首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene and its cationic derivative, 1-(4-trimethylaminophenyl)-6-phenyl-1,3,5-hexatriene, we evaluated membrane fluidity in living polymorphonuclear leukocytes and in erythrocytes of psoriatic patients. Our results have shown that erythrocyte membranes of psoriatic patients exhibit a decrease of fluidity. These changes were not associated with any relevant modifications of the cholesterol to phospholipid molar ratio. Moreover, we observed a decrease in polymorphonuclear leukocytes membrane fluidity associated with changes in chemotactic migration. Our results indicate changes of membrane fluidity involving membranes different from the epidermal cells and suggest the hypothesis of a defective membrane-cytoskeleton interaction in psoriasis.  相似文献   

2.
Measurements of fluorescence polarization in intact diploid skin fibroblasts after exposure to 1,6-diphenyl-1,3,5-hexatriene were used to estimate the fluidity of the lipid phase(s) of cellular membranes. The membrane lipids of cells derived from four patients with homozygous familial hypercholesterolemia were in a more fluid state than those of cells obtained from 13 other individuals of normal and nonrelated mutant genotypes when all cultures were grown on medium with native serum. The only other cell type having membrane lipids of increased fluidity under these conditions was one fibroblast line derived from a patient with the Lesch-Nyhan syndrome. Examination of two additional nonconsanguinous lines of Lesch-Nyhan fibroblasts, however, revealed that an abnormally high level of lipid fluidity was not a common property of the membranes of cells of this genotype. Incubation of cultures in medium containing lipid-depleted serum (virtually devoid of lipoprotein-bound sterol) caused a reversible increase in the fluidity of the membranes of normal cells to values similar to those of the hypercholesterolemic cells, but had no effect on the membranelipid fluidity of the latter. By contrast, exposure of cultures to cholesterol not bound to lipoprotein in serum-free medium resulted in a decrease in the lipid fluidity of the membranes of both normo- and hypercholesterolemic fibroblasts.  相似文献   

3.
Using a pyrene as a fluorescent probe, we investigated the influence of native and oxidized apolipoprotein A-I (apo A-I) and their complexes with tetrahydrocortisol (THC) on the microviscosity of the erythrocyte plasma membrane. The addition of THC to isolated membranes led to a 17% increase in the membrane microviscosity. In contrast, native apo A-I reduced the microviscosity (i.e., increased the fluidity) of the membranes by 15%. A more pronounced increase (by 25%) in the membrane fluidity was found in the presence of the complex of apo A-I with THC. Unlike native apo A-I, oxidized apo A-I and its complex with THC did not change the membrane viscosity. In view of the fact that apo A-I plays an important role in the binding of membrane cholesterol we suggest that the observed increase in the membrane fluidity under the influence of the native apo A-I is associated with the cholesterol efflux from plasma membrane. Oxidative modification of apo A-I likely disturbs the mechanisms of the cholesterol efflux and prevents the decrease in the membrane microviscosity.  相似文献   

4.
GRSL lymphoma cells were isolated from various growth sites in the host. The relative membrane lipid fluidities of these cells and of normal lymphoid cells were estimated by fluorescence polarization, using the probe diphenylhexatriene and by measuring the (free) cholesterol/phospholipid molar ratio in whole cells. The results indicate that the membrane fluidity (reciprocal of the lipid structural order) of the lymphoma cells increases in the order of their location: peripheral blood < spleen < mesenterial lymph node < ascites fluid. The membrane fluidities of normal lymphocytes from thymus, mesenterial lymph node and spleen were about the same, but higher than of peripheral blood lymphocytes, and between those of the lymphoma cells from lymph node and spleen. These results are confirmed by more extensive analysis on purified plasma membranes from the splenic and ascitic GRSL lymphoma cells and from normal splenocytes and thymocytes. The significantly higher lipid order parameter found in the GRSL plasma membrane isolated from the spleen as compared to those from the ascites cells could be fully explained by the differences measured in the major chemical determinants of the fluidity, i.e., the cholesterol/phospholipid ratio, the sphingomyelin content and the degree of saturation of the fatty acyl groups of the phospholipids. It was also found that the cholesterol/phospholipid ratio in erythrocyte membranes isolated from the peripheral blood of the tumor bearers was higher than in those from normal control mice. The observed differences in membrane fluidity between distinct subsets of tumor cells may be relevant to the sensitivity of these cells to immune attack or to drugs.  相似文献   

