首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Prediction of proteasome cleavage motifs by neural networks   总被引:20,自引:0,他引:20  
We present a predictive method that can simulate an essential step in the antigen presentation in higher vertebrates, namely the step involving the proteasomal degradation of polypeptides into fragments which have the potential to bind to MHC Class I molecules. Proteasomal cleavage prediction algorithms published so far were trained on data from in vitro digestion experiments with constitutive proteasomes. As a result, they did not take into account the characteristics of the structurally modified proteasomes--often called immunoproteasomes--found in cells stimulated by gamma-interferon under physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks trained on MHC Class I ligands, i.e. the specificity of the immunoproteasome is different than the constitutive proteasome. The tools developed in this study in combination with a predictor of MHC and TAP binding capacity should give a more complete prediction of the generation and presentation of peptides on MHC Class I molecules. Here we demonstrate that such an approach produces an accurate prediction of the CTL the epitopes in HIV Nef. The method is available at www.cbs.dtu.dk/services/NetChop/.  相似文献   

2.
The growth factor midkine (MK) is a cytokine that inhibits HIV infection in cell cultures in an autocrine and paracrine manner by blocking the attachment of HIV particles to permissive cells. MK mRNA is systematically expressed in adult peripheral blood lymphocytes from healthy donors, while its expression becomes markedly but transiently increased upon in vitro treatment of lymphocytes with IL-2 or IFN-7 and activation of T lymphocytes by PHA or through the engagement of the CD28 antigen. The binding of MK to cells occurs specifically at a high and a low affinity binding site. This low affinity-binding site is the cell-surface expressed nucleolin, which is implicated in the mechanism of the initial attachment of HIV particles to cells. Accordingly, the nucleolin-binding HB-19 pseudopeptide has no effect on the MK binding to the high affinity binding site, whereas it prevents the binding of MK to the low affinity binding site, thus suggesting the low affinity receptor of MK is the cell-surface-expressed nucleolin. Confocal immunofluorescence laser microscopy revealed the colocalization of MK and the cell-surface-expressed nucleolin at distinct spots. The use of various deletion constructs of nucleolin then indicates that the extreme C-terminal end of nucleolin, containing repeats of the amino acid motif RGG, as the domain that binds MK. The specific binding of MK to the surface nucleolin is independent of heparan sulfate and chondroitin sulfate proteoglycans. After binding to cells, MK enters cells by an active process in which nucleolin and lipid rafts appear to be implicated. The potent and the distinct anti-HIV action of MK along with its enhanced expression in lymphocytes by various physiological stimuli, point out that MK is a cytokine that could be involved in HIV pathogenesis.  相似文献   

3.
Osmotic stress causes profound perturbations of cell functions. Although the adaptive responses required for cell survival upon osmotic stress are being unraveled, little is known about the effects of osmotic stress on ubiquitin-dependent proteolysis. We now report that hyperosmotic stress inhibits proteasome activity by activating p38 MAPK. Osmotic stress increased the level of polyubiquitinated proteins in the cell. The selective p38 inhibitor SB202190 decreased osmotic stress-associated accumulation of polyubiquitinated proteins, indicating that p38 MAPK plays an inhibitory role in the ubiquitin proteasome system. Activated p38 MAPK stabilized various substrates of the proteasome and increased polyubiquitinated proteins. Proteasome preparations purified from cells expressing activated p38 MAPK had substantially lower peptidase activities than control proteasome samples. Proteasome phosphorylation sites dependent on p38 were identified by measuring changes in the extent of proteasome phosphorylation in response to p38 MAPK activation. The residue Thr-273 of Rpn2 is the major phosphorylation site affected by p38 MAPK. The mutation T273A in Rpn2 blocked the proteasome inhibition that is mediated by p38 MAPK. These results suggest that p38 MAPK negatively regulates the proteasome activity by phosphorylating Thr-273 of Rpn2.  相似文献   

4.
5.
BACKGROUND: Major histocompatibility complex (MHC) class I molecules play key roles in host immunity against pathogens by presenting peptide antigens to CD8+ T-cells. Many variants of MHC molecules exist, and each has a unique preference for certain peptide ligands. Both experimental approaches and computational algorithms have been utilized to analyze these peptide MHC binding characteristics. Traditionally, MHC binding specificities have been described in terms of binding motifs. Such motifs classify certain peptide positions as primary and secondary anchors according to their impact on binding, and they list the preferred and deleterious residues at these positions. This provides a concise and easily communicatable summary of MHC binding specificities. However, so far there has been no algorithm to generate such binding motifs in an automated and uniform fashion. In this paper, we present a computational pipeline that takes peptide MHC binding data as input and produces a concise MHC binding motif. We tested our pipeline on a set of 18 MHC class I molecules and showed that the derived motifs are consistent with historic expert assignments. We have implemented a pipeline that formally codifies rules to generate MHC binding motifs. The pipeline has been incorporated into the immune epitope database and analysis resource (IEDB) and motifs can be visualized while browsing MHC alleles in the IEDB.  相似文献   

