首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glioblastoma multiforme (GBM) is the most aggressive and common brain tumor in adults. Sorafenib, a multi-kinase inhibitor, has been shown to inhibit cell proliferation and induce apoptosis through inhibition of STAT3 signaling in glioblastoma cells and in intracranial gliomas. However, sorafenib also induces cell autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the therapeutic effect of sorafenib on glioblastoma is uncertain. Here, we combined sorafenib treatment in GBM cells (U373 and LN229) and tumors with the autophagy inhibitor chloroquine. We found that blockage of autophagy further inhibited cell proliferation and migration and induced cell apoptosis in vitro and in vivo. These findings suggest the possibility of combination treatment with sorafenib and autophagy inhibitors for GBM.  相似文献   

2.
The aim of the present study is to investigate the effect of histone deacetylase inhibitor, trichostatin A (TSA) on the cell growth, apoptosis, genomic DNA damage and the expression of telomerase and associated factors in human normal and brain cancer cells. Here, human normal un-transformed fibroblasts (MRC-5), human normal hTERT-immortalised fibroblasts (hTERT-BJ1) and human brain cancer cell lines (glioblastoma cell line, A-172 and medulloblastoma cell line, ONS-76) were treated with 0.5–3.0 μM TSA for 24 h. Exposure to TSA resulted in apoptosis in a dose-dependent manner in the brain cancer cells. Glioblastoma cell line (A-172) displayed higher sensitivity to TSA-induced cell killing effect and apoptosis than the medulloblastoma cell line (ONS-76). The brain cancer cell lines and hTERT-BJ1 cell line displayed significant inhibition in telomerase activity and hTERT mRNA level after 2 μM TSA treatment. Elevated expressions of p53 and p21 with a decrease in cyclin-D level supported the observation on cell cycle arrest following TSA treatment. Upregulation of Bax and cytochrome c correlated with the apoptotic events in TSA-treated cells. This study suggests that telomerase and hTERT might be the primary targets of TSA which may have the potential to be used as a telomerase inhibitor in cancer therapy.  相似文献   

3.
Hepatocellular carcinoma (HCC) is one of the most common human cancers and the patients' five-year survival rate is very low. Growing evidence indicates that interleukin-6 is a risk factor for HCC. High serum IL-6 may promote HCC development in hepatitis B patients. Therefore, IL-6 could be considered a HCC biomarker and blockade of IL-6 pathway may be a promising therapeutic alternative for HCC. STAT3 is major pathway to mediate signal from IL-6 to the nucleus, where different genes associated with proliferation and apoptosis are regulated. We previous reported that IL-6 induces cell survival upon drug treatment in HCC cells and inhibition of IL-6/STAT3 pathway using anti-IL-6 antibody or STAT3 small-molecule inhibitor LLL12 reduces this effect. Here we summarized the recent studies of IL-6 in HCC and showed another STAT3 small-molecule FLLL32 also blocked IL-6-induced STAT3 activation in HCC cells. FLLL32 is a novel curcumin analogue, which has been described to suppress the constitutive activation of STAT3 in pancreatic and breast cancer cells in vitro and vivo. In this study, we demonstrated that FLLL32 blocked IL-6-induced STAT3 phosphorylation and nuclear translocation.  相似文献   

4.
Shu XH  Li H  Sun XX  Wang Q  Sun Z  Wu ML  Chen XY  Li C  Kong QY  Liu J 《PloS one》2011,6(11):e27484

Background

Trans-resveratrol rather than its biotransformed monosulfate metabolite exerts anti-medulloblastoma effects by suppressing STAT3 activation. Nevertheless, its effects on human glioblastoma cells are variable due to certain unknown reason(s).

