首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type 1 interferons (IFNs) induce the expression of the tripartite interaction motif (TRIM) family of E3 ligases, but the contribution of these antiviral factors to HIV pathogenesis is not completely understood. We hypothesized that the increased expression of select type 1 IFN and TRIM isoforms is associated with a significantly lower likelihood of HIV-1 acquisition and viral control during primary HIV-1 infection. We measured IFN-α, IFN-β, myxovirus resistance protein A (MxA), human TRIM5α (huTRIM5α), and TRIM22 mRNA levels in peripheral blood mononuclear cells (PBMCs) of high-risk, HIV-1-uninfected participants and HIV-1-positive study participants. Samples were available for 32 uninfected subjects and 28 infected persons, all within 1 year of infection. HIV-1-positive participants had higher levels of IFN-β (P = 0.0005), MxA (P = 0.007), and TRIM22 (P = 0.01) and lower levels of huTRIM5α (P < 0.001) than did HIV-1-negative participants. TRIM22 but not huTRIM5α correlated positively with type 1 IFN (IFN-α, IFN-β, and MxA) (all P < 0.0001). In a multivariate model, increased MxA expression showed a significant positive association with viral load (P = 0.0418). Furthermore, TRIM22 but not huTRIM5α, IFN-α, IFN-β, or MxA showed a negative correlation with plasma viral load (P = 0.0307) and a positive correlation with CD4(+) T-cell counts (P = 0.0281). In vitro studies revealed that HIV infection induced TRIM22 expression in PBMCs obtained from HIV-negative donors. Stable TRIM22 knockdown resulted in increased HIV-1 particle release and replication in Jurkat reporter cells. Collectively, these data suggest concordance between type 1 IFN and TRIM22 but not huTRIM5α expression in PBMCs and that TRIM22 likely acts as an antiviral effector in vivo.  相似文献   

2.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

3.

Background

Dendritic cells (DCs) are among the first cells to encounter HIV-1 and play important roles in viral transmission and pathogenesis. Immature DCs allow productive HIV-1 replication and long-term viral dissemination. The pro-inflammatory factor lipopolysaccharide (LPS) induces DC maturation and enhances the efficiency of DC-mediated HIV-1 transmission. Type I interferon (IFN) partially inhibits HIV-1 replication and cell-cell transmission in CD4+ T cells and macrophages. Tetherin is a type I IFN-inducible restriction factor that blocks HIV-1 release and modulates CD4+ T cell-mediated cell-to-cell transmission of HIV-1. However, the role of type I IFN and tetherin in HIV-1 infection of DCs and DC-mediated viral transmission remains unknown.

Results

We demonstrated that IFN-alpha (IFNα)-induced mature DCs restricted HIV-1 replication and trans-infection of CD4+ T cells. Tetherin expression in monocyte-derived immature DCs was undetectable or very low. High levels of tetherin were transiently expressed in LPS- and IFNα-induced mature DCs, while HIV-1 localized into distinct patches in these DCs. Knockdown of induced tetherin in LPS- or IFNα-matured DCs modestly enhanced HIV-1 transmission to CD4+ T cells, but had no significant effect on wild-type HIV-1 replication in mature DCs. Intriguingly, we found that HIV-1 replication in immature DCs induced significant tetherin expression in a Nef-dependent manner.

Conclusions

The restriction of HIV-1 replication and transmission in IFNα-induced mature DCs indicates a potent anti-HIV-1 response; however, high levels of tetherin induced in mature DCs cannot significantly restrict wild-type HIV-1 release and DC-mediated HIV-1 transmission. Nef-dependent tetherin induction in HIV-1-infected immature DCs suggests an innate immune response of DCs to HIV-1 infection.  相似文献   

