首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Post-exposure vaccination with vaccinia virus (VACV) has been suggested to be effective in minimizing death if administered within four days of smallpox exposure. While there is anecdotal evidence for efficacy of post-exposure vaccination this has not been definitively studied in humans. In this study, we analyzed post-exposure prophylaxis using several attenuated recombinant VACV in a mouse model. A recombinant VACV expressing murine interferon gamma (IFN-γ) was most effective for post-exposure protection of mice infected with VACV and ectromelia virus (ECTV). Untreated animals infected with VACV exhibited severe weight loss and morbidity leading to 100% mortality by 8 to 10 days post-infection. Animals treated one day post-infection had milder symptoms, decreased weight loss and morbidity, and 100% survival. Treatment on days 2 or 3 post-infection resulted in 40% and 20% survival, respectively. Similar results were seen in ECTV-infected mice. Despite the differences in survival rates in the VACV model, the viral load was similar in both treated and untreated mice while treated mice displayed a high level of IFN-γ in the serum. These results suggest that protection provided by IFN-γ expressed by VACV may be mediated by its immunoregulatory activities rather than its antiviral effects. These results highlight the importance of IFN-γ as a modulator of the immune response for post-exposure prophylaxis and could be used potentially as another post-exposure prophylaxis tool to prevent morbidity following infection with smallpox and other orthopoxviruses.  相似文献   

2.
Interactions between pathogens, host microbiota and the immune system influence many physiological and pathological processes. In the 20th century, widespread dermal vaccination with vaccinia virus (VACV) led to the eradication of smallpox but how VACV interacts with the microbiota and whether this influences the efficacy of vaccination are largely unknown. Here we report that intradermal vaccination with VACV induces a large increase in the number of commensal bacteria in infected tissue, which enhance recruitment of inflammatory cells, promote tissue damage and influence the host response. Treatment of vaccinated specific-pathogen-free (SPF) mice with antibiotic, or infection of genetically-matched germ-free (GF) animals caused smaller lesions without alteration in virus titre. Tissue damage correlated with enhanced neutrophil and T cell infiltration and levels of pro-inflammatory tissue cytokines and chemokines. One month after vaccination, GF and both groups of SPF mice had equal numbers of VACV-specific CD8+ T cells and were protected from disease induced by VACV challenge, despite lower levels of VACV-neutralising antibodies observed in GF animals. Thus, skin microbiota may provide an adjuvant-like stimulus during vaccination with VACV and influence the host response to vaccination.  相似文献   

3.
Mutations in the genes that encode Fas or Fas ligand (FasL) can result in poor restraints on lymphocyte activation and in increased susceptibility to autoimmune disorders. Because these mutations portend a continuously activated immune state, we hypothesized that they might in some cases confer resistance to infection. To examine this possibility, the immune response to, morbidity caused by, and clearance of vaccinia virus (VACV) Western Reserve was examined in 5- to 7-week-old Fas mutant (lpr) mice, before an overt lymphoproliferative disorder was observable. On day 6 after VACV infection, C57BL/6-lpr (B6-lpr) mice had decreased morbidity, decreased viral titers, and an increased percentage and number of CD4(+) and CD8(+) T cells. As early as day 2 after infection, B6-lpr mice had decreased liver and spleen viral titers and increased numbers of and increased gamma interferon (IFN-γ) production by several different effector cell populations. Depletion of individual effector cell subsets did not inhibit the resistance of B6-lpr mice. Uninfected B6-lpr mice also had increased numbers of NK cells, γδ(+) T cells, and CD44(+) CD4(+) and CD44(+) CD8(+) T cells compared to uninfected B6 mice. Antibody to IFN-γ resulted in increased virus load in both B6 and B6-lpr mice and eliminated the differences in viral titers between them. These results suggest that IFN-γ produced by multiple activated leukocyte populations in Fas-deficient hosts enhances resistance to some viral infections.  相似文献   

4.
Background information. Vaccinia virus (VACV) was used as a surrogate of variola virus (genus Orthopoxvirus), the causative agent of smallpox, to study orthopoxvirus infection. VACV infects cells via attachment and fusion of the viral membrane with the host cell membrane. Glycosphingolipids, expressed in multiple organs, are major components of lipid rafts and have been associated with the infectious route of several pathogens. Results. We demonstrate that the VACV‐WR (VACV Western‐Reserve strain) displays no binding to Cer (ceramide) or to Gal‐Cer (galactosylceramide), but binds to a natural sulfated derivative of these molecules: the Sulf (sulfatide) 3′ sulfogalactosylceramide. The interaction between Sulf and VACV‐WR resulted in a time‐dependent inhibition of virus infection. Virus cell attachment was the crucial step inhibited by Sulf. Electron microscopy showed that SUVs (small unilamellar vesicles) enriched in Sulf bound to VACV particles. Both the A27 and L5 viral membrane proteins were shown to interact with Sulf, indicating that they could be the major viral ligands for Sulf. Soluble Sulf was successful in preventing mortality, but not morbidity, in a lethal mouse model infection with VACV‐WR. Conclusions. Together the results suggest that Sulf could play a role as an alternate receptor for VACV‐WR and probably other Orthopoxviruses.  相似文献   