Methodology/Principal Findings

Citing resveratrol-sensitive UW228-3 medulloblastoma cell line and primarily cultured rat brain cells/PBCs as controls, the effect of resveratrol on LN-18 human glioblastoma cells and its relevance with metabolic pattern(s), brain-associated sulfotransferase/SULT expression and the statuses of STAT3 signaling and protein inhibitor of activated STAT3 (PIAS3) were elucidated by multiple experimental approaches. Meanwhile, the expression patterns of three SULTs (SULT1A1, 1C2 and 4A1) in human glioblastoma tumors were profiled immunohistochemically. The results revealed that 100 µM resveratrol-treated LN-18 generated the same metabolites as UW228-3 cells, while additional metabolite in molecular weight of 403.0992 in negative ion mode was found in PBCs. Neither growth arrest nor apoptosis was found in resveratrol-treated LN-18 and PBC cells. Upon resveratrol treatment, the levels of SULT1A1, 1C2 and 4A1 expression in LN-18 cells were more up-regulated than that expressed in UW228-3 cells and close to the levels in PBCs. Immunohistochemical staining showed that 42.0%, 27.1% and 19.6% of 149 glioblastoma cases produced similar SULT1A1, 1C2 and 4A1 levels as that of tumor-surrounding tissues. Unlike the situation in UW228-3 cells, STAT3 signaling remained activated and its protein inhibitor PIAS3 was restricted in the cytosol of resveratrol-treated LN-18 cells. No nuclear translocation of STAT3 and PIAS3 was observed in resveratrol-treated PBCs. Treatment with STAT3 chemical inhibitor, AG490, committed majority of LN-18 and UW228-3 cells but not PBCs to apoptosis within 48 hours.

Conclusions/Significance

LN-18 glioblastoma cells are insensitive to resveratrol due to the more inducible brain-associated SULT expression, insufficiency of resveratrol to suppress activated STAT3 signaling and the lack of PIAS3 nuclear translocation. The findings from PBCs suggest that an effective anticancer dose of resveratrol exerts little side effect on normal brain cells.  相似文献   

5.
6.
STAT3 is constitutively active in a large variety of cancers. The search for STAT3 inhibitors led to the discoveries of LLLs 3 and 12, which are substituted anthraquinones. LLL12 is an extremely potent compound that exhibits high levels of antiproliferative activity. Herein the synthesis and evaluation of compounds containing either an anthraquinone or 1,4-naphthoquinone moiety are reported. Analogs were evaluated in several cancer cell lines. Interestingly, it was found that the anthraquinones did not follow the same trends as the 1,4-naphthoquinones in regards to potency. LLL12, which contains a sulfonamide at position 1, was found to be the most potent of the anthraquinones. In contrast, the methyl ketone and methyl ester derivatives (LLLs 3.1 and 5.1) were found to be the most potent of the 1,4-naphthoquinones. Selected 1,4-naphthoquinones were also evaluated in the STAT3 fluorescence polarization assay in order to evaluate their abilities to bind to the STAT3 SH2 domain. They were found to have similar affinities, and their activities suggest that STAT3 is one of their molecular targets.  相似文献   

7.
Interleukin-6 (IL-6) is a multifunctional cytokine, which may block apoptosis during inflammation to protect cells under very toxic conditions. However, IL-6 also activates STAT3 in many types of human cancer. Recent studies demonstrate that high levels of IL-6 are associated with hepatocellular carcinoma, the most common type of liver cancer. Here we reported that IL-6 promoted survival of human liver cancer cells through activating STAT3 in response to doxorubicin treatment. Endogenous IL-6 levels in SNU-449 cells were higher than in Hep3B cells. Meanwhile, SNU-449 cells were more resistant to doxorubicin than Hep3B cells. Addition of IL-6 induced STAT3 activation in Hep3B cells and led to protection against doxorubicin. In contrast, neutralizing IL-6 with anti-IL-6 antibody decreased survival of SNU-449 cells in response to doxorubicin. To elucidate the mechanism of the anti-apoptotic function of IL-6, we investigated if STAT3 mediated this drug resistance. Targeting STAT3 with STAT3 siRNA reduced the protection of IL-6 against doxorubicin-induced apoptosis, indicating that STAT3 signaling contributed to the anti-apoptotic effect of IL-6. Moreover, we further explored if a STAT3 small molecule inhibitor could abolish this anti-apoptotic effect. LLL12, a STAT3 small molecule inhibitor, blocked IL-6-induced STAT3 phosphorylation, resulting in attenuation of the anti-apoptotic activity of IL-6. Finally, neutralization of endogenous IL-6 with anti-IL-6 antibody or blockade of STAT3 with LLL12 lowered the recovery in SNU-449 cells after doxorubicin treatment. Therefore, our results demonstrated that targeting STAT3 signaling could interrupt the anti-apoptotic function of IL-6 in human liver cancer cells.  相似文献   