4.
We investigated the effect of IL-10 on replication of primary CXCR4-dependent (X4) HIV-1 strains by monocyte-derived dendritic cells (DCs) and macrophages (M Phis). M Phis efficiently replicated CXCR4-dependent HIV-1 (X4 HIV-1) strains NDK and VN44, whereas low levels of p24 were detected in supernatants of infected DCs. IL-10 significantly increased X4 HIV-1 replication by DCs but blocked viral production by M Phis as determined by p24 levels and semiquantitative nested PCR. IL-10 up-regulated CXCR4 mRNA and protein expression on DCs and M Phis, suggesting that IL-10 enhances virus entry in DCs but blocks an entry and/or postentry step in M Phis. The effect of IL-10 on the ability of DCs and M Phis to transmit virus to autologous CD4(+) T lymphocytes was investigated in coculture experiments. DCs exhibited a greater ability than did M Phis to transmit a vigorous infection to CD4(+) T cells despite their very low replication capacity. IL-10 had no effect on HIV-1 replication in DC:T cell cocultures but markedly decreased viral production in M Phi:T cell cocultures. These results demonstrate that IL-10 has opposite effects on the replication of primary X4 HIV-1 strains by DCs and M Phis. IL-10 increases X4-HIV-1 replication in DCs but does not alter their capacity to transmit virus to CD4(+) T lymphocytes. These findings suggest that increased levels of IL-10 observed in HIV-1-infected patients with disease progression may favor the replication of X4 HIV-1 strains in vivo.  相似文献   

5.
A previous study using a Nef-defective human immunodeficiency virus type 1 (HIV-1) mutant suggested that Nef-mediated down-regulation of HLA class I on the infected cell surface affects the cytolytic activity of HIV-1-specific cytotoxic T-lymphocyte (CTL) clones for HIV-1-infected primary CD4(+) T cells. We confirmed this effect by using a nef-mutant HIV-1 strain (NL-M20A) that expresses a Nef protein which does not induce down-regulation of HLA class I molecules but is otherwise functional. HIV-1-specific CTL clones were not able to kill primary CD4(+) T cells infected with a Nef-positive HIV-1 strain (NL-432) but efficiently lysed CD4(+) T cells infected with NL-M20A. Interestingly, CTL clones stimulated with NL-432-infected CD4(+) T cells were able to produce cytokines, albeit at a lower level than when stimulated with NL-M20A-infected CD4(+) T cells. This indicates that Nef-mediated HLA class I down-regulation affects CTL cytokine production to a lesser extent than cytolytic activity. Replication of NL-432 was partially suppressed in a coculture of HIV-1-infected CD4(+) T cells and HIV-1-specific CTL clones, while replication of NL-M20A was completely suppressed. These results suggest that HIV-1-specific CD8(+) T cells are able to partially suppress the replication of HIV-1 through production of soluble HIV-1-suppressive factors such as chemokines and gamma interferon. These findings may account for the mechanism whereby HIV-1-specific CD8(+) T cells are able to partially but not completely control HIV-1 replication in vivo.  相似文献   

6.
Integration of HIV-1 genome in CD4(+) T cells produces latent reservoirs with long half-life that impedes the eradication of the infection. Control of viral replication is essential to reduce the size of latent reservoirs, mainly during primary infection when HIV-1 infects CD4(+) T cells massively. The addition of immunosuppressive agents to highly active antiretroviral therapy during primary infection would suppress HIV-1 replication by limiting T cell activation, but these agents show potential risk for causing lymphoproliferative disorders. Selective inhibition of PKC, crucial for T cell function, would limit T cell activation and HIV-1 replication without causing general immunosuppression due to PKC being mostly expressed in T cells. Accordingly, the effect of rottlerin, a dose-dependent PKC inhibitor, on HIV-1 replication was analyzed in T cells. Rottlerin was able to reduce HIV-1 replication more than 20-fold in MT-2 (IC(50) = 5.2 μM) and Jurkat (IC(50) = 2.2 μM) cells and more than 4-fold in peripheral blood lymphocytes (IC(50) = 4.4 μM). Selective inhibition of PKC, but not PKCδ or -ζ, was observed at <6.0 μM, decreasing the phosphorylation at residue Thr(538) on the kinase catalytic domain activation loop and avoiding PKC translocation to the lipid rafts. Consequently, the main effector at the end of PKC pathway, NF-κB, was repressed. Rottlerin also caused a significant inhibition of HIV-1 integration. Recently, several specific PKC inhibitors have been designed for the treatment of autoimmune diseases. Using these inhibitors in combination with highly active antiretroviral therapy during primary infection could be helpful to avoid massive viral infection and replication from infected CD4(+) T cells, reducing the reservoir size at early stages of the infection.  相似文献   

