首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Taylor DL  Bina XR  Bina JE 《PloS one》2012,7(5):e38208
The resistance-nodulation-division (RND) efflux systems are ubiquitous transporters that function in antimicrobial resistance. Recent studies showed that RND systems were required for virulence factor production in Vibrio cholerae. The V. cholerae genome encodes six RND efflux systems. Three of the RND systems (VexB, VexD, and VexK) were previously shown to be redundant for in vitro resistance to bile acids and detergents. A mutant lacking the VexB, VexD, and VexK RND pumps produced wild-type levels of cholera toxin (CT) and the toxin co-regulated pilus (TCP) and was moderately attenuated for intestinal colonization. In contrast, a RND negative mutant produced significantly reduced amounts of CT and TCP and displayed a severe colonization defect. This suggested that one or more of the three uncharacterized RND efflux systems (i.e. VexF, VexH, and VexM) were required for pathogenesis. In this study, a genetic approach was used to generate a panel of V. cholerae RND efflux pump mutants in order to determine the function of VexH in antimicrobial resistance, virulence factor production, and intestinal colonization. VexH contributed to in vitro antimicrobial resistance and exhibited a broad substrate specificity that was redundant with the VexB, VexD, and VexK RND efflux pumps. These four efflux pumps were responsible for in vitro antimicrobial resistance and were required for virulence factor production and intestinal colonization. Mutation of the VexF and/or VexM efflux pumps did not affect in vitro antimicrobial resistance, but did negatively affect CT and TCP production. Collectively, our results demonstrate that the V. cholerae RND efflux pumps have redundant functions in antimicrobial resistance and virulence factor production. This suggests that the RND efflux systems contribute to V. cholerae pathogenesis by providing the bacterium with protection against antimicrobial compounds that are present in the host and by contributing to the regulated expression of virulence factors.  相似文献   

3.

Background  

Burkholderia cenocepacia are opportunistic Gram-negative bacteria that can cause chronic pulmonary infections in patients with cystic fibrosis. These bacteria demonstrate a high-level of intrinsic antibiotic resistance to most clinically useful antibiotics complicating treatment. We previously identified 14 genes encoding putative Resistance-Nodulation-Cell Division (RND) efflux pumps in the genome of B. cenocepacia J2315, but the contribution of these pumps to the intrinsic drug resistance of this bacterium remains unclear.  相似文献   

4.
We have developed a generalized profile that identifies members of the root-nodulation-cell-division (RND) family of efflux pumps and classifies them into four functional subfamilies. According to Z-score values, efflux pumps can be grouped by their metabolic function, thus making it possible to distinguish pumps involved in antibiotic resistance (group 1) from those involved in metal resistance (group 3). In silico data regarding efflux pumps in group 1 were validated after identification of RND efflux pumps in a number of environmental microbes that were isolated as resistant to ethidium bromide. Analysis of the Pseudomonas putida KT2440 genome identified efflux pumps in all groups. A collection of mutants in efflux pumps and a screening platform consisting of 50 drugs were created to assign a function to the efflux pumps. We validated in silico data regarding efflux pumps in groups 1 and 3 using 9 different mutants. Four mutants belonging to group 2 were found to be more sensitive than the wild-type to oxidative stress-inducing agents such as bipyridyl and methyl viologen. The two remaining mutants belonging to group 4 were found to be more sensitive than the parental to tetracycline and one of them was particularly sensitive to rubidium and chromate. By effectively combining in vivo data with generalized profiles and gene annotation data, this approach allowed the assignment, according to metabolic function, of both known and uncharacterized RND efflux pumps into subgroups, thereby providing important new insight into the functions of proteins within this family.  相似文献   

5.
6.
The ability of bacterial pathogens to infect and cause disease is dependent upon their ability to resist antimicrobial components produced by their host, such as bile acids, fatty acids and other detergent-like molecules, and products of the innate immune system (e.g. cationic antimicrobial peptides). Bacterial resistance to the antimicrobial effects of such compounds is often mediated by active efflux systems belonging to the resistance-nodulation-division (RND) family of transporters. RND efflux systems have been implicated in antibiotic resistance and virulence extending their clinical relevance. In this report the hypothesis that the Francisella tularensis AcrAB RND efflux system contributes to antimicrobial resistance and pathogenesis has been tested. A null mutation was generated in the gene encoding the AcrB RND efflux pump protein of the live vaccine strain of F. tularensis. The resulting mutant exhibited increased sensitivity to multiple antibiotics and antimicrobial compounds. Murine challenge experiments revealed that the acrB mutant was attenuated. Collectively these results suggest that the F. tularensis AcrAB RND efflux system encodes a multiple drug efflux system that is important for virulence.  相似文献   