8.
9.
Numerous reports suggest that IL-6 promotes survival and proliferation of multiple myeloma (MM) cells through the phosphorylation of a cell signaling protein, STAT3. Thus, agents that suppress STAT3 phosphorylation have potential for the treatment of MM. In the present report, we demonstrate that curcumin (diferuloylmethane), a pharmacologically safe agent in humans, inhibited IL-6-induced STAT3 phosphorylation and consequent STAT3 nuclear translocation. Curcumin had no effect on STAT5 phosphorylation, but inhibited the IFN-alpha-induced STAT1 phosphorylation. The constitutive phosphorylation of STAT3 found in certain MM cells was also abrogated by treatment with curcumin. Curcumin-induced inhibition of STAT3 phosphorylation was reversible. Compared with AG490, a well-characterized Janus kinase 2 inhibitor, curcumin was a more rapid (30 min vs 8 h) and more potent (10 micro M vs 100 micro M) inhibitor of STAT3 phosphorylation. In a similar manner, the dose of curcumin completely suppressed proliferation of MM cells; the same dose of AG490 had no effect. In contrast, a cell-permeable STAT3 inhibitor peptide that can inhibit the STAT3 phosphorylation mediated by Src blocked the constitutive phosphorylation of STAT3 and also suppressed the growth of myeloma cells. TNF-alpha and lymphotoxin also induced the proliferation of MM cells, but through a mechanism independent of STAT3 phosphorylation. In addition, dexamethasone-resistant MM cells were found to be sensitive to curcumin. Overall, our results demonstrated that curcumin was a potent inhibitor of STAT3 phosphorylation, and this plays a role in the suppression of MM proliferation.  相似文献   

10.
Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G1 arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G1 arrest. This G1 arrest was associated with up-regulation of p27kip1, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G1 arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 ΔEGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.  相似文献   

11.
12.
Yang CL  Liu YY  Ma YG  Xue YX  Liu DG  Ren Y  Liu XB  Li Y  Li Z 《PloS one》2012,7(5):e37960
Curcumin, the active component of turmeric, has been shown to protect against carcinogenesis and prevent tumor development. However, little is known about its anti-tumor mechanism in small cell lung cancer (SCLC). In this study, we found that curcumin can inhibit SCLC cell proliferation, cell cycle, migration, invasion and angiogenesis through suppression of the STAT3. SCLC cells were treated with curcumin (15 μmol/L) and the results showed that curcumin was effective in inhibiting STAT3 phosphorylation to downregulate of an array of STAT3 downstream targets ,which contributed to suppression of cell proliferation, loss of colony formation, depression of cell migration and invasion. Curcumin also suppressed the expression of proliferative proteins (Survivin, Bcl-X(L) and Cyclin B1), and invasive proteins (VEGF, MMP-2, MMP-7 and ICAM-1). Knockdown of STAT3 expression by siRNA was able to induce anti-invasive effects in vitro. In contrast, activation of STAT3 upstream of interleukin 6 (IL-6) leads to the increased cell proliferation ,cell survival, angiogenesis, invasion, migration and tumor growth. Our findings illustrate the biologic significance of IL-6/JAK/STAT3 signaling in SCLC progression and provide novel evidence that the pathway may be a new potential target for therapy of SCLC. It was concluded that curcumin is a potent agent in the inhibition of STAT3 with favorable pharmacological activity,and curcumin may have translational potential as an effective cancer therapeutic or preventive agent for SCLC.  相似文献   

