首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limited aqueous solubility of exemestane leads to high variability in absorption after oral administration. To improve the solubility and bioavailability of exemestane, the self-microemulsifying drug delivery system (SMEDDS) was developed. SMEDDS comprises of isotropic mixture of natural or synthetic oil, surfactant, and cosurfactant, which, upon dilution with aqueous media, spontaneously form fine o/w microemulsion with less than 100 nm in droplet size. Solubility of exemestane were determined in various vehicles. Ternary phase diagrams were plotted to identify the efficient self-emulsification region. Dilution studies, droplet size, and zeta potential of the formulations were investigated. The release of exemestane from SMEDDS capsules was studied using USP dissolution apparatus in different dissolution media and compared the release of exemestane from a conventional tablet. Oral pharmacokinetic study was performed in female Wistar rats (n = 8) at the dose of 30 mg kg−1. The absorption of exemestane from SMEDDS form resulted in about 2.9-fold increase in bioavailability compared with the suspension. Our studies illustrated the potential use of SMEDDS for the delivery of hydrophobic compounds, such as exemestane by the oral route.Key words: bioavailability enhancement, exemestane, microemulsion, SMEDDS  相似文献   

2.
Tan Q  Liu S  Chen X  Wu M  Wang H  Yin H  He D  Xiong H  Zhang J 《AAPS PharmSciTech》2012,13(2):534-547
A novel evodiamine (EVO)-phospholipid complex (EPLC) was designed to improve the bioavailability of EVO. A central composite design approach was employed for process optimization. EPLC were characterized by differential scanning calorimetry, ultraviolet spectroscopy, Fourier transformed infrared spectroscopy, 1H-NMR spectroscopy, matrix-assisted laser desorption/ionization time-of-flight spectroscopy, apparent solubility, and dissolution rate. After oral administration of EPLC, the concentrations of EVO at different time points were determined by high-performance liquid chromatography. The optimal formulation for EPLC was obtained where the values of X1, X2, and X3 were 2, 0.5, and 2.5 mg/mL, respectively. The average particle size and zeta potential of EPLC with the optimized formulation were 246.1 nm and −26.94 mV, respectively. The EVO and phospholipids in the EPLC were associated with non-covalent interactions. The solubility of EPLC in water and the dissolution rate of EPLC in phosphate-buffered solution (pH 6.8) were substantially enhanced. The plasma EVO concentration-time curves of EPLC and free EVO were both in accordance with the two-compartment model. The peak concentration and AUC0−∞ of EPLC were increased, and the relative bioavailability was significantly increased to 218.82 % compared with that of EVO.KEY WORDS: bioavailability, evodiamine, phospholipid complex, process optimization  相似文献   

3.
The aim of this work was to prepare and evaluate Tadalafil nanosuspensions and their PEG 4000 solid dispersion matrices to enhance its dissolution rate. Nanosuspensions were prepared by precipitation/ultrasonication technique at 5°C where different stabilizers were screened for stabilization. Nanosuspensions were characterized in terms of particle size and charge. Screening process limited suitable stabilizers into structurally related surfactants composed of a mixture of Tween80 and Span80 at 1:1 ratio (in percent, weight/volume) in adjusted alkaline pH (named TDTSp-OH). The surfactant mixture aided the production of nanosuspensions with an average particle size of 193 ± 8 nm and with short-term stability sufficient for further processing. Solid dispersion matrices made of dried Tadalafil nanosuspensions or dried Tadalafil raw powder suspensions and PEG 4000 as a carrier were prepared by direct compression. Drying was performed via dry heat or via freeze dry. Drug release studies showed that, in general, tablet formulations made of freeze-dried product exhibited faster initial release rates than the corresponding tablets made of oven-dried products which could be attributed to possible larger crystal growth and larger crushing strengths of oven-dried formulations. At best, 60% of drug was released from solid dispersion matrices, while more than 90% of drug was released from TDTSp-OH nanosuspension within the first 5 min. In conclusion, Tadalafil nanosuspensions obtained using a mixed surfactant system provided rapid dissolution rates of Tadalafil that can theoretically enhance its bioavailability.KEY WORDS: nanosuspension, particle size, solid dispersion, stabilizer, tablets, Tadalafil  相似文献   