7.
HIV-1-specific CD4(+) T cells are qualitatively dysfunctional in the majority of HIV-1-infected individuals and are thus unable to effectively control viral replication. The current study extensively details the maturational phenotype of memory CD4(+) T cells directed against HIV-1 and CMV. We find that HIV-1-specific CD4(+) T cells are skewed to an early central memory phenotype, whereas CMV-specific CD4(+) T cells generally display a late effector memory phenotype. These differences hold true for both IFN-gamma- and IL-2-producing virus-specific CD4(+) T cells, are present during all disease stages, and persist even after highly active antiretroviral therapy (HAART). In addition, after HAART, HIV-1-specific CD4(+) T cells are enriched for CD27(+)CD28(-)-expressing cells, a rare phenotype, reflecting an early intermediate stage of differentiation. We found no correlation between differentiation phenotype of HIV-1-specific CD4(+) T cells and HIV-1 plasma viral load or HIV-1 disease progression. Surprisingly, HIV-1 viral load affected the maturational phenotype of CMV-specific CD4(+) T cells toward an earlier, less-differentiated state. In summary, our data indicate that the maturational state of HIV-1-specific CD4(+) T cells cannot be a sole explanation for loss of containment of HIV-1. However, HIV-1 replication can affect the phenotype of CD4(+) T cells of other specificities, which might adversely affect their ability to control those pathogens. The role for HIV-1-specific CD4(+) T cells expressing CD27(+)CD28(-) after HAART remains to be determined.  相似文献   

8.
9.
10.
11.
12.
Holm GH  Gabuzda D 《Journal of virology》2005,79(10):6299-6311
Apoptosis of uninfected bystander T cells contributes to T-cell depletion during human immunodeficiency virus type 1 (HIV-1) infection. HIV-1 envelope/receptor interactions and immune activation have been implicated as contributors to bystander apoptosis. To better understand the relationship between T-cell activation and bystander apoptosis during HIV-1 pathogenesis, we investigated the effects of the highly cytopathic CXCR4-tropic HIV-1 variant ELI6 on primary CD4(+) and CD8(+) T cells. Infection of primary T-cell cultures with ELI6 induced CD4(+) T-cell depletion by direct cell lysis and bystander apoptosis. Exposure of primary CD4(+) and CD8(+) T cells to nonreplicating ELI6 virions induced bystander apoptosis through a Fas-independent mechanism. Bystander apoptosis of CD4(+) T cells required direct contact with virions and Env/CXCR4 binding. In contrast, the apoptosis of CD8(+) T cells was triggered by a soluble factor(s) secreted by CD4(+) T cells. HIV-1 virions activated CD4(+) and CD8(+) T cells to express CD25 and HLA-DR and preferentially induced apoptosis in CD25(+)HLA-DR(+) T cells in a CXCR4-dependent manner. Maximal levels of binding, activation, and apoptosis were induced by virions that incorporated MHC class II and B7-2 into the viral membrane. These results suggest that nonreplicating HIV-1 virions contribute to chronic immune activation and T-cell depletion during HIV-1 pathogenesis by activating CD4(+) and CD8(+) T cells, which then proceed to die via apoptosis. This mechanism may represent a viral immune evasion strategy to increase viral replication by activating target cells while killing immune effector cells that are not productively infected.  相似文献   

13.
In vivo, several mechanisms have been postulated to protect HIV-1-infected cells from NK surveillance. In vitro, previous research indicates HIV-1-infected autologous CD4(+) primary T cells are resistant to NK lysis. We hypothesized that NK lysis of HIV-1-infected target cells would be augmented by the presence of accessory cells and/or accessory cell factors. In this study, we show that stimulation of plasmacytoid dendritic cells (PDC) with the TLR9 agonist, CpG ODN 2216, triggered NK lysis of HIV-1-infected autologous CD4(+) primary T cells. PDC-stimulated NK lysis was dependent upon MHC class I (MHC-I) down-regulation on infected cells, and primary HIV-1 isolates that exhibited enhanced MHC-I down-regulation were more susceptible to NK-mediated lysis. PDC-stimulated NK lysis of HIV-1-infected autologous CD4(+) primary T cells was blocked by neutralizing Abs to type 1 IFN and was perforin/granzyme dependent. Overall, our data suggest that HIV-infected cells are not innately resistant to NK lysis, and that exogenous NK stimulation derived from PDC can trigger NK cytotoxicity against HIV-1-infected autologous CD4(+) primary T cells.  相似文献   