13.
Glioblastoma is the most common and lethal primary brain tumor. Tumor initiation and recurrence are likely caused by a sub-population of glioblastoma stem cells, which may derive from mutated neural stem and precursor cells. Since CD133 is a stem cell marker for both normal brain and glioblastoma, and to better understand glioblastoma formation and recurrence, we looked for dys-regulated microRNAs in human CD133+ glioblastoma stem cells as opposed to CD133+ neural stem cells isolated from normal human brain. Using FACS sorting of low-passage cell samples followed by microRNA microarray analysis, we found 43 microRNAs that were dys-regulated in common in three separate CD133+ human glioblastomas compared to CD133+ normal neural stem cells. Among these were several microRNAs not previously associated with cancer. We then verified the microRNAs dys-regulated in glioblastoma using quantitative real time PCR and Taqman analysis of the original samples, as well as human GBM stem cell and established cell lines and many human specimens. We show that two candidate oncogenic microRNAs, miR-363 and miR-582-5p, can positively influence glioblastoma survival, as shown by forced expression of the microRNAs and their inhibitors followed by cell number assay, Caspase 3/7 assay, Annexin V apoptosis/fluorescence activated cell sorting, siRNA rescue of microRNA inhibitor treatment, as well as 3′UTR mutagenesis to show luciferase reporter rescue of the most successful targets. miR-582-5p and miR-363 are shown to directly target Caspase 3, Caspase 9, and Bim.  相似文献   

14.
We have investigated in vitro effects of anticancer therapy with the histone deacetylase inhibitor (HDACi) 4-phenylbutyrate (4-PB) combined with receptor tyrosine kinase inhibitors (RTKi) gefitinib or vandetanib on the survival of glioblastoma (U343MGa) and medulloblastoma (D324Med) cells. In comparison with individual effects of these drugs, combined treatment with gefitinib/4-PB or vandetanib/4-PB resulted in enhanced cell killing and reduced clonogenic survival in both cell lines. Our results suggest that combined treatment using HDACi and RTKi may beneficially affect the outcome of cancer therapy.  相似文献   

15.
Chemotherapeutic agents and gamma-irradiation used in the treatment of brain tumors, the most common solid tumors of childhood, have been shown to act primarily by inducing apoptosis. Here, we report that activation of the CD95 pathway was involved in drug- and gamma-irradiation-induced apoptosis of medulloblastoma and glioblastoma cells. Upon treatment CD95 ligand (CD95-L) was induced that stimulated the CD95 pathway by crosslinking CD95 via an autocrine/paracrine loop. Blocking CD95-L/receptor interaction using F(ab')2 anti-CD95 antibody fragments strongly reduced apoptosis. Apoptosis depended on activation of caspases (interleukin 1beta-converting enzyme/Ced-3 like proteases) as it was almost completely abrograted by the broad range caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone. Apoptosis was mediated by cleavage of the receptor proximal caspase FLICE/MACH (caspase-8) and the downstream caspase CPP32 (caspase-3, Apopain) resulting in cleavage of the prototype caspase substrate PARP. Moreover, CD95 was upregulated in wild-type p53 cells thereby increasing responsiveness towards CD95 triggering. Since activation of the CD95 system upon treatment was also found in primary medulloblastoma cells ex vivo, these findings may have implications to define chemosensitivity and to develop novel therapeutic strategies in the management of malignant brain tumors.  相似文献   