5.
We studied 10 patients affected by primary hypercholesterolemia treated with placebo for 1 month and with simvastatin (20 mg die) for 6 months during a double-blind clinical trial. At 1-month intervals we determined the following parameters in the serum: total and HDL-cholesterol, triglycerides, apolipoprotein A1 and B. At the same time intervals, we also determined the cholesterol and phospholipid concentration, the Na+/K+ ATPase activity and the fluidity of the erythrocyte membranes. Our results demonstrated the following modifications in the erythrocyte membranes during simvastatin treatment: 1) an initial increase in the cholesterol concentration and in the cholesterol/phospholipid ratio, with a significant decrease only after 4 months; 2) a similar behaviour of membrane fluidity, with an initial decrease and an elevation after 4 months; 3) an increase in the Na+/K+ ATPase activity only after 4 months. We hypothesize that simvastatin not only inhibits the hepatic synthesis of cholesterol, but also modifies the cholesterol exchange between plasma and the erythrocyte membrane.  相似文献   

6.
There is increasing evidence of an interaction between cholesterol dynamics and Alzheimer's disease (AD), and amyloid beta-peptide may play an important role in this interaction. Abeta destabilizes brain membranes and this action of Abeta may be dependent on the amount of membrane cholesterol. We tested this hypothesis by examining effects of Abeta1-40 on the annular fluidity (i.e., lipid environment adjacent to proteins) and bulk fluidity of rat synaptic plasma membranes (SPM) of the cerebral cortex, cerebellum, and hippocampus using the fluorescent probe pyrene and energy transfer. Amounts of cholesterol and phospholipid of SPM from each brain region were determined. SPM of the cerebellum were significantly more fluid as compared with SPM of the cerebral cortex and hippocampus. Abeta significantly increased (P < or = 0.01) annular and bulk fluidity in SPM of cerebral cortex and hippocampus. In contrast, Abeta had no effect on annular fluidity and bulk fluidity of SPM of cerebellum. The amounts of cholesterol in SPM of cerebral cortex and hippocampus were significantly higher (P < or = 0.05) than amount of cholesterol in SPM of cerebellum. There was significantly less (P < or = 0.05) total phospholipid in cerebellar SPM as compared with SPM of cerebral cortex. Neuronal membranes enriched in cholesterol may promote accumulation of Abeta by hydrophobic interaction, and such an interpretation is consistent with recent studies showing that soluble Abeta can act as a seed for fibrillogenesis in the presence of cholesterol.  相似文献   

7.
Oxidized HDL (ox-HDL) has been reported to reduce free cholesterol efflux from cells. In this study we investigate the effect of different stages of ox-HDL on macrophage membrane fluidity and its effect on free cholesterol efflux from macrophages as a cell function influenced by ox-HDL. HDL was oxidized by means of conjugated diene production using copper as a prooxidant. Fluidity of HDL and human THP-1 macrophage membranes was evaluated by changes in fluorescence anisotropy (r) by DPH probe where lower (r) values give higher fluidity. We found that ox-HDL derived from the propagation phase (PP-HDL) and the decomposition phase (DP-HDL) became less fluid ((r): 0.263+/-0.001, 0.279+/-0.002, respectively) than HDL from the lag phase (LP-HDL) and native HDL (nat-HDL) ((r): 0.206+/-0.001) (P<0.05). Macrophages incubated with PP-HDL and DP-HDL had less fluid membranes ((r): 0.231+/-0.001, 0.243+/-0.002, respectively) than those incubated with LP-HDL and nat-HDL ((r): 0.223+/-0.001) (P<0.05). Consequently, fluidity was reduced not only in ox-HDL but also in the cell membranes exposed to ox-HDL. A significant negative correlation was observed between macrophage membrane fluorescence anisotropy (r) and free cholesterol efflux from these cells (-0.876; P<0.05). Thus, lower membrane fluidity was associated with lower free cholesterol efflux from cells. In conclusion, the increase in the HDL oxidation process leads to a lost of macrophage membrane fluidity that could contribute to an explanation of the reduction of free cholesterol efflux from cells by ox-HDL.  相似文献   

