogenase (P5CD) were assessed in Fasciola gigantica. All enzymes are involved in the conversion of ornithine into glutamate and proline. High levels of P5CD suggest that the direction of the metabolic flow from ornithine is more toward glutamate than proline. F. gigantica P5CD1 and P5CD2 were separated from the majority of contaminating proteins in crude homogenate using a CM-cellulose column. A Sephacryl S-200 column was employed for P5CD2 to obtain pure enzyme with increased specific activity. The molecular mass of P5CD2 was estimated to be 50kDa using a Sephacryl S-200 column and SDS-PAGE. It migrated as a single band on SDS-PAGE, indicating a monomeric enzyme. P5CD2 had Km values of 1.44mM and 0.37mM for NAD and P5C, respectively. P5CD2 oxidized a number of aliphatic and aromatic aldehydes, where the aromatic compounds had higher affinity toward the enzyme. All amino acids examined had partial inhibitory effects on the enzyme. While 3mM AMP caused 31% activation of enzyme, 3mM ADP and ATP inhibited activity by 18% and 23%, respectively. Apart from Cu2+, the divalent cations that were studied caused partial inhibitory effects on the enzyme.  相似文献   

8.
Factors influencing pyrroline 5-carboxylate (P5C) synthesis from glutamate by a subcellular fraction enriched in mitochondria of rat small intestinal mucosa have been studied. P5C synthesis decreased rapidly if this subcellular fraction was preincubated at 20 degrees C in the absence of substrates; this effect suggests that the enzyme(s) catalyzing P5C synthesis from glutamate (P5C synthase) is unstable in the absence of substrates. In the presence of substrates P5C synthesis increased linearly for the first 30 min of incubation, suggesting that the substrates promote enzyme stability. Pyridoxal 5'-phosphate is an effective inhibitor of P5C synthase whereas pyridoxamine 5'-phosphate and pyridoxal are not inhibitory. Potassium phosphate, KCl, and KBr each inhibited P5C synthase but potassium-Hepes (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) did not. Potassium phosphate was the most potent inhibitor followed by KBr, and then KCl. These results suggest P5C synthase is sensitive to anion inhibition. Both L-ornithine and D-ornithine inhibited P5C synthase; L-proline did not inhibit. Several analogs of ornithine and proline were also tested and none was found to inhibit P5C synthase; the inhibition by ornithine is, therefore, rather specific and it may prove to contribute to the regulation of metabolism of these amino acids.  相似文献   

9.
Non-host disease resistance involves the production of hypersensitive response (HR), a programmed cell death (PCD) that occurs at the site of pathogen infection. Plant mitochondrial reactive oxygen species (ROS) production and red-ox changes play a major role in regulating such cell death. Proline catabolism reactions, especially pyrroline-5-carboxylate (P5C) accumulation, are known to produce ROS and contribute to cell death. Here we studied important genes related to proline synthesis and catabolism in the defence against host and non-host strains of Pseudomonas syringae in Nicotiana benthamiana and Arabidopsis. Our results show that ornithine delta-aminotransferase (δOAT) and proline dehydrogenases (ProDH1 and ProDH2) are involved in the defence against non-host pathogens. Silencing of these genes in N. benthamiana delayed occurrence of HR and favoured non-host pathogen growth. Arabidopsis mutants for these genes compromised non-host resistance and showed a decrease in non-host pathogen-induced ROS. Some of the genes involved in proline metabolism were also induced by a pathogen-carrying avirulence gene, indicating that proline metabolism is influenced during effector-triggered immunity (ETI). Our results demonstrate that δOAT and ProDH enzyme-mediated steps produce ROS in mitochondria and regulate non-host HR, thus contributing to non-host resistance in plants.  相似文献   

10.
Pyrroline-5-carboxylate synthesis from glutamate by rat intestinal mucosa   总被引:3,自引:0,他引:3  
The mitochondria of rat intestinal mucosa were found to have an enzymatic activity that converts radioactive glutamate to pyrroline-5-carboxylate (P5C) in the presence of ATP, NADPH, and MgCl2. The product of this enzyme was identified as P5C by the fact that it was converted to proline by chemical reduction with NaBH4 or by enzymatic reduction with NADH in the presence of purified yeast P5C reductase. The product was demonstrated to be P5C rather than pyrroline-2-carboxylate by thin layer chromatography. The presence of the activity in mitochondria prepared from intestinal mucosa of germ-free rats proved that this activity is of mammalian origin. Omission of either ATP, NADPH, or MgCl2 from the reaction mixture resulted in little or no activity. The optimal pH appeared to be about 7.0 under the conditions used. Substrate saturation curves in the presence of an ATP and an NADPH regeneration system gave apparent Km values of 2.5 mM for glutamate, 0.19 mM for ATP, and 6.5 microM for NADPH in the presence of 20 mM MgCl2. The mitochondrial preparation usually produced P5C at a rate of 1.2 to 1.6 nmol/mg/min at 20 degrees C when incubated with 1 mM glutamate, 3 mM ATP, 0.2 mM NADPH, and 20 mM MgCl2.  相似文献   