16.
17.
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor. Patients diagnosed with GBM have a poor prognosis, and it has been reported that tumor malignancy and GBM recurrence are promoted by STAT3 signaling. As resveratrol (RV), a polyphenol in grapes, is reported to be a potent and non-toxic cancer-preventive compound, the aim of this study was to investigate the therapeutic effect and molecular mechanisms of RV on GBM-derived radioresistant tumor initiating cells (TIC). Firstly, our results showed that primary GBM-CD133(+) TIC presented high tumorigenic and radiochemoresistant properties as well as increased protein levels of phosphorylated STAT3. We consistently observed that treatment with shRNA-STAT3 (sh-STAT3) or AG490, a STAT3 inhibitor, significantly inhibited the cancer stem-like cell properties and radioresistance of GBM-CD133(+) in vitro and in vivo. Furthermore, treatment of GBM-CD133(+) with 100 μM RV induced apoptosis and enhanced radiosensitivity by suppressing STAT3 signaling. Microarray results suggested that RV or AG490 inhibited the stemness gene signatures of GBM-CD133(+) and facilitated the differentiation of GBM-CD133(+) into GBM-CD133(-) or astrocytoma cells. Finally, xenotransplant experiments indicated that RV or sh-STAT3 therapy could significantly improve the survival rate and synergistically enhance the radiosensitivity of radiation-treated GBM-TIC. In summary, RV can reduce in vivo tumorigenicity and enhance the sensitivity of GBM-TIC to radiotherapies through the STAT3 pathway.  相似文献   

18.
Evidence has suggested that STAT3 functions as an oncogene in gliomagenesis. As a consequence, changes in the inflammatory microenvironment are thought to promote tumor development. Regardless of its origin, cancer-related inflammation has many tumor-promoting effects, such as the promotion of cell cycle progression, cell proliferation, cell migration and cell survival. Given that IL-6, a major cancer-related inflammatory cytokine, regulates STAT3 activation and is upregulated in glioblastoma, we sought to investigate the inhibitory effects of the chemopreventive flavonoid quercetin on glioblastoma cell proliferation and migration triggered by IL-6, and to determine the underlying mechanisms of action. In this study, we show that quercetin is a potent inhibitor of the IL-6-induced STAT3 signaling pathway in T98G and U87 glioblastoma cells. Exposure to quercetin resulted in the reduction of GP130, JAK1 and STAT3 activation by IL-6, as well as a marked decrease of the proliferative and migratory properties of glioblastoma cells induced by IL-6. Interestingly, quercetin also modulated the expression of two target genes regulated by STAT3, i.e. cyclin D1 and matrix metalloproteinase-2 (MMP-2). Moreover, quercetin reduced the recruitment of STAT3 at the cyclin D1 promoter and inhibited Rb phosphorylation in the presence of IL-6. Overall, these results provide new insight into the role of quercetin as a blocker of the STAT3 activation pathway stimulated by IL-6, with a potential role in the prevention and treatment of glioblastoma.  相似文献   

19.
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults. Despite concerted efforts to improve current therapies and develop novel clinical approaches, patient survival remains poor. As such, increasing attention has focused on developing new therapeutic strategies that specifically target the apoptotic pathway in order to improve treatment responses. Recently, nutlins, small-molecule antagonists of MDM2, have been developed to inhibit p53-MDM2 interaction and activate p53 signaling in cancer cells. Glioma cell lines and primary cultured glioblastoma cells were treated with nutlin-3a. Nutlin-3a induced p53-dependent G1- and G2-M cell cycle arrest and apoptosis in glioma cell lines with normal TP53 status. In addition, nutlin-arrested glioma cells show morphological features of senescence and persistent induction of p21 protein. Furthermore, senescence induced by nutlin-3a might be depending on mTOR pathway activity. In wild-type TP53 primary cultured cells, exposure to nutlin-3a resulted in variable degrees of apoptosis as well as cellular features of senescence. Nutlin-3a-induced apoptosis and senescence were firmly dependent on the presence of functional p53, as revealed by the fact that glioblastoma cells with knockdown p53 with specific siRNA, or cells with mutated or functionally impaired p53 pathway, were completely insensitive to the drug. Finally, we also found that nutlin-3a increased response of glioma cells to radiation therapy. The results provide a basis for the rational use of MDM2 antagonists as a novel treatment option for glioblastoma patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号