首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fate of all aerobic organisms is dependent on the varying intracellular concentrations of NADH and NADPH. The former is the primary ingredient that fuels ATP production via oxidative phosphorylation, while the latter helps maintain the reductive environment necessary for this process and other cellular activities. In this study we demonstrate a metabolic network promoting NADPH production and limiting NADH synthesis as a consequence of an oxidative insult. The activity and expression of glucose-6-phosphate dehydrogenase, malic enzyme, and NADP(+)-isocitrate dehydrogenase, the main generators of NADPH, were markedly increased during oxidative challenge. On the other hand, numerous tricarboxylic acid cycle enzymes that supply the bulk of intracellular NADH were significantly downregulated. These metabolic pathways were further modulated by NAD(+) kinase (NADK) and NADP(+) phosphatase (NADPase), enzymes known to regulate the levels of NAD(+) and NADP(+). While in menadione-challenged cells, the former enzyme was upregulated, the phosphatase activity was markedly increased in control cells. Thus, NADK and NADPase play a pivotal role in controlling the cross talk between metabolic networks that produce NADH and NADPH and are integral components of the mechanism involved in fending off oxidative stress.  相似文献   

2.
NADPH is an important component of the antioxidant defense system and a proposed mediator in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. An increase in the NADPH/NADP(+) ratio has been reported to occur within minutes following the rise in glucose concentration in β-cells. However, 30 min following the increase in glucose, the total NADPH pool also increases through a mechanism not yet characterized. NAD kinase (NADK) catalyzes the de novo formation of NADP(+) by phosphorylation of NAD(+). NAD kinases have been shown to be essential for redox regulation, oxidative stress defense, and survival in bacteria and yeast. However, studies on NADK in eukaryotic cells are scarce, and the function of this enzyme has not been described in β-cells. We employed INS-1 832/13 cells, an insulin-secreting rat β-cell line, and isolated rodent islets to investigate the role of NADK in β-cell metabolic pathways. Adenoviral-mediated overexpression of NADK resulted in a two- to threefold increase in the total NADPH pool and NADPH/NADP(+) ratio, suggesting that NADP(+) formed by the NADK-catalyzed reaction is rapidly reduced to NADPH via cytosolic reductases. This increase in the NADPH pool was accompanied by an increase in GSIS in NADK-overexpressing cells. Furthermore, NADK overexpression protected β-cells against oxidative damage by the redox cycling agent menadione and reversed menadione-mediated inhibition of GSIS. Knockdown of NADK via shRNA exerted the opposite effect on all these parameters. These data suggest that NADK kinase regulates intracellular redox and affects insulin secretion and oxidative defense in the β-cell.  相似文献   

3.
NAD kinases (NADKs) are vital, as they generate the cellular NADP pool. As opposed to three compartment-specific isoforms in plants and yeast, only a single NADK has been identified in mammals whose cytoplasmic localization we established by immunocytochemistry. To understand the physiological roles of the human enzyme, we generated and analyzed cell lines stably deficient in or overexpressing NADK. Short hairpin RNA-mediated down-regulation led to similar (about 70%) decrease of both NADK expression, activity, and the NADPH concentration and was accompanied by increased sensitivity toward H(2)O(2). Overexpression of NADK resulted in a 4-5-fold increase in the NADPH, but not NADP(+), concentration, although the recombinant enzyme phosphorylated preferentially NAD(+). Surprisingly, NADK overexpression and the ensuing increase of the NADPH level only moderately enhanced protection against oxidant treatment. Apparently, to maintain the NADPH level for the regeneration of oxidative defense systems human cells depend primarily on NADP-dependent dehydrogenases (which re-reduce NADP(+)), rather than on a net increase of NADP. The stable shifts of the NADPH level in the generated cell lines were also accompanied by alterations in the expression of peroxiredoxin 5 and Nrf2. Because the basal oxygen radical level in the cell lines was only slightly changed, the redox state of NADP may be a major transmitter of oxidative stress.  相似文献   