4.
Lacidipine (LCDP) is a highly lipophilic calcium channel blocker of poor aqueous solubility leading to poor oral absorption. This study aims to prepare and optimize LCDP nanosuspensions using antisolvent sonoprecipitation technique to enhance the solubility and dissolution of LCDP. A three-factor, three-level Box–Behnken design was employed to optimize the formulation variables to obtain LCDP nanosuspension of small and uniform particle size. Formulation variables were as follows: stabilizer to drug ratio (A), sodium deoxycholate percentage (B), and sonication time (C). LCDP nanosuspensions were assessed for particle size, zeta potential, and polydispersity index. The formula with the highest desirability (0.969) was chosen as the optimized formula. The values of the formulation variables (A, B, and C) in the optimized nanosuspension were 1.5, 100%, and 8 min, respectively. Optimal LCDP nanosuspension had particle size (PS) of 273.21 nm, zeta potential (ZP) of ?32.68 mV and polydispersity index (PDI) of 0.098. LCDP nanosuspension was characterized using x-ray powder diffraction, differential scanning calorimetry, and transmission electron microscopy. LCDP nanosuspension showed saturation solubility 70 times that of raw LCDP in addition to significantly enhanced dissolution rate due to particle size reduction and decreased crystallinity. These results suggest that the optimized LCDP nanosuspension could be promising to improve oral absorption of LCDP.  相似文献   

5.
The present studies entail formulation development of novel solid self-nanoemulsifying drug delivery systems (S-SNEDDS) of valsartan with improved oral bioavailability, and evaluation of their in vitro and in vivo performance. Preliminary solubility studies were carried out and pseudoternary phase diagrams were constructed using blends of oil (Capmul MCM), surfactant (Labrasol), and cosurfactant (Tween 20). The SNEDDS were systematically optimized by response surface methodology employing 33-Box–Behnken design. The prepared SNEDDS were characterized for viscocity, refractive index, globule size, zeta potential, and TEM. Optimized liquid SNEDDS were formulated into free flowing granules by adsorption on the porous carriers like Aerosil 200, Sylysia (350, 550, and 730) and Neusilin US2, and compressed into tablets. In vitro dissolution studies of S-SNEDDS revealed 3–3.5-fold increased in dissolution rate of the drug due to enhanced solubility. In vivo pharmacodynamic studies in Wistar rats showed significant reduction in mean systolic BP by S-SNEDDS vis-à-vis oral suspension (p < 0.05) owing to the drug absorption through lymphatic pathways. Solid-state characterization of S-SNEDDS using FT-IR and powder XRD studies confirmed lack of any significant interaction of drug with lipidic excipients and porous carriers. Further, the accelerated stability studies for 6 months revealed that S-SNEDDS are found to be stable without any change in physiochemical properties. Thus, the present studies demonstrated the bioavailability enhancement potential of porous carriers based S-SNEDDS for a BCS class II drug, valsartan.KEY WORDS: BCS, bioavailability, in vitro dissolution, porous carriers, XRD  相似文献   

6.
The objective of the present work was to formulate tablet dosage form of itraconazole with enhanced bioavailability. Spherical crystal agglomerates (SCA) of itraconazole prepared by quasi emulsification solvent diffusion method using Soluplus and polyethylene glycol 4000 (PEG 4000) showed increased solubility (540 μg/ml) in 0.1 N hydrochloric acid as compared to pure drug (12 μg/ml). A Fourier transform infrared (FTIR) study indicated compatibility of drug with the excipients. The developed SCA were spherical with smooth surface having an average size of 412 μm. The significantly improved micromeritic properties compared to the plain drug suggested its suitability for direct compression. The antifungal activity of itraconazole was retained in the SCA form as evidenced from the results of the disc diffusion method. The optimized SCA formulation could be easily compressed into tablet with desirable characteristics of hardness (5 kg/cm2) and disintegration time (6.3 min). The in vitro dissolution studies showed significant difference in the dissolution profiles of pure drug (21%) and SCA formulation (85%) which was even greater than that of marketed preparation (75%). In vivo pharmacokinetic showed significant enhancement in Cmax and AUC0−t with relative bioavailability of 225%. The SCA formulation seems to be promising for enhancement of oral bioavailability of itraconazole.KEY WORDS: bioavailability, direct compression, itraconazole, spherical crystal agglomeration  相似文献   