8.
This study was conducted to establish the functions and oxidative stress status in leukocytes of adult patients with nephrotic syndrome. Thirty adult patients with nephrotic syndrome and 32 controls were included. Phagocytosis ability, the killing ability of the micro-organism phagosited of polymorphonuclear leukocytes (PMNL) and monocytes, along with oxidative stress parameters of PMNLs were assessed. There was no statistically significant difference in phagocytosis function of PMNLs and monocytes of patients when compared to those of controls. PMNL burst activities of the patient and control groups also showed no difference; however, the monocyte burst activities of patients were significant (p = 0.012). The glutathione peroxidase (GSH-Px) activities in PMNLs of the patients with nephrotic syndrome were significantly higher (p = 0.026) when compared to those of controls. In comparison with those of the control subjects, the patients had also higher selenium levels in their PMNLs (p < 0.001). Although PMNL malonyldialdehyde (MDA) levels of the patients seem to be higher than those of controls, the difference had no statistical significance (p = 0.071). Conclusively, in the patients with nephrotic syndrome, PMNLs appear to be exposed to an oxidative stress as indicated by their increased GSH-Px activities and selenium content. However, PMNLs in nephrotic syndrome patients seem to be coping with the insulting oxidative stress, as suggested by their near-normal MDA productions. Furthermore, these data suggest that nephrotic syndrome appears not to have an influence on phagocytosis and killing abilities of granulocytes and monocytes as long as these cells can overcome the oxidative stress to which they are exposed in this disease.  相似文献   

9.
Hypercholesterolemia is a preventable risk factor for atherosclerosis and cardiovascular disease. However, the mechanisms of diosgenin (DG) that promote cholesterol homeostasis and alleviate hypercholesterolemia remain elusive. To investigate the effects and molecular mechanisms of the promotion of cholesterol metabolism by DG, a rat model of hypercholesterolemia was induced by providing a high-fat diet for 4 weeks. After 4 weeks, the rats were intragastrically administered high-dose DG (0.3 g/kg/d), low-dose DG (0.15 g/kg/d) or simvastatin (4 mg/kg/d) once a day for 8 weeks. The serum and hepatic cholesterol were tested, the mRNA and protein expression levels of Niemann-Pick C1-Like 1 (NPC1L1), liver X receptor-α (LXR-α) and the ATP-binding cassette G5/G8 (ABCG5/G8) transporters were measured. The results indicate that DG could reduce body weight, decrease the serum total cholesterol, triglyceride, low-density lipoprotein cholesterol, liver total cholesterol and free cholesterol levels compared to those in the controls. Simultaneously, liver tissue pathological morphology analyses revealed that DG could attenuate hepatic steatosis compared to that in the high-fat diet group. Further investigation demonstrated that DG significantly decreased the expression of NPC1L1 and LXR-α in the intestine and markedly increased the expression of ABCG5/G8 in the liver and intestine. Compared to the high-fat diet group, the rats in the DG-treated groups ameliorated hypercholesterolemia in a dose- and time-dependent manner. These data suggest that DG may not only inhibit intestinal cholesterol absorption by downregulating NPC1L1 but also enhance cholesterol excretion by increasing the expression of ABCG5/G8. DG could be a new candidate for the prevention of hypercholesterolemia.  相似文献   

10.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 degrees C). Incorporation of cholesterol (30-50%) increased the microviscosity of lipid phases by 200-500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since tha latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracain and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at 25 degrees C varied as follows: polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erythrocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol: phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important functional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

11.
The microviscosity of artificial lipid membranes and natural membranes was measured by the fluorescence polarization technique employing perylene as the probe. Lipid dispersions composed of brain gangliosides exhibited greater microviscosity than phosphatidylserine (268 cP vs 173 cP, at 25 °C). Incorporation of cholesterol (30–50%) increased the microviscosity of lipid phases by 200–500 cP. Cholesterol's effect on membrane fluidity was completely reversed by digitonin but not by amphotericin B. Incorporation of membrane proteins into lipid vesicles gave varying results. Cytochrome b5 did not alter membrane fluidity. However, myelin proteolipid produced an apparent increase in microviscosity, but this effect might be due to partitioning of perylene between lipid and protein binding sites since the latter have a higher fluorescence anisotropy than the lipid. The local anesthetics tetracaine and butacaine increased the fluidity of lipid dispersions, natural membranes and intact ascites tumor cell membranes. The effect of the anesthetics appears to be due to an increased disordering of lipid structure. The fluidity of natural membranes at the 25 °C varied as follows:polymorphonuclear leukocytes, 335 cP; bovine brain myelin, 270 cP; human erytherocyte, 180 cP; rat liver microsomes, 95 cP; rat liver mitochondria, 90 cP. In most cases the microviscosity of natural membranes reflects their cholesterol : phospholipid ratio. The natural variations in fluidity of cellular membranes probably reflect important fuctional requirements. Similarly, the effects of some drugs which alter membrane permeability may be the result of their effects on membrane fluidity.  相似文献   