7.
8.
The EmhABC efflux system in Pseudomonas fluorescens cLP6a is homologous to the multidrug and solvent efflux systems belonging to the resistance-nodulation-division (RND) family and is responsible for polycyclic aromatic hydrocarbon transport, antibiotic resistance, and toluene efflux. To gain a better understanding of substrate transport in RND efflux pumps, the EmhB pump was subjected to mutational analysis. Mutagenesis of amino acids within the central cavity of the predicted three-dimensional structure of EmhB showed selective activity towards antibiotic substrates. An A384P/A385Y double mutant showed increased susceptibility toward rhodamine 6G compared to the wild type, and F386A and N99A single mutants showed increased susceptibility to dequalinium compared to the wild type. As well, the carboxylic acid side chain of D101, located in the central cavity region, was found to be essential for polycyclic aromatic hydrocarbon transport and resistance to all antibiotic substrates of EmhB. Phenylalanine residues located within the periplasmic pore domain were also targeted for mutagenesis, and the F325A and F281A mutations significantly impaired efflux activity for all EmhB substrates. One mutation (A206S) in the outer membrane protein docking domain increased antibiotic resistance and toluene tolerance, demonstrating the important role of this domain in transport activity. These data demonstrate the roles of the central cavity and periplasmic domains in the function of the RND efflux pump EmhB.  相似文献   

9.
Burkholderia cepacia complex (Bcc) bacteria are a problematic group of microorganisms causing severe infections in patients with Cystic Fibrosis. In early stages of infection, Bcc bacteria must be able to adhere to and colonize the respiratory epithelium. Although this is not fully understood, this primary stage of infection is believed to be in part mediated by a specific type of adhesins, named trimeric autotransporter adhesins (TAAs). These homotrimeric proteins exist on the surface of many Gram negative pathogens and often mediate a number of critical functions, including biofilm formation, serum resistance and adherence to an invasion of host cells. We have previously identified in the genome of the epidemic clinical isolate B. cenocepacia J2315, a novel cluster of genes putatively encoding three TAAs (BCAM0219, BCAM0223 and BCAM0224). In this study, the genomic organization of the TAA cluster has been determined. To further address the direct role of the putative TAA BCAM0223 in B. cenocepacia pathogenicity, an isogenic mutant was constructed via insertional inactivation. The BCAM0223::Tp mutant is deficient in hemagglutination, affected in adherence to vitronectin and in biofilm formation and showed attenuated virulence in the Galleria mellonella model of infection. Moreover, the BCAM0223::Tp mutant also showed a significant reduction in its resistance to human serum as well as in adherence, but not in invasion of, cultured human bronchial epithelial cells. Altogether these results demonstrate that the BCAM0223 protein is a multifunctional virulence factor that may contribute to the pathogenicity of B. cenocepacia.  相似文献   

10.
Using the biocide triclosan as a selective agent, several triclosan-resistant mutants of a susceptible Pseudomonas aeruginosa strain were isolated. Cloning and characterization of a DNA fragment conferring triclosan resistance from one of these mutants revealed a hitherto uncharacterized efflux system of the resistance nodulation cell division (RND) family, which was named MexJK and which is encoded by the mexJK operon. Expression of this operon is negatively regulated by the product of mexL, a gene located upstream of and transcribed divergently from mexJK. The triclosan-resistant mutant contained a single nucleotide change in mexL, which caused an amino acid change in the putative helix-turn-helix domain of MexL. The MexL protein belongs to the TetR family of repressor proteins. The MexJK system effluxed tetracycline and erythromycin but only in the presence of the outer membrane protein channel OprM; OprJ and OprN did not function with MexJK. Triclosan efflux required neither of the outer membrane protein channels tested but necessitated the MexJ membrane fusion protein and the MexK inner membrane RND transporter. The results presented in this study suggest that MexJK may function as a two-component RND pump for triclosan efflux but must associate with OprM to form a tripartite antibiotic efflux system. Furthermore, the results confirm that triclosan is an excellent tool for the study of RND multidrug efflux systems and that this popular biocide therefore readily selects mutants which are cross-resistant with antibiotics.  相似文献   

11.
12.
13.
梁志彬  陈豫梅  陈昱帆  程莹莹  张炼辉 《遗传》2016,38(10):894-901
抗生素耐药性一直是细菌病害防治的难题,药物外排泵过量表达是细菌耐药性形成的重要机制之一。在革兰氏阴性细菌中,RND(Resistance-nodulation-cell division)家族外排泵在耐药性中发挥着重要作用,近年来的研究表明,依赖于小分子信号物质进行调控的群体感应系统与RND外排泵家族之间存在紧密的相互作用关系。本文在介绍RND家族外排泵的结构、转运机理和群体感应系统的类型及调控方式的基础上,剖析了群体感应系统对RND外排泵的调控机理以及RND外排泵对群体感应系统信号分子转运的影响。深入研究RND家族外排泵与群体感应系统之间的相互依赖、相互制约关系有利于阐明RND家族外排泵的调控机理,并有可能为克服微生物耐药性问题提供新的思路。  相似文献   