14.
15.
One hallmark of uncontrolled, chronic human immunodeficiency virus type 1 (HIV-1) infection is the absence of strong HIV-1-specific, CD4(+) T-cell-proliferative responses, yet the mechanism underlying this T helper (Th)-cell defect remains controversial. To better understand the impact of HIV-1 replication on Th-cell function, we compared the frequency of CD4(+) Th-cell responses based on production of gamma interferon to lymphoproliferative responses directed against HIV-1 proteins in HIV-1-infected subjects with active in vivo viral replication versus those on suppressed highly active antiretroviral therapy (HAART). No statistically significant differences in the frequencies of cytokine-secreting, HIV-1-specific CD4(+) T cells between the donor groups were found, despite differences in viral load and treatment status. However, HIV-1-specific lymphoproliferative responses were significantly greater in the subjects with HAART suppression than in subjects with active viral replication. Similar levels of HIV-1 RNA were measured in T-cell cultures stimulated with HIV-1 antigens regardless of donor in vivo viral loads, but only HIV-1-specific CD4(+) T cells from subjects with HAART suppression proliferated in vitro, suggesting that HIV-1 replication in vitro does not preclude HIV-1-specific lymphoproliferation. This study demonstrates a discordance between the frequency and proliferative capacity of HIV-1-specific CD4(+) T cells in subjects with ongoing in vivo viral replication and suggests that in vivo HIV-1 replication contributes to the observed defect in HIV-1-specific CD4(+) T-cell proliferation.  相似文献   

16.
The loss of CD4(+) T cells and the impairment of CD8(+) T cell function in HIV infection suggest that pharmacological treatment with IL-7 and IL-15, cytokines that increase the homeostatic proliferation of T cells and improve effector function, may be beneficial. However, these cytokines could also have a detrimental effect in HIV-1-infected individuals, because both cytokines increase HIV replication in vitro. We assessed the impact of IL-7 and IL-15 treatment on viral replication and the immunogenicity of live poxvirus vaccines in SIV(mac251)-infected macaques (Macaca mulatta). Neither cytokine augmented the frequency of vaccine-expanded CD4(+) or CD8(+) memory T cells, clonal recruitment to the SIV-specific CD8(+) T cell pool, or CD8(+) T cell function. Vaccination alone transiently decreased the viral set point following antiretroviral therapy suspension. IL-15 induced massive proliferation of CD4(+) effector T cells and abrogated the ability of vaccination to decrease set point viremia. In contrast, IL-7 neither augmented nor decreased the vaccine effect and was associated with a decrease in TGF-beta expression. These results underscore the importance of testing immunomodulatory approaches in vivo to assess potential risks and benefits for HIV-1-infected individuals.  相似文献   

17.
T cell Ig mucin domain-containing molecule 3 (Tim-3) is a glycoprotein found on the surface of a subset of CD8(+) and Th1 CD4(+) T cells. Elevated expression of Tim-3 on virus-specific T cells during chronic viral infections, such as HIV-1, hepatitis B virus, and hepatitis C virus, positively correlates with viral load. Tim-3(+) cytotoxic T cells are dysfunctional and are unable to secrete effector cytokines, such as IFN-γ and TNF-α. In this study, we examined potential inducers of Tim-3 on primary human T cells. Direct HIV-1 infection of CD4(+) T cells, or LPS, found to be elevated in HIV-1 infection, did not induce Tim-3 on T cells. Tim-3 was induced by the common γ-chain (γc) cytokines IL-2, IL-7, IL-15, and IL-21 but not IL-4, in an Ag-independent manner and was upregulated on primary T cells in response to TCR/CD28 costimulation, as well as γc cytokine stimulation with successive divisions. γc cytokine-induced Tim-3 was found on naive, effector, and memory subsets of T cells. Tim-3(+) primary T cells were more prone to apoptosis, particularly upon treatment with galectin-9, a Tim-3 ligand, after cytokine withdrawal. The upregulation of Tim-3 could be blocked by the addition of a PI3K inhibitor, LY 294002. Thus, Tim-3 can be induced via TCR/CD28 costimulation and/or γc cytokines, likely through the PI3K pathway.  相似文献   