12.
Since hypercholesterolemia directly modifies the composition of erythrocytes plasma membrane, the influence of statins on erythrocytes has been researched. The beneficial effects of statins on clinical events may involve mechanisms that modify endothelial dysfunction, plaque stability, thrombus formation and inflammatory responses. The aim of the study was to evaluate the hypolipemic efficacy and effects of pravastatin and simvastatin on erythrocyte membrane fluidity and damage of erythrocytes in patients with type 2 hypercholesterolemia in comparison with a control group of healthy subjects. The study involved 53 patients affected by type 2 hypercholesterolemia (mean age, 53.3 +/- 10.3) with initial total serum cholesterol (TC) levels > 250 mg/dL, LDL-cholesterol (LDL-C) levels > 170 mg/dL, and triglycerides (TG) levels < 400 mg/dL. The control group consisted of 30 healthy individuals (mean age 56.9 +/- 6.3). Statins were given for 12 weeks. The dosages for oral administration of simvastatin and pravastatin were 20 mg/day. Laboratory tests were carried out before and after 4 and 12 weeks of the pharmacological treatment. The damage to plasma membrane of erythrocytes was measured on the basis of lipid peroxidation. The fluidity of plasma membrane of erythrocytes was determined by electron paramagnetic resonance (EPR) spectroscopy, using two spin labels: 5-DSA and 16-DSA. The cholesterol level in the membrane of red blood cells was estimated. Simvastatin and pravastatin reduced the total cholesterol concentration and LDL-cholesterol in plasma, as well as the cholesterol concentration in erythrocytes membranes. Hypercholesterolemia induced changes in the basic properties of human erythrocyte plasma membrane, including its fluidity and the intensity of lipid peroxidation. These results indicate that the simvastatin and pravastatin therapy reverses the alteration in the erythrocyte plasma membrane properties.  相似文献   

13.
Acute colitis is characterized by a large number of polymorphonuclear leukocytes (PMNLs) migrating across the columnar epithelium in response to inflammatory stimuli. Several of these inflammatory factors have been characterized as proapoptotic inducers for intestinal epithelial cells. Our aim was to elucidate the role of PMNL transmigration in the onset of intestinal epithelial cell apoptosis. We found that PMNL migration, in response to N-formyl-methionyl-leucyl-phenylalanine across monolayers of intestinal epithelial cells (T84), was associated with activation of caspase-2, -3, and -9 and poly(ADP-ribose) polymerase cleavage within epithelial cells. Moreover, dihydrocytochalasin B treatment of T84 cells induced apoptosis with similar characteristics. Although Fas and Fas ligand were expressed on T84 cells and PMNLs, treatment of epithelial cells with an antagonistic anti-Fas antibody failed to prevent apoptosis induced by migrating PMNLs. Owing to the F-actin reorganization accompanying PMNL transmigration, these findings indicate a direct relationship between PMNL migration and induction of apoptosis in epithelial cells. This apoptotic process appears to involve remodeling of the actin cytoskeleton of enterocytes independent of the Fas/Fas ligand pathway.  相似文献   

14.
Human polymorphonuclear neutrophilic leukocytes (PMNLs) phagocytosed fluorescein-isothiocyanate (FITC)-labelled Staphylococcus aureus. Free bacteria, phagocytes, and nonphagocytes were discriminated and quantified by flow cytometry (FCM). The relative fluorescence of phagocyte-associated and free bacteria (Nf:N) was calculated by dividing the mean phagocyte fluorescence by that of the free bacteria and the number of phagocytosed bacteria. Bactericidal capacity and chemiluminescence were measured by standard methods. The red-to-green fluorescence ratio of acridine orange-stained PMNLs (R/G) was measured by FCM. Degradation of bacteria was monitored by the reduction in FITC and ethidiumbromide fluorescence of bacteria liberated from the phagocytes. Bacterial FITC fluorescence was pH dependent. Nf:N was 0.5 to 0.7. Using a standard curve for the interrelationship between bacterial fluorescence and pH, phagosomal pH was 5.0-5.5. Phagocytes, kept at 4 degrees C for 24 h had Nf:N approximately 1, did not degrade bacteria, but killed them and emitted chemiluminescence. NH4Cl increased phagocyte fluorescence by 27% and decreased R/G by 50%. Cyanide and azide did not affect Nf:N. Nf:N of phagocytes from a patient with chronic granulomatous disease was 32% below, and R/G was 32% higher than the controls. Acidification of the phagosomes seems to be related to discharge of PMNL granule contents and independent of the respiratory burst.  相似文献   