6.
Mueller TD  Feigon J 《The EMBO journal》2003,22(18):4634-4645
HHR23A, a protein implicated in nucleotide excision repair, belongs to a class of proteins containing both a ubiquitin-like (Ubl) domain and one or more ubiquitin-associated (UBA) domains, suggesting a role in the ubiquitin-proteasome pathway as well. The Ubl domain binds with high affinity to the second ubiquitin-interacting motif (UIM) of the S5a subunit of the proteasome. Here we present the solution structures of the HHR23A Ubl domain, the second UIM of S5a (UIM-2), and the Ubl:S5a-UIM-2 complex. The HHR23A Ubl domain is structurally similar to ubiquitin. The S5a UIM forms an alpha-helix with an unexpected hairpin loop that contributes to the binding interface with Ubl. The molecular determinants of the Ubl-proteasome interaction are revealed by analysis of the structures, chemical shift mapping, mutant binding studies and sequence conservation.  相似文献   

7.
8.
Enhancing factor (EF), a mouse intestinal phospholipase A2 (PLA2), has been isolated and characterized. EF increases the binding of epidermal growth factor (EGF) to A431 cells almost two-fold by interacting with EGF. EF binds to a 100 kDa cell surface receptor and brings about an increase in the binding of EGF. In the present study we demonstrate that EF is a heparin binding protein and at the time of iodination of EF, the heparin binding site of EF has to be protected. Heparin inhibits the enhancing activity of EF as well as the binding of labelled EF to A431 cells. Inhibition of binding of EF to cells by heparin indicates that heparin binding region forms at least part of the receptor binding domain. These data suggest that the receptor for EF on the cell surface could be a heparin sulphate proteoglycan.  相似文献   

9.
Eukaryotic mRNAs possess a poly(A) tail at their 3′-end, to which poly(A)-binding protein C1 (PABPC1) binds and recruits other proteins that regulate translation. Enhanced poly(A)-dependent translation, which is also PABPC1 dependent, promotes cellular and viral proliferation. PABP-interacting protein 2A (Paip2A) effectively represses poly(A)-dependent translation by causing the dissociation of PABPC1 from the poly(A) tail; however, the underlying mechanism remains unknown. This study was conducted to investigate the functional mechanisms of Paip2A action by characterizing the PABPC1–poly(A) and PABPC1–Paip2A interactions. Isothermal titration calorimetry and NMR analyses indicated that both interactions predominantly occurred at the RNA recognition motif (RRM)2–RRM3 regions of PABPC1, which have comparable affinities for poly(A) and Paip2A (dissociation constant, Kd = 1 nM). However, the Kd values of isolated RRM2 were 200 and 4 μM in their interactions with poly(A) and Paip2A, respectively; Kd values of 5 and 1 μM were observed for the interactions of isolated RRM3 with poly(A) and Paip2A, respectively. NMR analyses also revealed that Paip2A can bind to the poly(A)-binding interfaces of the RRM2 and RRM3 regions of PABPC1. Based on these results, we propose the following functional mechanism for Paip2A: Paip2A initially binds to the RRM2 region of poly(A)-bound PABPC1, and RRM2-anchored Paip2A effectively displaces the RRM3 region from poly(A), resulting in dissociation of the whole PABPC1 molecule. Together, our findings provide insight into the translation repression effect of Paip2A and may aid in the development of novel anticancer and/or antiviral drugs.  相似文献   

10.
In previous reports from this laboratory, we identified the presence of a novel alpha-D-mannosidase on the surface of rat, mouse, hamster, and human spermatozoa [J Cell Biol 1989; 109:1257-1267 and Biol Reprod 1990; 42:843-858]. Since it has been suggested that mannosyl residues on the egg zona pellucida may be important for sperm-egg binding, studies were undertaken to examine the potential role of the sperm alpha-D-mannosidase during fertilization. Incubation of mouse spermatozoa in the presence of increasing concentrations of the inhibitory sugars, alpha-methyl mannoside, alpha-methyl glucoside, D-mannose, or D-mannitol, resulted in a dose-dependent decrease in the number of spermatozoa bound per egg without a deleterious effect on sperm motility or on the sperm acrosome, and a dose-dependent inhibition of the sperm mannosidase activity. Galactose, however had no effect on sperm-egg binding or on sperm mannosidase activity. Two nucleotide sugars (UDP-GlcNAc and UDP-gal) were also tested and shown to reduce sperm-egg binding but with only a minimal effect on sperm mannosidase activity. In additional studies, spermatozoa incubated in the presence of a mannose-containing oligosaccharide exhibited a dramatic reduction in sperm-egg binding that correlated with a similar inhibition of sperm mannosidase activity. The oligosaccharide substrate did not affect sperm motility or the sperm acrosome. These studies suggest that the sperm alpha-D-mannosidase may play an important role during fertilization.  相似文献   