4.
Pyridine Nucleotide Transhydrogenase from Azotobacter vinelandii   总被引:5,自引:0,他引:5       下载免费PDF全文
A method is described for the partial purification of pyridine nucleotide transhydrogenase from Azotobacter vinelandii (ATCC 9104) cells. The most highly purified preparation catalyzes the reduction of 300 mumoles of nicotinamide adenine dinucleotide (NAD(+)) per min per mg of protein under the assay conditions employed. The enzyme catalyzes the reduction of NAD(+), deamino-NAD(+), and thio-NAD(+) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as hydrogen donor, and the reduction of nicotinamide adenine dinucleotide phosphate (NADP(+)) and thio-NAD(+) with reduced NAD (NADH) as hydrogen donor. The reduction of acetylpyridine AD(+), pyridinealdehyde AD(+), acetylpyridine deamino AD(+), and pyridinealdehydedeamino AD(+) with NADPH as hydrogen donor was not catalyzed. The enzyme catalyzes the transfer of hydrogen more readily from NADPH than from NADH with different hydrogen acceptors. The transfer of hydrogen from NADH to NADP(+) and thio-NAD(+) was markedly stimulated by 2'-adenosine monophosphate (2'-AMP) and inhibited by adenosine diphosphate (ADP), adenosine triphosphate (ATP), and phosphate ions. The transfer of hydrogen from NADPH to NAD(+) was only slightly affected by phosphate ions and 2'-AMP, except at very high concentrations of the latter reagent. In addition, the transfer of hydrogen from NADPH to thio-NAD(+) was only slightly influenced by 2'-AMP, ADP, ATP, and other nucleotides. The kinetics of the transhydrogenase reactions which utilized thio-NAD(+) as hydrogen acceptor and NADH or NADPH as hydrogen donor were studied in some detail. The results suggest that there are distinct binding sites for NADH and NAD(+) and perhaps a third regulator site for NADP(+) or 2'-AMP. The heats of activation for the transhydrogenase reactions were determined. The properties of this enzyme are compared with those of other partially purified transhydrogenases with respect to the regulatory functions of 2'-AMP and other nucleotides on the direction of flow of hydrogen between NAD(+) and NADP(+).  相似文献   

5.
Oxidized nicotinamide adenine dinucleotide (NAD(+)) kinase (NADK, E.C. 2.7.1.23) plays an instrumental role in cellular metabolism. Here we report on a blue native polyacrylamide gel electrophoretic technique that allows the facile detection of this enzyme. The product, oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)), formed following the reaction of NADK with NAD(+) and adenosine 5'-triphosphate was detected with the aid of glucose-6-phosphate dehydrogenase or NADP(+)-isocitrate dehydrogenase, iodonitrotetrazolium chloride, and phenazine methosulfate. The bands at the respective activity sites were excised and subjected to native and denaturing two-dimensional electrophoresis for the determination of protein levels. Hence this novel electrophoretic method allows the easy detection of NADK, a critical enzyme involved in pyridine homeostasis. Furthermore, this technique allowed the monitoring of the activity and expression of this kinase in various biological systems.  相似文献   

6.
As one of terminal electron acceptors in photosynthetic electron transport chain, NADP receives electron and H+ to synthesize NADPH, an important reducing energy in chlorophyll synthesis and Calvin cycle. NAD kinase (NADK), the catalyzing enzyme for the de novo synthesis of NADP from substrates NAD and ATP, may play an important role in the synthesis of NADPH. NADK activity has been observed in different sub-cellular fractions of mitochondria, chloroplast, and cytoplasm. Recently, two distinct NADK isoforms (NADK1 and NADK2) have been identified in Arabidopsis. However, the physiological roles of NADKs remain unclear. In present study, we investigated the physiological role of Arabidiposis NADK2. Sub-cellular localization of the NADK2–GFP fusion protein indicated that the NADK2 protein was localized in the chloroplast. The NADK2 knock out mutant (nadk2) showed obvious growth inhibition and smaller rosette leaves with a pale yellow color. Parallel to the reduced chlorophyll content, the expression levels of two POR genes, encoding key enzymes in chlorophyll synthesis, were down regulated in the nadk2 plants. The nadk2 plants also displayed hypersensitivity to environmental stresses provoking oxidative stress, such as UVB, drought, heat shock and salinity. These results suggest that NADK2 may be a chloroplast NAD kinase and play a vital role in chlorophyll synthesis and chloroplast protection against oxidative damage.  相似文献   