11.
The P5CS ({Delta} 1-Pyrroline–5-Carboxylate Synthetase) gene encodes for a bifunctional enzyme that catalyzes the rate limiting reaction in proline biosynthesis in living organisms. A wide range of multifunctional roles of proline have now been shown in stress defense. The proline biosynthetic genes, especially, P5CS is commonly used in metabolic engineering for proline overproduction conferring stress tolerance in plants. The gene is functionally well characterized at the molecular level, but there is more to learn about its evolutionary path in the plant kingdom, particularly the drive behind functional (osmoprotective and developmental) divergence of duplication of P5CS genes. In this review, we present the current understanding of the evolutionary trail of plant P5CS gene which plays a key role in stress tolerance.  相似文献   

12.
Polyclonal antibodies raised in mouse against purified potato Δ 1-pyrroline-5-carboxylate dehydrogenase (P5C-DH, EC 1.5.1.12), which catalyses the last step in the catabolism of both proline and arginine, were used to investigate the expression of this enzyme. Distribution of P5C-DH in potato ( Solanum tuberosum L. cv. Desiree) organs was studied at different stages during plant development. Variations in enzyme level were determined in axenically grown plantlets following the addition of exogenous proline, and in cell suspension cultures under hyperosmotic stress and after its relief. Free proline and arginine levels were also quantified, and compared to those of the enzyme. Results were consistent with a developmental, but not with an environmental, control of P5C-DH expression. The possible involvement of specific isozymes in proline and arginine oxidation is discussed.  相似文献   

13.
Results of studies on proline-nonutilizing (Put-) mutants of the yeast Saccharomyces cerevisiae indicate that proline is an essential intermediate in the degradation of arginine. Put- mutants excreted proline when grown on arginine or ornithine as the sole nitrogen source. Yeast cells contained a single enzyme, delta 1-pyrroline-5-carboxylate (P5C) dehydrogenase, which is essential for the complete degradation of both proline and arginine. The sole inducer of this enzyme was found to be proline. P5C dehydrogenase converted P5C to glutamate, but only when the P5C was derived directly from proline. When the P5C was derived from ornithine, it was first converted to proline by the enzyme P5C reductase. Proline was then converted back to P5C and finally to glutamate by the Put enzymes proline oxidase and P5C dehydrogenase.  相似文献   

14.
Proline-dependent oxygen uptake in corn mitochondria (Zea mays L. B73 × Mo17 or Mo17 × B73) occurs through a proline dehydrogenase (pH optimum around 7.2) bound to the matrix side of the inner mitochondrial membrane. Sidedness was established by determining the sensitivity of substrate-dependent ferricyanide reduction to antimycin and FCCP (P-trifluoromethoxycarbonylcyanide phenylhydrazone). Proline dehydrogenase activity did not involve nicotinamide adenine dinucleotide reduction, and thus electrons and protons from proline enter the respiratory chain directly. Δ1-Pyrroline-5-carboxylate (P5C) derived from proline was oxidized by a P5C dehydrogenase (pH optimum approximately 6.4). This enzyme was found to be similar to proline dehydrogenase in that it was bound to the matrix side of the inner membrane and fed electrons and protons directly into the respiratory chain.

Ornithine-dependent oxygen uptake was measurable in corn mitochondria and resulted from an ornithine transaminase coupled with a P5C dehydrogenase. These enzymes existed as a complex bound to the matrix side of the inner membrane. P5C formed by ornithine transaminase was utilized directly by the associated P5C dehydrogenase and was not released into solution. Activity of this dehydrogenase involved the reduction of nicotinamide adenine dinucleotide.

  相似文献   

15.
A yeast glutamate auxotroph (glt1 ? 1), blocked in the tricarboxylic acid cycle at aconitase, is shown to possess catabolic pathways to glutamate from proline, arginine and glutamine, and grows on any of these amino acids in a minimal medium. This mutant does not, however, grow on these amino acids in a medium containing the full complement of common amino acids minus glutamate. The mechanism of this growth failure involves partial inhibition of the catabolic routes to glutamate by more than half the common amino acids. In the case of proline catabolism, this inhibition is localized principally at the enzyme Δ1-pyrroline-5-carboxylate: NAD(P)+ oxidoreductase by in vitro studies. Similar results with this enzyme prepared both from yeast and from beef kidney mitochondria suggest that the inhibition observed may be the basis of a regulatory mechanism of general significance.  相似文献   

16.
These studies indicate that the interconversions of delta 1-pyrroline-5-carboxylate and proline can function as a shuttle that generates extra-mitochondrial NADP+ and transfers hydride ions into mitochondria in a cell-free rat liver system. A phosphate-free buffer with high concentrations of triethanolamine and 2-mercaptoethanol prevented the cold inactivation of pyrroline-5-carboxylate reductase (EC 1.5.1.2) in liver extracts. This enzyme had an apparent KmNADPH that was 2% of the apparent KmNADH X VmaxNADPH was approx. 50% of VmaxNADH. Unlabeled proline was converted to [5-3H]proline in incubations containing liver soluble fraction, mitochondria and a [4S-3H]NADPH generating system. This demonstrated one turn of the proposed shuttle in a homologous liver system. [5-3H]Proline production increased linearly over 60 min and decreased by 87% or more when specific components were eliminated. Rotenone was required for maximal activity, suggesting that inhibition of delta 1-pyrroline-5-carboxylate efflux would be required for significant shuttle activity in vivo. Both the relative concentrations of NADPH and NADH in liver cytosol and the kinetic characteristics of liver pyrroline-5-carboxylate reductase predict that the described shuttle should be overwhelmingly linked to NADPH rather than NADH. A NADPH-linked delta 1-pyrroline-5-carboxylate-proline shuttle may occur in hepatocytes and function at specific times to regulate pathways limited by cytosolic [NADP+].  相似文献   