11.
HIV-1 genome has an AU-rich sequence and requires rapid nuclear export by Rev activity to prevent multiple splicing. HIV-1 infection occurs in activated CD4(+) T cells where the decay of mRNAs of cytokines and chemokines is regulated by the binding of AU-rich elements to the mRNA-destabilizing protein tristetraprolin. We here investigated the influence of tristetraprolin on the replication of HIV-1. Treatment of siRNA against tristetraprolin in a latently HIV-1 infected cell line increases HIV-1 production following stimulation. A chloramphenicol acetyltransferase and luciferase assay revealed that exogenous tristetraprolin reduced HIV-1 virion production and in contrast increased the multiply spliced products. Furthermore, quantitative RT-PCR analysis showed tristetraprolin increases the ratio of multiple-spliced RNAs to un-, single-spliced RNA. Moreover, an electrophoretic mobility shift assay showed that tristetraprolin binds to synthesized HIV-1 RNA with AU-rich sequence but not to RNA with less AU sequence. These results suggest that tristetraprolin is a regulator of HIV-1 replication and enhances splicing by direct binding to AU-rich sequence of HIV-1 RNAs.  相似文献   

12.
The ubiquitin/proteasome system regulates protein turnover by degrading polyubiquitinated proteins. To date, all studies on the relationship of apoptosis and the proteasome have emphasized the key role of the proteasome in the regulation of apoptosis, by virtue of its ability to degrade regulatory molecules involved in apoptosis. We now demonstrate how induction of apoptosis may regulate the activity of the proteasome. During apoptosis, caspase activation results in the cleavage of three specific subunits of the 19S regulatory complex of the proteasome: S6' (Rpt5) and S5a (Rpn10), whose role is to recognize polyubiquitinated substrates of the proteasome, and S1 (Rpn2), which with S5a and S2 (Rpn1) holds together the lid and base of the 19S regulatory complex. This caspase-mediated cleavage inhibits the proteasomal degradation of ubiquitin-dependent and -independent cellular substrates, including proapoptotic molecules such as Smac, so facilitating the execution of the apoptotic program by providing a feed-forward amplification loop.  相似文献   

13.
Miller J  Gordon C 《FEBS letters》2005,579(15):3224-3230
The 26S proteasome is a large multi-protein complex that functions to degrade proteins tagged with multi-ubiquitin chains. There are several mechanisms employed by the cell to ensure the efficient delivery of multi-ubiquitinated substrate proteins to the 26S proteasome. This is not only important to ensure the degradation of damaged and misfolded proteins, but also the regulated turnover of critical cell regulators. This discussion will concentrate on what is known about the recognition and delivery of ubiquitinated substrate proteins to the 26S proteasome.  相似文献   

14.
We have identified repeat motifs in the large proteasome-binding proteins PA200 and Ecm29 by applying a sensitive sequence profile method. These repeat motifs, especially those of PA200, resemble HEAT/ARM repeats in length and other properties but differ from them in the occupancy of certain positions. The HEAT motif consists of two alpha-helices and two turns: molecular modeling suggests that in the PA200 and Ecm29 repeats, the alpha-helices may be slightly turned relative to their orientations in typical HEAT repeats. Both PA200 and Ecm29 are composed almost entirely of such repeats, and therefore are likely to have alpha-helical solenoid structures. These observations lead us to speculate on how PA200 and Ecm29 may associate with proteasomes.  相似文献   

15.
16.
1. Ca(2+) ions decreased the surface charge of isolated adrenal-medullary chromaffin granules whether the granules were untreated or previously incubated with neuraminidase. 2. Ca(2+) binding in both cases followed a Langmuir adsorption isotherm. 3. The chromaffin-granule surface was essentially polyanionic with about 10800 anionic sites per granule, of which 4200 sites are capable of binding Ca(2+) ions with an electrochemical free energy of adsorption of -1.32kJ.mol(-1). 4. The surface region of the chromaffin granule was calculated to bind 1306 Ca(2+) ions at 2.2mm-Ca(2+) (ionic strength 0.16mol.litre(-1)). 5. The importance of Ca(2+) binding to the chromaffin-granule surface is discussed in relation to the hypothesis of secretion by exocytosis.  相似文献   