7.
The KinetiSol® Dispersing (KSD) technology has enabled the investigation into the use of polyvinyl alcohol (PVAL) as a concentration enhancing polymer for amorphous solid dispersions. Our previous study revealed that the 88% hydrolyzed grade of PVAL was optimal for itraconazole (ITZ) amorphous compositions with regard to solid-state properties, non-sink dissolution performance, and bioavailability enhancement. The current study investigates the influence of molecular weight for the 88% hydrolyzed grades of PVAL on the properties of KSD processed ITZ:PVAL amorphous dispersions. Specifically, molecular weights in the processable range of 4 to 18 mPa · s were evaluated and the 4-88 grade provided the highest AUC dissolution profile. Amorphous dispersions at 10, 20, 30, 40, and 50% ITZ drug loads in PVAL 4-88 were also compared by dissolution performance. Analytical tools of diffusion-ordered spectroscopy and Fourier transform infrared spectroscopy were employed to understand the interaction between drug and polymer. Finally, results from a 30-month stability test of a 30% drug loaded ITZ:PVAL 4-88 composition shows that stable amorphous dispersions can be achieved. Thus, this newly enabled polymer carrier can be considered a viable option for pharmaceutical formulation development for solubility enhancement.KEY WORDS: amorphous solid dispersion, itraconazole, polyvinyl alcohol, PVAL, solubility enhancement  相似文献   

8.
The present study aimed at development of capsular dosage form of surface-adsorbed nanoemulsion (NE) of olmesartan medoxomil (OLM) so as to overcome the limitations associated with handling of liquid NEs without affecting their pharmaceutical efficacy. Selection of oil, surfactant, and cosurfactant for construction of pseudoternary phase diagrams was made on the basis of solubility of drug in these excipients. Rationally selected NE formulations were evaluated for percentage transmittance, viscosity, refractive index, globule size, zeta potential, and polydispersity index (PDI). Formulation (F3) comprising of Capmul MCM® (10% v/v), Tween 80® (11.25% v/v), polyethylene glycol 400 (3.75% v/v), and double-distilled water (75% v/v) displayed highest percentage cumulative drug release (%CDR; 96.69 ± 1.841), least globule size (17.51 ± 5.87 nm), low PDI (0.203 ± 0.032), high zeta potential (−58.93 ± 0.98 mV), and hence was selected as the optimized formulation. F3 was adsorbed over colloidal silicon dioxide (2 ml/400 mg) to produce free-flowing solid surface-adsorbed NE that presented a ready-to-fill capsule composition. Conversion of NE to surface-adsorbed NE and its reconstitution to NE did not affect the in vitro release profile of OLM as the similarity factor with respect to NE was found to be 66% and 73% respectively. The %CDR after 12 h for optimized NE, surface-adsorbed NE, and reconstituted NE was found to be 96.69 ± 0.54, 96.07 ± 1.76, and 94.78 ± 1.57, respectively (p > 0.05). The present study established capsulated surface-adsorbed NE as a viable delivery system with the potential to overcome the handling limitations of NE.KEY WORDS: bioavailability, nanoemulsion, olmesartan medoxomil, oral  相似文献   

9.
The present study was performed to investigate potential of Eudragit RLPO-based nanosuspension of glimepiride (Biopharmaceutical Classification System class II drug), for the improvement of its solubility and overall therapeutic efficacy, suitable for peroral administration. Nanoprecipitation method being simple and less sophisticated was optimized for the preparation of nanosuspension. Physicochemical characteristics of nanosuspension in terms of size, zeta potential, polydispersity index, entrapment efficiency (% EE) and in vitro drug release were found within their acceptable ranges. The size of the nanoparticles was most strongly affected by agitation time while % EE was more influenced by the drug/polymer ratio. Differential scanning calorimetry and X-ray diffraction studies provided evidence that enhancement in solubility of drug resulted due to change in crystallinity of drug within the formulation. Stability study revealed that nanosuspension was more stable at refrigerated condition with no significant changes in particle size distribution, % EE, and release characteristics for 3 months. In vivo studies were performed on nicotinamide–streptozotocin-induced diabetic rat models for pharmacokinetic and antihyperglycaemic activity. Nanosuspension increased maximum plasma concentration, area under the curve, and mean residence time values significantly as compared to aqueous suspension. Oral glucose tolerance test and antihyperglycaemic studies demonstrated plasma glucose levels were efficiently controlled in case of nanosuspension than glimepiride suspension. Briefly, sustained and prolonged activity of nanosuspensions could reduce dose frequency, decrease drug side effects, and improve patient compliance. Therefore, glimepiride nanosuspensions can be expected to gain considerable attention in the treatment of type 2 diabetes mellitus due to its improved therapeutic activity.KEY WORDS: diabetes mellitus, glimepiride, nanoprecipitation, poloxamer, sustained release  相似文献   