7.
8.
Clostridial glutamate dehydrogenase mutants, designed to accommodate the 2'-phosphate of disfavoured NADPH, showed the expected large specificity shifts with NAD(P)H. Puzzlingly, similar assays with oxidized cofactors initially revealed little improvement with NADP(+) , although rates with NAD(+) were markedly diminished. This article reveals that the enzyme's discrimination in favour of NAD(+) and against NADP(+) had been greatly underestimated and has indeed been abated by a factor of >?16,000 by the mutagenesis. Initially, stopped-flow studies of the wild-type enzyme showed a burst increase of A(340) with NADP(+) but not NAD(+), with amplitude depending on the concentration of the coenzyme, rather than enzyme. Amplitude also varied with the commercial source of the NADP(+). FPLC, HPLC and mass spectrometry identified NAD(+) contamination ranging from 0.04 to 0.37% in different commercial samples. It is now clear that apparent rates of NADP(+) utilization mainly reflected the reduction of contaminating NAD(+), creating an entirely false view of the initial coenzyme specificity and also of the effects of mutagenesis. Purification of the NADP(+) eliminated the burst. With freshly purified NADP(+), the NAD(+) : NADP(+) activity ratio under standard conditions, previously estimated as 300 : 1, is 11,000. The catalytic efficiency ratio is even higher at 80,000. Retested with pure cofactor, mutants showed marked specificity shifts in the expected direction, for example, 16 200 fold change in catalytic efficiency ratio for the mutant F238S/P262S, confirming that the key structural determinants of specificity have been successfully identified. Of wider significance, these results underline that, without purification, even the best commercial coenzyme preparations are inadequate for such studies.  相似文献   

9.
NAD kinase was purified 93-fold from Escherichia coli. The enzyme was found to have a pH optimum of 7.2 and an apparent Km for NAD+, ATP, and Mg2+ of 1.9, 2.1, and 4.1 mM, respectively. Several compounds including quinolinic acid, nicotinic acid, nicotinamide, nicotinamide mononucleotide, AMP, ADP, and NADP+ did not affect NAD kinase activity. The enzyme was not affected by changes in the adenylate energy charge. In contrast, both NADH and NADPH were potent negative modulators of the enzyme, since their presence at micromolar concentrations resulted in a pronounced sigmoidal NAD+ saturation curve. In addition, the presence of a range of concentrations of the reduced nucleotides resulted in an increase of the Hill slope (nH) to 1.7 to 2.0 with NADH and to 1.8 to 2.1 with NADPH, suggesting that NAD kinase is an allosteric enzyme. These results indicate that NAD kinase activity is regulated by the availability of ATP, NAD+, and Mg2+ and, more significantly, by changes in the NADP+/NADPH and NAD+/NADH ratios. Thus, NAD kinase probably plays a role in the regulation of NADP turnover and pool size in E. coli.  相似文献   

10.
NADPH is the key cofactor in L-isoleucine (Ile) biosynthetic pathway. To increase the Ile biosynthesis in Corynebacterium glutamicum ssp. lactofermentum JHI3-156, NADPH supply needs to be enhanced. Here NAD kinase, the key enzyme for the de novo biosynthesis of NADP(+) and NADPH, were cloned and expressed in JHI3-156, and their influences on Ile production were analysed. Meanwhile, enzyme properties of NAD kinase from JHI3-156 (CljPpnK) were compared with that from C. glutamicum ssp. lactofermentum ATCC 13869 (ClPpnK). Four variations existed between CljPpnK and ClPpnK. Both PpnKs were poly(P)/ATP-dependent NAD kinases that used ATP as the preferred phosphoryl donor and NAD(+) as the preferred acceptor. CljPpnK exhibited a higher activity and stability than ClPpnK and less sensitivity towards the effectors NADPH, NADP(+), and NADH, partly due to the variations between them. The S57P variation decreased their activity. Expression of CljppnK and ClppnK in JHI3-156 increased the ATP-NAD(+) kinase activity by 69- and 47-fold, respectively, the intracellular NADP(+) concentration by 36% and 101%, respectively, the NADPH concentration by 95% and 42%, respectively, and Ile production by 37% and 24%, respectively. These results suggest that overexpressing NAD kinase is a useful metabolic engineering strategy to improve NADPH supply and isoleucine biosynthesis.  相似文献   