5.
An immune response of appropriate magnitude should be robust enough to control pathogen spread but not simultaneously lead to immunopathology. Primary infection with influenza A virus (IAV) results in a localized pulmonary infection and inflammation and elicits an IAV-specific CD8 T cell immune response necessary for viral clearance. Clearance of IAV-infected cells, and recovery from infection, is mediated by perforin/granzyme B- and Fas/FasL-mediated mechanisms. We recently reported that TRAIL is another means by which IAV-specific CD8 T cells can kill IAV-infected cells. The current study examined the role of TRAIL in the pulmonary CD8 T cell response to a clinically significant IAV [A/PR/8/34 (PR8; H1N1)] infection (i.e., leads to observable, but limited, morbidity and mortality in wild-type [WT] mice). Compared with WT mice, IAV-infected Trail(-/-) mice experienced increased morbidity and mortality despite similar rates of viral clearance from the lungs. The increased morbidity and mortality in Trail(-/-) mice correlated with increased pulmonary pathology and inflammatory chemokine production. Analysis of lung-infiltrating lymphocytes revealed increased numbers of IAV-specific CD8 T cells in infected Trail(-/-) mice, which correlated with increased pulmonary cytotoxic activity and increased pulmonary expression of MIG and MIP-1α. In addition, there was decreased apoptosis and increased proliferation of IAV-specific CD8 T cells in the lungs of Trail(-/-) mice compared with WT mice. Together, these data suggest that TRAIL regulates the magnitude of the IAV-specific CD8 T cell response during a clinically significant IAV infection to decrease the chance for infection-induced immunopathology.  相似文献   

6.
West Nile virus (WNV) causes severe central nervous system (CNS) infection primarily in humans who are immunocompromised or elderly. In this study, we addressed the mechanism by which the immune system limits dissemination of WNV infection by infecting wild-type and immunodeficient inbred C57BL/6J mice with a low-passage WNV isolate from the recent epidemic in New York state. Wild-type mice replicated virus extraneuronally in the draining lymph nodes and spleen during the first 4 days of infection. Subsequently, virus spread to the spinal cord and the brain at virtually the same time. Congenic mice that were genetically deficient in B cells and antibody (microMT mice) developed increased CNS viral burdens and were vulnerable to lethal infection at low doses of virus. Notably, an approximately 500-fold difference in serum viral load was detected in micro MT mice as early as 4 days after infection, a point in the infection when low levels of neutralizing immunoglobulin M antibody were detected in wild-type mice. Passive transfer of heat-inactivated serum from infected and immune wild-type mice protected micro MT mice against morbidity and mortality. We conclude that antibodies and B cells play a critical early role in the defense against disseminated infection by WNV.  相似文献   

7.
The aim of this work was to elucidate the immunopathological mechanisms of how helminths may influence the course of a viral infection, using a murine model. Severe virulence, a relevant increase in the virus titres in the lung and a higher mortality rate were observed in Ascaris and Vaccinia virus (VACV) co-infected mice, compared with VACV mono-infected mice. Immunopathological analysis suggested that the ablation of CD8+ T cells, the marked reduction of circulating CD4+ T cells producing IFN-γ, and the robust pulmonary inflammation were associated with the increase of morbidity/mortality in co-infection and subsequently with the negative impact of concomitant pulmonary ascariasis and respiratory VACV infection for the host. On the other hand, when evaluating the impact of the co-infection on the parasitic burden, co-infected mice presented a marked decrease in the total number of migrating Ascaris lung-stage larvae in comparison with Ascaris mono-infection. Taken together, our major findings suggest that Ascaris and VACV co-infection may potentiate the virus-associated pathology by the downmodulation of the VACV-specific immune response. Moreover, this study provides new evidence of how helminth parasites may influence the course of a coincident viral infection.  相似文献   