10.
The main objective of the present study was to investigate the influence of various formulation parameters on the preparation of zein nanoparticles. 6,7-dihydroxycoumarin (DHC) was used as a model hydrophobic compound. The influence of pH of the aqueous phase, buffer type, ionic strength, surfactant, and zein concentration on particle size, polydispersity index, and zeta potential of DHC-loaded zein nanoparticles were studied. Smaller nanoparticles were formed when the pH was close to the isoelectric point of zein. DHC-loaded zein nanoparticles prepared using citrate buffer (pH 7.4) was better than phosphate buffer in preventing particle aggregation during lyophilization. The ionic strength did not have a significant influence on the particle size of DHC-loaded zein nanoparticles. A combination of Pluronic F68 and lecithin in 2:1 ratio stabilized the zein nanoparticles. An increase in zein concentration led to increase in particle size of DHC-loaded zein nanoparticles. The use of optimal conditions produced DHC-loaded nanoparticles of 256 ± 30 nm and an encapsulation efficiency of 78 ± 7%. Overall, the study demonstrated the optimal conditions to prepare zein nanoparticles for drug encapsulation.KEY WORDS: drug delivery, particle size distribution, pH nanoprecipitation, protein polymers, zein, zeta potential  相似文献   

11.
Ursolic acid (UA), which is a natural pentacyclic triterpenoid, has the potential to be developed as an anticancer drug, whereas its poor aqueous solubility and dissolution rate limit its clinical application. The aim of the present study was to develop UA nanocrystals to enhance its aqueous dispersibility, dissolution rate and anticancer activity. Following the investigation on the effects of stabiliser, the ratio of organic phase to aqueous solution and drug concentration, the UA nanocrystals without stabiliser were successfully prepared by anti-solvent precipitation approach. The nanocrystals maintained similar crystallinity with particle size, polydispersion index and zeta potential values of 188.0 ± 4.4 nm, 0.154 ± 0.022, and −25.0 ± 5.9 mV, respectively. Compared with the raw material, the UA nanocrystals showed good aqueous dispensability and a higher dissolution rate, and they could be completely dissolved in 0.5% SDS solution within 120 min. Moreover, the suspension of UA nanocrystals was physically stable after storage at 4°C for 7 weeks. By inducing G2/M phase cell cycle arrest, the UA nanocrystals significantly induced stronger cell growth inhibition activity against MCF-7 cells compared with free drug in vitro, although the uptake of free UA was approximately twice higher than that of the UA nanocrystals. The UA nanocrystals may be used as a potential delivery formulation for intravenous injection with enhanced dissolution velocity and anticancer activity.Key words: anticancer, dissolution, MCF-7, nanocrystals, ursolic acid  相似文献   

12.
The objective of the present investigation was to develop in situ gelling nasal spray formulation of carvedilol (CRV) nanosuspension to improve the bioavailability and therapeutic efficiency. Solvent precipitation–ultrasonication method was opted for the preparation of CRV nanosuspension which further incorporated into the in situ gelling polymer phase. Optimized formulation was extensively characterized for various physical parameters like in situ gelation, rheological properties and in vitro drug release. Formation of in situ gel upon contact with nasal fluid was conferred via the use of ion-activated gellan gum as carrier. In vivo studies in rabbits were performed comparing the nasal bioavailability of CRV after oral, nasal, and intravenous administration. Optimized CRV nanosuspension prepared by combination of poloxamer 407 and oleic acid showed good particle size [d (0.9); 0.19 μm], zeta potential (+10.2 mV) and polydispersity (span; 0.63). The formulation containing 0.5% w/v gellan gum demonstrated good gelation ability and desired sustained drug release over period of 12 h. In vivo pharmacokinetic study revealed that the absolute bioavailability of in situ nasal spray formulation (69.38%) was significantly increased as compared to orally administered CRV (25.96%) with mean residence time 8.65 h. Hence, such in situ gel system containing drug nanosuspension is a promising approach for the intranasal delivery in order to increase nasal mucosal permeability and in vivo residence time which altogether improves drug bioavailability.KEY WORDS: bioavailability, Carvedilol, in situ gel, intranasal, nanosuspension  相似文献   