14.
Due to the limited information of the contribution of various antibiotic resistance mechanisms in clinical Burkholderia cepacia complex isolates, Antibiotic resistance mechanisms, including integron analysis, identification of quinolone resistance-determining region mutations, measurement of efflux pump activity, and sequence analysis of efflux pump regulators, were investigated in 66 clinical B. cepacia complex isolates. Species were identified via recA-RFLP and MALDI-TOF. Four genomovars were identified by recA-RFLP. B. cenocepacia (genomovar III) was the most prevalent genomovar (90.1%). Most isolates (60/66, 90.9%) were correctly identified by MALDI-TOF analysis. Clonal relatedness determined by PFGE analysis revealed 30 pulsotypes, including two major pulsotypes that comprised 22.7% and 18.2% of the isolates, respectively. Seventeen (25.8%) isolates harboured class 1 integron with various combinations of resistance genes. Among six levofloxacin-resistant isolates, five had single-base substitutions in the gyrA gene and three demonstrated efflux pump activities. Among the 42 isolates exhibiting resistance to at least one antimicrobial agent, 94.4% ceftazidime-resistant isolates (17/18) and 72.7% chloramphenicol-resistant isolates (16/22) demonstrated efflux pump activity. Quantitation of efflux pump RNA level and sequence analysis revealed that over-expression of the RND-3 efflux pump was attributable to specific mutations in the RND-3 efflux pump regulator gene. In conclusion, high-level expression of efflux pumps is prevalent in B. cepacia complex isolates. Mutations in the RND-3 efflux pump regulator gene are the major cause of efflux pump activity, resulting in the resistance to antibiotics in clinical B. cepacia complex isolates.  相似文献   

15.
Strains of the Burkholderia cepacia complex (Bcc) are opportunistic bacteria that can cause life-threatening infections in patients with cystic fibrosis and chronic granulomatous disease. Previous work has shown that Bcc isolates can persist in membrane-bound vacuoles within amoeba and macrophages without bacterial replication, but the detailed mechanism of bacterial persistence is unknown. In this study, we have investigated the survival of the Burkholderia cenocepacia strain J2315 within RAW264.7 murine macrophages. Strain J2315 is a prototypic isolate of the widespread and transmissible ET12 clone. Unlike heat-inactivated bacteria, which reach lysosomes shortly after internalization, vacuoles containing live B. cenocepacia J2315 accumulate the late endosome/lysosome marker LAMP-1 and start fusing with lysosomal compartments only after 6 h post internalization. Using fluorescent fluid-phase probes, we also demonstrated that B. cenocepacia-containing vacuoles continued to interact with newly formed endosomes, and maintained a luminal pH of 6.4 +/- 0.12. In contrast, vacuoles containing heat-inactivated bacteria had an average pH of 4.8 +/- 0.03 and rapidly merged with lysosomes. Additional experiments using concanamycin A, a specific inhibitor of the vacuolar H+-ATPase, revealed that vacuoles containing live bacteria did not exclude the H+-ATPase. This mode of bacterial survival did not require type III secretion, as no differences were found between wild type and a type III secretion mutant strain. Collectively, our results suggest that intracellular B. cenocepacia cause a delay in the maturation of the phagosome, which may contribute to facilitate bacterial escape from the microbicidal activities of the host cell.  相似文献   

16.
Burkholderia cenocepacia is an important opportunistic pathogen of patients with cystic fibrosis. This bacterium is inherently resistant to a wide range of antimicrobial agents, including high concentrations of antimicrobial peptides. We hypothesized that the lipopolysaccharide (LPS) of B. cenocepacia is important for both virulence and resistance to antimicrobial peptides. We identified hldA and hldD genes in B. cenocepacia strain K56-2. These two genes encode enzymes involved in the modification of heptose sugars prior to their incorporation into the LPS core oligosaccharide. We constructed a mutant, SAL1, which was defective in expression of both hldA and hldD, and by performing complementation studies we confirmed that the functions encoded by both of these B. cenocepacia genes were needed for synthesis of a complete LPS core oligosaccharide. The LPS produced by SAL1 consisted of a short lipid A-core oligosaccharide and was devoid of O antigen. SAL1 was sensitive to the antimicrobial peptides polymyxin B, melittin, and human neutrophil peptide 1. In contrast, another B. cenocepacia mutant strain that produced complete lipid A-core oligosaccharide but lacked polymeric O antigen was not sensitive to polymyxin B or melittin. As determined by the rat agar bead model of lung infection, the SAL1 mutant had a survival defect in vivo since it could not be recovered from the lungs of infected rats 14 days postinfection. Together, these data show that the B. cenocepacia LPS inner core oligosaccharide is needed for in vitro resistance to three structurally unrelated antimicrobial peptides and for in vivo survival in a rat model of chronic lung infection.  相似文献   