15.
Summary Static polarization and differential polarized phase fluorimetry studies on rat renal cortical brush border (BBM) and basolateral membranes (BLM) were undertaken to determine the membrane components responsible for differences in BBM and BLM fluidity, whether these differences were due to the order or dynamic components of membrane fluidity and if a fluidity gradient existed within the bilayer. Surface membrane proteins rigidified both BBM and BLM fluidity. Neutral lipid extraction, on the other hand, caused a larger decrease in BBM than BLM fluorescence polarization (0.104vs. 0.60,P<0.01) using diphenyl hexatriene (DPH). Cholesterol addition to phospholipid fractions restored membrane fluidity to total lipid values in both BBM and BLM phospholipids. The response to cholesterol in the BBM was biphasic, while the BLM response was linear. Lateral mobility, quantitated using dipyrenylpropane, was similar in both BBM and BLM fractions at 35°C. BBM and BLM differed primarily in the order component of membrane fluidity as DPH-limiting anisotropy (r ) (0.212vs. 0.154,P<0.01) differed markedly between the two membrane fractions. The two membrane components also differed with respect to 2 and 12-anthroyloxy stearate (2-AS, 12-AS) probes, indicating a difference in the dynamic component of membrane fluidity may also be present. DPH and 12-As probes were also used to quantitate inner core membrane fluidity and showed the BBM was less fluid than the BLM for intact membranes, total lipid extracts and phospholipids. Results obtained using the surface membrane probes trimethylammonium-DPH (TMA-DPH) and 2-AS suggested a fluidity gradient existed in both BBM and BLM bilayers with the inner core being more fluid in both membranes. These data indicate cholesterol is in large part responsible for fluidity differences between BBM and BLM and that these membranes, while clearly differing in the order component of membrane fluidity, may also difer in the dynamic component as well.  相似文献   

16.
Oat and rye plants were treated with either tetcyclacis (an experimental plant growth regulator), nuarimol (a fungicide) or gamma-ketotriazole (an experimental herbicide). These treatments reduced shoot growth and changed the lipid composition of the shoot plasma membranes. In oat, both tetcyclacis and nuarimol treatments increased plasma membrane cholesterol and increased the phosphatidylethanolamine/phosphatidylcholine (PE/PC) ratio, whereas gamma-ketotriazole treatment reduced cholesterol and the PE/PC ratio. In rye, all treatments reduced the PE/PC ratio. Generally, the sterol/phospholipid ratio was less in oat than in rye but the cholesterol/phospholipid ratio was greater. With all treatments in oat and rye, increases were observed in unsaturation of the phospholipid acyl chains. The fluidity of membranes was measured by steady-state fluorescence polarisation of the probe diphenylhexatriene; oat membranes were more fluid than rye. Membrane fluidity was greater in plasma membranes from plants treated with the xenobiotics than the controls. The results are discussed in the context of the effect of plasma membrane lipid composition on membrane fluidity, and it is concluded that there appears to be no overall simple relationship between membrane lipid composition and fluidity that holds for all treatments in both species.  相似文献   

17.
The role of the plasma membrane fluidity (PMF) on the shear sensitivity of HB-32 hybridomas to laminar fluid shear was investigated. Steady-state fluorescence anisotropy (r(s)) of the cationic fluorescent probe 1-[4-(trimethylamino) phenyl]-6-phenylhexa-1,3,5-triene, was used to evaluate the PMF of whole hybridoma cells. The PMF was manipulated by the addition of the anesthetic benzyl alcohol, by temperature changes and by cholesterol enrichment. The effect of these PMF modifying procedures on the shear sensitivity of HB-32 was assessed by exposing the cells to defined levels of laminar shear stress in a Couette flow device. Conditions that resulted in lower r(s) values (indicating higher PMF) yielded a more fragile cell. Batch cultivations supplemented with the shear protective agent Pluronic(R) F-68 showed higher values of r(s) compared to control experiments during various growth phases, suggesting that the protective mechanism of Pluronic F-68 relies on its ability to decrease the PMF through direct interaction with the plasma membrane. The protective mechanism of serum against turbulent fluid shear is also discussed from analysis of growth and death kinetics of agitated and static cultures at increasing serum levels. The results of this study show that the fluid state of the plasma membrane is important in determining the integrity of hybridomas when exposed to lethal shear levels. It is concluded that increasing membrane fluidity correlates with increasing shear sensitivity.  相似文献   