13.
Khan FN  Dehghan MH 《AAPS PharmSciTech》2011,12(4):1077-1086
Oral bioavailability of atorvastatin calcium (ATC) is very low (only 14%) due to instability and incomplete intestinal absorption and/or extensive gut wall extraction. When ATC is packed in the form of tablets, powders, etc., it gets destabilized as it is exposed to the oxidative environment, which is usually present during the production process, the storage of the substance, and the pharmaceutical formulation. Therefore, stabilized gastro-retentive floating tablets of ATC were prepared to enhance bioavailability. Water sorption and viscosity measurement studies are performed to get the best polymer matrix for gastro-retention. A 32 factorial design used to prepare optimized formulation of ATC. The selected excipients such as docusate sodium enhanced the stability and solubility of ATC in gastric media and tablet dosage form. The best formulation (F4) consisting of hypromellose, sodium bicarbonate, polyethylene oxide, docusate sodium, mannitol, crosscarmellose sodium, and magnesium stearate, gave floating lag time of 56 ± 4.16 s and good matrix integrity with in vitro dissolution of 98.2% in 12 h. After stability studies, no significant change was observed in stability, solubility, floating lag time, total floating duration, matrix integrity, and sustained drug release rates, as confirmed by DSC and powder X-ray diffraction studies. In vivo pharmacokinetic study performed in rabbits revealed enhanced bioavailability of F4 floating tablets, about 1.6 times compared with that of the conventional tablet (Storvas® 80 mg tablet). These results suggest that the gastric resident formulation is a promising approach for the oral delivery of ATC for improving bioavailability.Key words: atorvastatin calcium, bioavailibility, floating tablets, gastro-retention, stabilization  相似文献   

14.
The aim of this investigation was to examine the efficacy of PhytoSolve and Phosal-based formulation (PBF) to enhance the oral bioavailability of mebudipine, which is a poorly water-soluble calcium channel blocker. The solubility of mebudipine in various oils was determined. PhytoSolve was prepared with a medium-chain triglyceride (MCT) oil (20%), soybean phospholipids (5%), and a 70% fructose solution (75%). The influence of the weight ratio of Phosal 50PG to glycerol in PBF on the mean globule size was studied with dynamic light scattering. The optimized formulation was evaluated for robustness toward dilution, transparency, droplet size, and zeta potential. The in vivo oral absorption of different mebudipine formulations (PhytoSolve, PBF, oily solution, and suspension) were evaluated in rats. The optimized PBF contained Phosal 50PG/glycerol in a 6:4 ratio (w/w). The PBF and PhytoSolve formulations were miscible with water in any ratio and did not demonstrate any phase separation or drug precipitation over 1 month of storage. The mean particle size of PhytoSolve and PBF were 138.5 ± 9.0 and 74.4 ± 2.5 nm, respectively. The in vivo study demonstrated that the oral bioavailability of PhytoSolve and PBF in rats was significantly higher than that of the other formulations. The PhytoSolve and PBF formulations of mebudipine are found to be more bioavailable compared with suspension and oily solutions during an in vivo study in rats. These formulations might be new alternative carriers that increase the oral bioavailability of poorly water-soluble molecules, such as mebudipine.KEY WORDS: mebudipine, oral bioavailability, Phosal 50PG, PhytoSolve  相似文献   