11.
d-Glucose-6-phosphate nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase (EC 1.1.1.49) from Bacillus licheniformis has been purified approximately 600-fold. The enzyme appears to be constitutive and exhibits activity with either oxidized NAD (NAD(+)) or oxidized NADP (NADP(+)) as electron acceptor. The enzyme has a pH optimum of 9.0 and has an absolute requirement for cations, either monovalent or divalent. The enzyme exhibits a K(m) of approximately 5 muM for NADP(+), 3 mM for NAD(+), and 0.2 mM for glucose-6-phosphate. Reduced NADP (NADPH) is a competitive inhibitor with respect to NADP(+) (K(m) = 10 muM). Phosphoenolpyruvate (K(m) = 1.6 mM), adenosine 5'-triphosphate (K(m) = 0.5 mM), adenosine diphosphate (K(m) = 1.5 mM), and adenosine 5'-monophosphate (K(m) = 3.0 mM) are competitive inhibitors with respect to NAD(+). The molecular weight as estimated from sucrose density centrifugation and molecular sieve chromatography is 1.1 x 10(5). Sodium dodecyl sulfate gel electrophoresis indicates that the enzyme is composed of two similar subunits of approximately 6 x 10(4) molecular weight. The intracellular levels of glucose-6-phosphate, NAD(+), and NADP(+) were measured and found to be approximately 1 mM, 0.9 mM, and 0.2 mM, respectively, during logarithmic growth. From a consideration of the substrate pool sizes and types of inhibitors, we conclude that this single constitutive enzyme may function in two roles in the cell-NADH production for energetics and NADPH production for reductive biosynthesis.  相似文献   

12.
1. Pyruvate carboxylase from baker's yeast is inhibited by ADP, AMP and adenosine at pH8.0 in the presence of magnesium chloride concentrations equal to or higher than the ATP concentration. The adenine moiety is essential for the inhibitory effect. 2. In the absence of acetyl-CoA (an allosteric activator) ADP, AMP and adenosine are competitive inhibitors with respect to ATP. In the presence of acetyl-CoA, besides the effect with respect to ATP, AMP competes with acetyl-CoA, whereas ADP and adenosine are non-competitive inhibitors with respect to the activator. 3. Pyruvate carboxylase is inhibited by NADH. The inhibition is competitive with respect to acetyl-CoA and specific with respect to NADH, since NAD(+), NADP(+) and NADPH do not affect the enzyme activity. In the absence of acetyl-CoA, NAD(+), NADH, NADP(+) and NADPH do not inhibit pyruvate carboxylase. 4. Pyruvate carboxylase is inhibited by ADP, AMP and NADH at pH6.5, in the presence of 12mm-Mg(2+), 0.75mm-Mn(2+) and 0.5mm-ATP, medium conditions similar to those existing inside the yeast cell. The ADP and NADH effects are consistent with a regulation of enzyme activity by the intracellular [ATP]/[ADP] ratio and secondarily by NADH concentration. These mechanisms would supplement the already known control of yeast pyruvate carboxylase by acetyl-CoA and l-aspartate. Inhibition by AMP is less marked and its physiological role is perhaps limited.  相似文献   

13.
The functions of NAD(H) (NAD(+) and NADH) and NADP(H) (NADP(+) and NADPH) are undoubtedly significant and distinct. Hence, regulation of the intracellular balance of NAD(H) and NADP(H) is important. The key enzymes involved in the regulation are NAD kinase and NADP phosphatase. In 2000, we first succeeded in identifying the gene for NAD kinase, thereby facilitating worldwide studies of this enzyme from various organisms, including eubacteria, archaea, yeast, plants, and humans. Molecular biological study has revealed the physiological function of this enzyme, that is to say, the significance of NADP(H), in some model organisms. Structural research has elucidated the tertiary structure of the enzyme, the details of substrate-binding sites, and the catalytic mechanism. Research on NAD kinase also led to the discovery of archaeal NADP phosphatase. In this review, we summarize the physiological functions, applications, and structure of NAD kinase, and the way we discovered archaeal NADP phosphatase.  相似文献   