17.
Many plants synthesize and accumulate proline in response to osmotic stress conditions. A central enzyme in the proline biosynthesis is the bifunctional enzyme Δ1-pyrroline-5-carboxylate synthase (P5CS) that includes two functional catalytic domains: the γ-glutamyl kinase and the glutamic-γ-semialdehyde dehydrogenase. This enzyme catalyzes the first two steps of the proline biosynthetic pathway and plays a central role in the regulation of this process in plants. To determine the evolutionary events that occurred in P5CS genes, partial sequences from four Neotropical trees were cloned and compared to those of other plant taxa. Molecular phylogenetic analysis indicated that P5CS duplication events have occurred several times following the emergence of flowering plants and at different frequencies throughout the evolution of monocots and dicots. Despite the high number of conserved residues in plant P5CS sequences, positive selection was observed at different regions of P5CS paralogous genes and also when dicots and monocots were contrasted.  相似文献   

18.
A yeast glutamate auxotroph (glt1 − 1), blocked in the tricarboxylic acid cycle at aconitase, is shown to possess catabolic pathways to glutamate from proline, arginine and glutamine, and grows on any of these amino acids in a minimal medium. This mutant does not, however, grow on these amino acids in a medium containing the full complement of common amino acids minus glutamate. The mechanism of this growth failure involves partial inhibition of the catabolic routes to glutamate by more than half the common amino acids. In the case of proline catabolism, this inhibition is localized principally at the enzyme Δ1-pyrroline-5-carboxylate: NAD(P)+ oxidoreductase by in vitro studies. Similar results with this enzyme prepared both from yeast and from beef kidney mitochondria suggest that the inhibition observed may be the basis of a regulatory mechanism of general significance.  相似文献   

19.
A hamster sperm 26 kDa protein (P26h) is strikingly homologous with mouse lung carbonyl reductase (MLCR) and is highly expressed in the testis, but its physiological functions in the testis are unknown. We show that recombinant P26h resembles NADP(H)-dependent MLCR in the tetrameric structure, broad substrate specificity, inhibitor sensitivity, and activation by arachidonic acid, but differs in a preference for NAD(H) and high efficiency for the oxidoreduction between 5alpha-androstane-3alpha,17beta-diol (k(cat)/K(M) = 243 s(-1) mM(-1)) and 5alpha-dihydrotestosterone (k(cat)/K(M) = 377 s(-1) mM(-1)). The replacement of Ser38-Leu39-Ile40 in P26h with the corresponding sequence (Thr38-Arg39-Thr40) of MLCR led to a switch in favor of NADP(H) specificity, suggesting the key role of the residues in the coenzyme specificity. While the P26h mRNA was detected only in the testis of the mature hamster tissues, its enzyme activity was found mainly in the mitochondrial fraction of the testis and in the nuclear fraction of the epididymis on subcellular fractionation, in which a mitochondrial enzyme, isocitrate dehydrogenase, exhibited a similar distribution pattern. The enzyme activity of P26h in the two tissue subcellular fractions was effectively solubilized by mixing with 1% Triton X-100 and 0.2 M KCl, and enhanced more than 10-fold. The enzymes purified from the two tissue fractions exhibited almost the same structural and catalytic properties as those of the recombinant P26h. These results suggest that P26h mainly exists as a tetrameric dehydrogenase in mitochondria of testicular cells and plays a role in controlling the intracellular concentration of a potent androgen, 5alpha-dihydrotestosterone, during spermatogenesis, in which it may be incorporated in mitochondrial sheaths of spermatozoa.  相似文献   

20.
Pyrroline‐5‐carboxylate synthase (P5CS) is a bifunctional enzyme that exhibits glutamate kinase (GK) and γ‐glutamyl phosphate reductase (GPR) activities. The enzyme is highly relevant in humans because it belongs to a combined route for the interconversion of glutamate, ornithine and proline. The deficiency of P5CS activity in humans is associated with a rare, inherited metabolic disease. It is well established that some bacteria and plants accumulate proline in response to osmotic stress. The alignment of P5CSs from different species and analysis of the solved structures of GK and GPR reveal high sequence and structural conservation. The information acquired from different mutant enzymes with increased osmotolerant properties, together with the position of the insertion found in the longer human isoform, permit the delimitation of the regulatory site of GK and P5CS and the proposal of a model of P5CS architecture. Additionally, the GK moiety of the human enzyme has been modeled and the known clinical mutations and polymorphisms have been mapped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号