15.
Chemotherapy via oral route of anticancer drugs offers much convenience and compliance to patients. However, oral chemotherapy has been challenged by limited absorption due to poor drug solubility and intestinal efflux. In this study, we aimed to develop a nanosuspension formulation of oridonin (Odn) using its cyclodextrin inclusion complexes to enhance oral bioavailability. Nanosuspensions containing Odn/2 hydroxypropyl-β-cyclodextrin inclusion complexes (Odn-CICs) were prepared by a solvent evaporation followed by wet media milling technique. The nanosuspensions were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and dissolution. The resulting nanosuspensions were approximately 313.8 nm in particle size and presented a microcrystal morphology. Nanosuspensions loading Odn-CICs dramatically enhanced the dissolution of Odn. Further, the intestinal effective permeability of Odn was markedly enhanced in the presence of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and poloxamer. Bioavailability studies showed that nanosuspensions with Odn-CICs can significantly promote the oral absorption of Odn with a relative bioavailability of 213.99% (Odn suspensions as reference). Odn itself possesses a moderate permeability and marginal intestinal metabolism. Thus, the enhanced bioavailability for Odn-CIC nanosuspensions can be attributed to improved dissolution and permeability by interaction with absorptive epithelia and anti-drug efflux. Nanosuspensions prepared from inclusion complexes may be a promising approach for the oral delivery of anticancer agents.  相似文献   

16.
The intramuscular administration of the injectable suspension betamethasone sodium phosphate (BSP) and betamethasone dipropionate (BD) has immediate therapeutic activity due to solubilized BSP and prolonged activity resulting from the slow release of BD micro-crystals. The purpose of this study was to develop and validate a dissolution method for BD in intramuscular injectable suspensions with detection by high-performance liquid chromatography (HPLC) method. Five commercial products presented a distribution of particle sizes, ranging between 7.43 and 40.25 μm as measured by laser diffraction. It was also found that particle sizes differed between batches of the same product. The different products were tested using the paddle apparatus, with stirring speeds of 25 and 50 rpm in 300 mL of phosphate buffer; simulated body fluid, muscle fluid, and synovial fluid were used as biorelevant dissolution media at 37 ± 0.5°C. It was verified that not only does average particle size affect the dissolution rate, but also the mode and the polydispersity index of the particles. Discriminatory power was obtained using the in vitro dissolution method with 0.1 M sodium phosphate buffer pH 7.4 containing 0.1% sodium lauryl sulfate and a stirring speed of 50 rpm. The HPLC-method is linear, precise, selective, and accurate for the quantification of BSP and BD in dissolution profile testing. This dissolution method can be utilized as a method to control the quality of these injectable suspensions.Key words: dipropionate betamethasone, dissolution test, intramuscular injectable suspensions, simulated muscular fluid, sodium phosphate betamethasone  相似文献   

17.
The solubility of five poorly soluble drugs was enhanced by using an effervescence assisted solid dispersion (EASD) technique. EASDs were prepared by using modified fusion method. Drug and hydrophilic carrier were melted, and in this molten mixture, effervescence was generated by adding effervescence couple comprising organic acid (citric acid) and carbonic base (sodium bicarbonate). Solubility of drug powders, solid dispersions, and EASDs was determined at 25°C using shake flask method. Atorvastatin calcium, cefuroxime axetil, clotrimazole, ketoconazole, and metronidazole benzoate were estimated using a spectrophotometer at 246, 280, 260, 230, and 232 nm (λmax), respectively. Solubility of atorvastatin calcium (from 100 to 345 μg/ml), cefuroxime axetil (from 441 to 1948 μg/ml), clotrimazole (from 63 to 677 μg/ml), ketoconazole (from 16 to 500 μg/ml), and metronidazole benzoate (from 112 to 208 μg/ml) in EASDs was enhanced by 3.45-, 4.4-, 10.7-, 31.2-, and 1.8-fold, respectively. Scanning electron micrographs of drug powder, solid dispersion, and EASDs were compared. Scanning electron micrographs of EASDs showed a uniform distribution of drug particles in the carrier matrix. Morphology (size and shape) of cefuroxime axetil particles was altered in solid dispersion as well as in EASD. EASDs showed better solubility enhancement than conventional solid dispersions. The present technique is better suitable for drugs having a low melting point or melt without charring. Effervescence assisted fusion technique of preparing solid dispersions can be employed for enhancing solubility, dissolution, and bioavailability of poorly soluble drugs.KEY WORDS: dissolution, effervescence, fusion, solid dispersion, solubility  相似文献   