14.
NAD激酶能催化NAD生成NADP。本研究采用PCR技术从嗜热脂肪地芽孢杆菌基因组中获得NAD激酶基因,以pET30a(+)为表达载体、E.coliBL21(DE3)为宿主菌,实现其在大肠杆菌中异源表达,并进行酶学性质研究。结果显示,嗜热脂肪地芽孢杆菌中NAD激酶编码基因大小为816bp,酶分子量大约为35kD。酶学性质分析表明,来源于嗜热脂肪地芽孢杆菌的NAD激酶最适反应温度和pH分别为35℃、pH7.5,在35qC中保温2h后仍能保持80%左右的活性。Mn2+、Ca2+对该酶有较强的激活作用,在最适反应条件下该酶的比活力为4.43U/mg。动力学性质分析结果显示NAD激酶对底物NAD催化的k和圪。,分别为1.46mmol/L和0.25tzmol/(L·min)。NAD激酶在大肠杆菌的异源表达为以NAD为底物生物合成NADP提供了更多生物资源。  相似文献   

15.
The concentration of carbon dioxide (CO2) in the atmosphere is projected to double by the end of the 21st century. In C3 plants, elevated CO2 concentrations promote photosynthesis but inhibit the assimilation of nitrate into organic nitrogen compounds. Several steps of nitrate assimilation depend on the availability of ATP and sources of reducing power, such as nicotinamide adenine dinucleotide phosphate (NADPH). Plastid‐localised NAD kinase 2 (NADK2) plays key roles in increasing the ATP/ADP and NADP(H)/NAD(H) ratios. Here we examined the effects of NADK2 overexpression on primary metabolism in rice (Oryza sativa) leaves in response to elevated CO2. By using capillary electrophoresis mass spectrometry, we showed that the primary metabolite profile of NADK2‐overexpressing plants clearly differed from that of wild‐type plants under ambient and elevated CO2. In NADK2‐overexpressing leaves, expression of the genes encoding glutamine synthetase and glutamate synthase was up‐regulated, and the levels of Asn, Gln, Arg, and Lys increased in response to elevated CO2. The present study suggests that overexpression of NADK2 promotes the biosynthesis of nitrogen‐rich amino acids under elevated CO2.  相似文献   

16.
Two malic enzymes in Pseudomonas aeruginosa   总被引:1,自引:1,他引:0       下载免费PDF全文
Cell-free extract supernatant fluids of Pseudomonas aeruginosa were shown to lack malic dehydrogenase but possess a nicotinamide adenine dinucleotide (NAD)- or NAD phosphate (NADP)-dependent enzymatic activity, with properties suggesting a malic enzyme (malate + NAD (NADP) --> pyruvate + reduced NAD (NADH) (reduced NADP [NADPH] + CO(2)), in agreement with earlier findings. This was confirmed by determining the nature and stoichiometry of the reaction products. Differences in heat stability and partial purification of these activities demonstrated the existence of two malic enzymes, one specific for NAD and the other for NADP. Both enzymes require bivalent metal cations for activity, Mn(2+) being more effective than Mg(2+). The NADP-dependent enzyme is activated by K(+) and low concentrations of NH(4) (+). Both reactions are reversible, as shown by incubation with pyruvate, CO(2), NADH, or NADPH and Mn(2+). The molecular weights of the enzymes were estimated by gel filtration (270,000 for the NAD enzyme and 68,000 for the NADP enzyme) and by sucrose density gradient centrifugation (about 200,000 and 90,000, respectively).  相似文献   