18.
GRSL lymphoma cells were isolated from various growth sites in the host. The relative membrane lipid fluidities of these cells and of normal lymphoid cells were estimated by fluorescence polarization, using the probe diphenylhexatriene and by measuring the (free) cholesterol/phospholipid molar ratio in whole cells. The results indicate that the membrane fluidity (reciprocal of the lipid structural order) of the lymphoma cells increases in the order of their location: peripheral blood less than spleen less than mesenterial lymph node less than ascites fluid. The membrane fluidities of normal lymphocytes from thymus, mesenterial lymph node and spleen were about the same, but higher than of peripheral blood lymphocytes, and between those of the lymphoma cells from lymph node and spleen. These results are confirmed by more extensive analysis on purified plasma membranes from the splenic and ascitic GRSL lymphoma cells and from normal splenocytes and thymocytes. The significantly higher lipid order parameter found in the GRSL plasma membrane isolated from the spleen as compared to those from the ascites cells could be fully explained by the differences measured in the major chemical determinants of the fluidity, i.e., the cholesterol/phospholipid ratio, the sphingomyelin content and the degree of saturation of the fatty acyl groups of the phospholipids. It was also found that the cholesterol/phospholipid ratio in erythrocyte membranes isolated from the peripheral blood of the tumor bearers was higher than in those from normal control mice. The observed differences in membrane fluidity between distinct subsets of tumor cells may be relevant to the sensitivity of these cells to immune attack or to drugs.  相似文献   

19.
1. The effect of different dietary fat intake on the lipid composition and fluidity of microsomal membranes as well as in the enzymatic activity of the Ca2+-ATPase from chick breast muscle was investigated. 2. When a standard diet was supplemented with 10% sunflower seed oil, an increase in the relative amounts of unsaturated fatty acids and membrane fluidity and a decrease in the cholesterol content was observed. 3. The presence of 6% cholesterol in the diet does not modify the fatty acid composition and the fluidity of the membrane but increased, in a low extension, the cholesterol content. 4. The provision of the sunflower seed oil-rich diet supplemented with cholesterol just 48 hr before death promoted an increase in the relative amounts of unsaturated fatty acids and cholesterol content whereas the membrane fluidity decreased in a significant extent. 5. Despite that dietary lipids gave rise in some cases to changes in lipid composition and in the physical state of the microsomal membrane, neither the Ca2+ uptake capacity nor the ATPase activity were significantly affected.  相似文献   

20.
By use of multilamellar phosphatidylcholine (PC) liposomes of different acyl composition and cholesterol content as model membranes, we studied whether or not membrane fluidity affects the assembly process of Staphylococcus aureus alpha-toxin. Under conditions using fluid and solid membranes, we assayed accessibility (or hemolytic activity) of liposome-bound alpha-toxin to rabbit erythrocytes added, hexamerization of membrane-bound toxin using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nondenaturating conditions, and susceptibility of liposome-bound toxin to trypsin digestion. Our data indicated 1) that alpha-toxin bound to PC membrane as a hemolytically active monomer (or reversibly bound state); 2) that when the membrane was fluidized either by phase transition of PC or by inclusion of cholesterol over 20 mol %, the hemolytically active monomer of the toxin was irreversibly converted to nonhemolytic monomer (and/or unstable oligomer) in a first-order kinetics with a t1/2 of about 1 min, and thereafter hexamerization of the toxin gradually proceeded in the following 60-90 min; 3) that alpha-toxin might have different topology and/or conformation in PC membrane, depending on the presence or absence of cholesterol in the PC membrane; and 4) that coexistence of unsaturated acyl chain-carrying PC and cholesterol was a prerequisite for efficient hexamerization of alpha-toxin in membrane. Thus, increase in membrane fluidity promoted the assembly process of S. aureus alpha-toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号