18.
The purpose of this study is to enhance the dissolution rate of prednisone by co-grinding with Neusilin to form a complex that can be incorporated into a mini-tablet formulation for pediatrics. Prednisone–Neusilin complex was co-grinded at various ratios (1:1, 1:3, 1:5, and 1:7). The physicochemical properties of the complex were characterized by various analytical techniques including: differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), scanning electron microscope (SEM), particle size, surface area, solubility, and dissolution rate. The co-grinded prednisone–Neusilin complex (1:7) was blended with other excipients and was formulated into a 2-mm diameter mini-tablet. The mini-tablets were further evaluated for thickness, weight, content uniformity, and dissolution rate. To improve taste masking and stability, mini-tablets were coated by dip coating with Eudragit® EPO solution. DSC and XRPD results showed that prednisone was transformed from crystalline state into amorphous state after co-grinding with Neusilin. Particle size, surface area, and SEM results confirmed that prednisone was adsorbed to Neusilin’s surface. Co-grinded prednisone–Neusilin complex (1:7) had a solubility of 0.24 mg/mL and 90% dissolved within 20 min as compared to crystalline prednisone which had a solubility of 0.117 mg/mL and 30% dissolved within 20 min. The mini-tablets containing co-grinded prednisone–Neusilin complex (1:7) exhibited acceptable physicochemical and mechanical properties including dissolution rate enhancement. These mini-tablets were successfully dip coated in Eudragit® EPO solution to mask the taste of the drug during swallowing. This work illustrates the potential use of co-grinded prednisone–Neusilin to enhance solubility and dissolution rate as well as incorporation into a mini-tablet formulation for pediatric use.Key words: mini-tablet, Neusilin, pediatric, prednisone, solubility  相似文献   

19.
The solubility of weakly basic drugs within passage though GI tract leads to pH-dependent or even incomplete release of these drugs from extended release formulations and consequently to lower drug absorption and bioavailability. The aim of the study was to prepare and evaluate hydrophilic–lipophilic (hypromellose–montanglycol wax) matrix tablets ensuring the pH-independent delivery of the weakly basic drug verapamil-hydrochloride by an incorporation of three organic acidifiers (citric, fumaric, and itaconic acids) differing in their concentrations, pKa, and solubility. The dissolution studies were performed by the method of changing pH values, which better corresponded to the real conditions in the GI tract (2 h at pH 1.2 and then 10 h at pH 6.8). Within the same conditions, pH of matrix microenvironment was measured. To determine relationships between the above mentioned properties of acidifiers and the monitored effects (the amount of released drug and surface pH of gel layer in selected time intervals—360 and 480 min), the full factorial design method and partial least squares PLS-2 regression were used. The incorporation of the tested pH modifiers significantly increased the drug release rate from matrices. PLS-components explained 75% and 73% variation in the X- and Y-data, respectively. The obtained results indicated that the main crucial points (p < 0.01) were the concentration and strength of acidifier incorporated into the matrix. Contrary, the acid solubility surprisingly did not influence the selected effects except for the surface pH of gel layer in time 480 min.Key words: gel layer, matrix tablets, pH-independent drug release, pH modifiers, statistical evaluation  相似文献   

20.
Controlled-release (CR) tablet formulation of olanzapine was developed using a binary mixture of Methocel® K100 LV-CR and Ethocel® standard 7FP premium by the dry granulation slugging method. Drug release kinetics of CR tablet formulations F1, F2, and F3, each one suitably compressed for 9-, 12-, and 15-kg hardness, were determined in a dissolution media of 0.1 N HCl (pH 1.5) and phosphate buffer (pH 6.8) using type II dissolution apparatus with paddles run at 50 rpm. Ethocel® was found to be distinctly controlling drug release, whereas the hardness of tablets and pH of the dissolution media did not significantly affect release kinetics. The CR test tablets containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness exhibited pH-independent zero-order release kinetics for 24 h. In vivo performance of the CR test tablet and conventional reference tablet were determined in rabbit serum using high-performance liquid chromatography coupled with electrochemical detector. Bioavailability parameters including Cmax, Tmax, and AUC0–48 h of both tablets were compared. The CR test tablets produced optimized Cmax and extended Tmax (P < 0.05). A good correlation of drug absorption in vivo and drug release in vitro (R2 = 0.9082) was observed. Relative bioavailability of the test tablet was calculated as 94%. The manufacturing process employed was reproducible and the CR test tablets were stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. It was concluded that the CR test tablet formulation successfully developed may improve tolerability and patient adherence by reducing adverse effects.Key words: bioavailability, controlled release, Ethocel®, olanzapine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号