17.
ADP-L-glycero-D-mannoheptose 6-epimerase is required for lipopolysaccharide inner core biosynthesis in several genera of Gram-negative bacteria. The enzyme contains both fingerprint sequences Gly-X-Gly-X-X-Gly and Gly-X-X-Gly-X-X-Gly near its N terminus, which is indicative of an ADP binding fold. Previous studies of this ADP-l-glycero-D-mannoheptose 6-epimerase (ADP-hep 6-epimerase) were consistent with an NAD(+) cofactor. However, the crystal structure of this ADP-hep 6-epimerase showed bound NADP (Deacon, A. M., Ni, Y. S., Coleman, W. G., Jr., and Ealick, S. E. (2000) Structure 5, 453-462). In present studies, apo-ADP-hep 6-epimerase was reconstituted with NAD(+), NADP(+), and FAD. In this report we provide data that shows NAD(+) and NADP(+) both restored enzymatic activity, but FAD could not. Furthermore, ADP-hep 6-epimerase exhibited a preference for binding of NADP(+) over NAD(+). The K(d) value for NADP(+) was 26 microm whereas that for NAD(+) was 45 microm. Ultraviolet circular dichroism spectra showed that apo-ADP-hep 6-epimerase reconstituted with NADP(+) had more secondary structure than apo-ADP-hep 6-epimerase reconstituted with NAD(+). Perchloric acid extracts of the purified enzyme were assayed with NAD(+)-specific alcohol dehydrogenase and NADP(+)-specific isocitric dehydrogenase. A sample of the same perchloric acid extract was analyzed in chromatographic studies, which demonstrated that ADP-hep 6-epimerase binds NADP(+) in vivo. A structural comparison of ADP-hep 6-epimerase with UDP-galactose 4-epimerase, which utilizes an NAD(+) cofactor, has identified the regions of ADP-hep 6-epimerase, which defines its specificity for NADP(+).  相似文献   

18.
NADP is essential for biosynthetic pathways, energy, and signal transduction. In living organisms, NADP biosynthesis proceeds through the phosphorylation of NAD with a reaction catalyzed by NAD kinase. We expressed, purified, and characterized Bacillus subtilis NAD kinase. This enzyme represents a new member of the inorganic polyphosphate [poly(P)]/ATP NAD kinase subfamily, as it can use poly(P), ATP, or other nucleoside triphosphates as phosphoryl donors. NAD kinase showed marked positive cooperativity for the substrates ATP and poly(P) and was inhibited by its product, NADP, suggesting that the enzyme plays a major regulatory role in NADP biosynthesis. We discovered that quinolinic acid, a central metabolite in NAD(P) biosynthesis, behaved like a strong allosteric activator for the enzyme. Therefore, we propose that NAD kinase is a key enzyme for both NADP metabolism and quinolinic acid metabolism.  相似文献   

19.
Azotobacter beijerinckii possesses the enzymes of both the Entner-Doudoroff and the oxidative pentose phosphate cycle pathways of glucose catabolism and both pathways are subject to feedback inhibition by products of glucose oxidation. The allosteric glucose 6-phosphate dehydrogenase utilizes both NADP(+) and NAD(+) as electron acceptors and is inhibited by ATP, ADP, NADH and NADPH. 6-Phosphogluconate dehydrogenase (NADP-specific) is unaffected by adenosine nucleotides but is strongly inhibited by NADH and NADPH. The formation of pyruvate and glyceraldehyde 3-phosphate from 6-phosphogluconate by the action of the Entner-Doudoroff enzymes is inhibited by ATP, citrate, isocitrate and cis-aconitate. Glyceraldehyde 3-phosphate dehydrogenase is unaffected by adenosine and nicotinamide nucleotides but the enzyme is non-specific with respect to NADP and NAD. Citrate synthase is strongly inhibited by NADH and the inhibition is reversed by the addition of AMP. Isocitrate dehydrogenase, a highly active NADP-specific enzyme, is inhibited by NADPH, NADH, ATP and by high concentrations of NADP(+). These findings are discussed in relation to the massive synthesis of poly-beta-hydroxybutyrate that occurs under certain nutritional conditions. We propose that synthesis of this reserve material, to the extent of 70% of the dry weight of the organism, serves as an electron and carbon ;sink' when conditions prevail that would otherwise inhibit nitrogen fixation and growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号