18.
Human immunodeficiency virus type-1 (HIV-1) preferentially replicates in CD4-expressing T cells bearing a "memory" (CD45RO+) rather than a "naive" (CD45RA+/CD62L+) phenotype. Yet the basis for the higher susceptibility of these cells to HIV-1 infection remains unclear. Because the nature of the CD45 isoform itself can affect biochemical events in T cells, we set out to determine whether these isoforms could differently modulate HIV-1 long terminal repeat (LTR) activity and thereby replication. Through the use of CD4+ Jurkat T cells specifically expressing distinct CD45 isoforms (i.e. CD45RABC or CD45RO), we demonstrated that a difference in CD45 isoform expression conferred preferential replication of HIV-1 to CD45RO-expressing T cell clones following a physiological CD3/CD28 stimulation. Closer analysis indicated that higher HIV-1 LTR activation levels were consistently observed in CD45RO-positive cells, which was paralleled by more pronounced nuclear factor of activated T cells (NFAT) activation in these same cells. Specific involvement of NFAT1 was revealed in studied Jurkat clones by mobility shift analyses. In addition, preferential activation of the LTR and viral replication in CD45RO T cells was FK506- and cyclosporin A-sensitive. These results underscore the importance of NFAT in HIV-1 regulation and for the first time identify the role of the CD45 isoform in limiting productive HIV-1 replication to the human CD4 memory T cell subset.  相似文献   

19.
CD38 displays lateral association with the HIV-1 receptor CD4. This association is potentiated by the HIV-1 envelope glycoprotein gp120. The aim of this work was to evaluate the CD38 role in T cell susceptibility to HIV-1 infection. Using laboratory X4 HIV-1 strains and X4 and X4/R5 primary isolates, we found that CD38 expression was negatively correlated to cell susceptibility to infection, evaluated as percentage of infected cells, release of HIV p24 in the supernatants, and cytopathogenicity. This correlation was at first suggested by results obtained in a panel of human CD4(+) T cell lines expressing different CD38 levels (MT-4, MT-2, C8166, CEMx174, Supt-1, and H9) and then demonstrated using CD38 transfectants of MT-4 cells (the line with the lowest CD38 expression). To address whether CD38 affected viral binding, we used mouse T cells that are non-permissive for productive infection. Gene transfection in mouse SR.D10.CD4(-).F1 T cells produced four lines expressing human CD4 and/or CD38. Ability of CD4(+)CD38(+)cells to bind HIV-1 or purified recombinant gp120 was significantly lower than that of CD4(+)CD38(-) cells. These data suggest that CD38 expression inhibits lymphocyte susceptibility to HIV infection, probably by inhibiting gp120/CD4-dependent viral binding to target cells.-Savarino, A., Bottarel, F., Calosso, L., Feito, M. J., Bensi, T., Bragardo, M., Rojo, J. M., Pugliese, A., Abbate, I., Capobianchi, M. R., Dianzani, F., Malavasi, F., and Dianzani, U. Effects of the human CD38 glycoprotein on the early stages of theHIV-1 replication cycle.  相似文献   

20.
The Nef protein enhances human immunodeficiency virus type 1 (HIV-1) replication through an unknown mechanism. We and others have previously reported that efficient HIV-1 replication in activated primary CD4(+) T cells depends on the ability of Nef to downregulate CD4 from the cell surface. Here we demonstrate that Nef greatly enhances the infectivity of HIV-1 particles produced in primary T cells. Nef-defective HIV-1 particles contained significantly reduced quantities of gp120 on their surface; however, Nef did not affect the levels of virion-associated gp41, indicating that Nef indirectly stabilizes the association of gp120 with gp41. Surprisingly, Nef was not required for efficient replication of viruses that use CCR5 for entry, nor did Nef influence the infectivity or gp120 content of these virions. Nef also inhibited the incorporation of CD4 into HIV-1 particles released from primary T cells. We propose that Nef, by downregulating cell surface CD4, enhances HIV-1 replication by inhibiting CD4-induced dissociation of gp120 from gp41. The preferential requirement for Nef in the replication of X4-tropic HIV-1 suggests that the ability of Nef to downregulate CD4 may be most important at later stages of disease when X4-tropic viruses emerge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号