17.
Resistance Nodulation cell Division (RND) efflux pumps are known to contribute to the tolerance of Pseudomonas putida to aromatic hydrocarbons, but their role in antibiotic resistance has not been fully elucidated. In this study, two types of single-step multidrug-resistant (MDR) mutants were selected in vitro from reference strain KT2440. Mutants of the first type were more resistant to fluoroquinolones and β-lactams except imipenem, and overproduced the efflux system TtgABC as a result of mutations occurring in regulator TtgR. In addition to TtgABC, mutants of the second type such as HPG-5 were found to upregulate a novel RND pump, dubbed ParXY/TtgC, which accommodates cefepim, fluoroquinolones and aminoglycosides. As demonstrated by gene deletion experiments, TtgABC and ParXY/TtgC are both under the positive control of a two-component system, PpeRS. Whole-genome sequence analyses revealed that mutant HPG-5 harbours a mutation inactivating the gene (sucD) of succinyl-CoA synthetase, an enzyme of the tricarboxylic cycle. Disruption of sucD in strain KT2440 reproduced the resistance phenotype of HPG-5, and activated the glyoxylate shunt. Finally, identification of two MDR clinical strains of P. putida that jointly overexpress TtgABC and ParXY/TtgC, of which one is a sucD mutant, highlights the role of these efflux systems as determinants of antibiotic resistance.  相似文献   

18.
The Burkholderia cepacia complex (BCC) comprises a group of bacteria associated with opportunistic infections, especially in cystic fibrosis patients. B. cenocepacia J2315, of the transmissible ET12 lineage, contains a type III secretion (TTS) gene cluster implicated in pathogenicity. PCR and hybridisation assays indicate that the TTS gene cluster is present in all members of the BCC except B. cepacia (formerly genomovar I). The TTS gene clusters of B. cenocepacia J2315 and B. multivorans are similar in organisation but have variable levels of gene identity. Nucleotide sequence data obtained for the equivalent region of the B. cepacia genome indicate the absence of TTS structural genes due to a rearrangement likely to involve more than one step.  相似文献   

19.
结核病是由结核分枝杆菌(Mycobacterium tuberculosis,Mtb)引起的一种传染病。随着多药耐药和广泛耐药结核分枝杆菌的出现,结核病的治疗变得更为艰难。近年来研究发现,结核分枝杆菌存在外排泵是其耐药的原因之一,现已发现结核分枝杆菌的主要易化子超家族(major facilitator superfamily,MFS)、三磷酸腺苷(adenosine-triphosphate,ATP)结合盒超家族(ATP-Binding Cassette,ABC)、耐受小节分裂区家族(resistance-nodulation-division,RND)和小耐多药性家族(small multidrug resistance,SMR)外排泵。但是人们对结核分枝杆菌外排泵介导的耐药现象认识不足,仍缺乏从新药发现角度研发外排泵抑制剂的研究。本文拟对结核分枝杆菌的ABC、MFS、RND和SMR外排泵的结构和功能,以及结核分枝杆菌外排泵抑制剂的研究进展进行综述。  相似文献   

20.
Resistance nodulation division (RND) efflux pumps, such as the SmeIJK pump of Stenotrophomonas maltophilia, are known to contribute to the multidrug resistance in Gram-negative bacteria. However, some RND pumps are constitutively expressed even though no antimicrobial stresses occur, implying that there should be some physical implications for these RND pumps. In this study, the role of SmeIJK in antimicrobials resistance, envelope integrity, and σE-mediated envelope stress response (ESR) of S. maltophilia was assessed. SmeIJK was involved in the intrinsic resistance of S. maltophilia KJ to aminoglycosides and leucomycin. Compared with the wild-type KJ, the smeIJK deletion mutant exhibited growth retardation in the MH medium, an increased sensitivity to membrane-damaging agents (MDAs), as well as activation of an σE-mediated ESR. Moreover, the expression of smeIJK was further induced by sub-lethal concentrations of MDAs or surfactants in an σE-dependent manner. These data collectively suggested an alternative physiological role of smeIJK in cell envelope integrity maintenance and σE-mediated ESR beyond the efflux of antibiotics. Because of the necessity of the physiological role of SmeIJK in protecting S. maltophilia from the envelope stress, smeIJK is constitutively expressed, which, in turn, contributes the intrinsic resistance to aminoglycoside and leucomycin. This is the first demonstration of the linkage among RND-type efflux pump, cell envelope integrity, and σE-mediated ESR in S. maltophilia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号