17.
A number of proteins containing arginine-rich motifs (ARMs) are known to bind RNA and are involved in regulating RNA processing in viruses and cells. Using automated selection methods we have generated a number of aptamers against ARM peptides from various natural proteins. Aptamers bind tightly to their cognate ARMs, with K(d) values in the nanomolar range, and frequently show no propensity to bind to other ARMs or even to single amino acid variants of the cognate ARM. However, at least some anti-ARM aptamers can cross-recognize a limited set of other ARMs, just as natural RNA-binding sites have been shown to exhibit so-called "chameleonism." We expand upon the number of examples of cross-recognition and, using mutational and circular dichroism (CD) analyses, demonstrate that there are multiple mechanisms by which RNA ligands can cross-recognize ARMs. These studies support a model in which individual arginine residues govern binding to an RNA ligand, and the inherent flexibility of the peptide backbone may make it possible for "semi-specific" recognition of a discrete set of RNAs by a discrete set of ARM peptides and proteins.  相似文献   

18.
High mobility group (HMG) proteins are nuclear proteins believed to significantly affect DNA interactions by altering nucleic acid flexibility. Group B (HMGB) proteins contain HMG box domains known to bind to the DNA minor groove without sequence specificity, slightly intercalating base pairs and inducing a strong bend in the DNA helical axis. A dual-beam optical tweezers system is used to extend double-stranded DNA (dsDNA) in the absence as well as presence of a single box derivative of human HMGB2 [HMGB2(box A)] and a double box derivative of rat HMGB1 [HMGB1(box A+box B)]. The single box domain is observed to reduce the persistence length of the double helix, generating sharp DNA bends with an average bending angle of 99 ± 9° and, at very high concentrations, stabilizing dsDNA against denaturation. The double box protein contains two consecutive HMG box domains joined by a flexible tether. This protein also reduces the DNA persistence length, induces an average bending angle of 77 ± 7°, and stabilizes dsDNA at significantly lower concentrations. These results suggest that single and double box proteins increase DNA flexibility and stability, albeit both effects are achieved at much lower protein concentrations for the double box. In addition, at low concentrations, the single box protein can alter DNA flexibility without stabilizing dsDNA, whereas stabilization at higher concentrations is likely achieved through a cooperative binding mode.  相似文献   

19.
Concanavalin A (Con A) has been shown to induce delays in oral regeneration in the ciliate Stentor coeruleus. Associated with the delayed oral regeneration is a shedding of the cell's extracellular pellicle with the loss of some pigment granules. It is shown that the delays in oral regeneration are not the result of the pigment shedding. The delays are localized in the earliest stages of oral regeneration prior to stage 4. The delays caused by Con A are completely reversible by the addition of 2 mg/ml alpha-D-methyl mannoside either at the time of Con A exposure or 5 min later. Con A clearly binds to the cell surface as shown by the binding of FITC-Con A and its reversal by alpha-methyl mannoside. Crosslinking of Con A receptor molecules may be responsible for the effects of Con A since succinyl Con A, which does not crosslink these receptors, has no effect on oral regeneration even at double the Con A concentration. Calcium ions are also implicated in the action of Con A because an excess of extracellular calcium (10 mM) completely eliminates the Con A delays when added simultaneously with Con A. Examination of the minimum extracellular calcium concentration required for this effect showed that 2 mM calcium can reverse most of the delays but that 5 mM is necessary to completely reverse the delays caused by Con A. If the addition of calcium is delayed for various times after Con A addition, the extracellular calcium is progressively less effective in reversing the Con A delays.  相似文献   

20.
Mitogen‐activated protein kinases (MAPK) are broadly used regulators of cellular signaling. However, how these enzymes can be involved in such a broad spectrum of physiological functions is not understood. Systematic discovery of MAPK networks both experimentally and in silico has been hindered because MAPKs bind to other proteins with low affinity and mostly in less‐characterized disordered regions. We used a structurally consistent model on kinase‐docking motif interactions to facilitate the discovery of short functional sites in the structurally flexible and functionally under‐explored part of the human proteome and applied experimental tools specifically tailored to detect low‐affinity protein–protein interactions for their validation in vitro and in cell‐based assays. The combined computational and experimental approach enabled the identification of many novel MAPK‐docking motifs that were elusive for other large‐scale protein–protein interaction screens. The analysis produced an extensive list of independently evolved linear binding motifs from a functionally diverse set of proteins. These all target, with characteristic binding specificity, an ancient protein interaction surface on evolutionarily related but physiologically clearly distinct three MAPKs (JNK, ERK, and p38). This inventory of human protein kinase binding sites was compared with that of other organisms to examine how kinase‐mediated partnerships evolved over time. The analysis suggests that most human MAPK‐binding motifs are surprisingly new evolutionarily inventions and newly found links highlight (previously hidden) roles of MAPKs. We propose that short MAPK‐binding stretches are created in disordered protein segments through a variety of ways and they represent a major resource for ancient signaling enzymes to acquire new regulatory roles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号