8.
CXCL9 and CXCL10 mediate the recruitment of T lymphocytes and NK cells known to be important in viral surveillance. The relevance of CXCL10 in comparison to CXCL9 in response to genital HSV-2 infection was determined using mice deficient in CXCL9 (CXCL9-/-) and deficient in CXCL10 (CXCL10-/-) along with wild-type (WT) C57BL/6 mice. An increased sensitivity to infection was found in CXCL10-/- mice in comparison to CXCL9-/- or WT mice as determined by detection of HSV-2 in the CNS at day 3 postinfection. However, by day 7 postinfection both CXCL9-/- and CXCL10-/- mice possessed significantly higher viral titers in the CNS in comparison to WT mice consistent with mortality (18-35%) of these mice within the first 7 days after infection. Even though CXCL9-/- and CXCL10-/- mice expressed elevated levels of CCL2, CCL3, CCL5, and CXCL1 in the spinal cord in comparison to WT mice, there was a reduction in NK cell and virus-specific CD8+ T cell mobilization to this tissue, suggesting CXCL9 and CXCL10 are critical for recruitment of these effector cells to the spinal cord following genital HSV-2 infection. Moreover, leukocytes from the spinal cord but not from draining lymph nodes or spleens of infected CXCL9-/- or CXCL10-/- mice displayed reduced CTL activity in comparison to effector cells from WT mice. Thus, the absence of CXCL9 or CXCL10 expression significantly alters the ability of the host to control genital HSV-2 infection through the mobilization of effector cells to sites of infection.  相似文献   

9.
Products of arachidonic acid metabolism are important for mucosal homeostasis, because blockade of this pathway with an NSAID triggers rapid onset of severe colitis in the IL-10 knockout (IL-10(-/-)) model of IBD. Rag mice do not make T or B cells. This study determined whether reconstitution of Rag mice with T cells from IL-10(-/-) mice transferred NSAID colitis susceptibility. Rag mice were reconstituted by intraperitoneal injection with splenocytes from wild-type (WT) or IL-10(-/-) animals. Colitis was induced by using piroxicam and was graded histologically. Isolated lamina propria mononuclear cells (LPMC), lamina propria T cells, and LPMC depleted of T cells from reconstituted Rag mice were studied for cytokine production. Only animals reconstituted with IL-10(-/-) CD4(+) T cells and administered piroxicam developed severe colitis. LPMC from these colitic animals made IFN-gamma, whose production was dependent on T cells. Some IL-10 was produced but only from non-T cells. LPMC from the healthy Rag mice that were reconstituted with WT T cells and were piroxicam resistant made much more IL-10. This was mostly T cell dependent. In conclusion, only CD4(+) T cells from IL-10(-/-) animals leave Rag mice susceptible to NSAID-induced, Th1 colitis. Lamina propria T cells normally make large quantities of IL-10, suggesting that IL-10 from T cells may be protective.  相似文献   

10.

Background

Both coxsackievirus B3 (CVB3) and influenza A virus (IAV; H1N1) produce sexually dimorphic infections in C57BL/6 mice. Gonadal steroids can modulate sex differences in response to both viruses. Here, the effect of sex chromosomal complement in response to viral infection was evaluated using four core genotypes (FCG) mice, where the Sry gene is deleted from the Y chromosome, and in some mice is inserted into an autosomal chromosome. This results in four genotypes: XX or XY gonadal females (XXF and XYF), and XX or XY gonadal males (XXM and XYM). The FCG model permits evaluation of the impact of the sex chromosome complement independent of the gonadal phenotype.

Methods

Wild-type (WT) male and female C57BL/6 mice were assigned to remain intact or be gonadectomized (Gdx) and all FCG mice on a C57BL/6 background were Gdx. Mice were infected with either CVB3 or mouse-adapted IAV, A/Puerto Rico/8/1934 (PR8), and monitored for changes in immunity, virus titers, morbidity, or mortality.

Results

In CVB3 infection, mortality was increased in WT males compared to females and males developed more severe cardiac inflammation. Gonadectomy suppressed male, but increased female, susceptibility to CVB3. Infection with IAV resulted in greater morbidity and mortality in WT females compared with males and this sex difference was significantly reduced by gonadectomy of male and female mice. In Gdx FCG mice infected with CVB3, XY mice were less susceptible than XX mice. Protection correlated with increased CD4+ forkhead box P3 (FoxP3)+ T regulatory (Treg) cell activation in these animals. Neither CD4+ interferon (IFN)γ (T helper 1 (Th1)) nor CD4+ interleukin (IL)-4+ (Th2) responses differed among the FCG mice during CVB3 infection. Infection of Gdx FCG mice revealed no effect of sex chromosome complement on morbidity or mortality following IAV infection.

Conclusions

These studies indicate that sex chromosome complement can influence pathogenicity of some, but not all, viruses.  相似文献   

11.
The smallpox vaccine is widely considered the gold standard for human vaccines, yet the key antibody targets in humans remain unclear. We endeavored to identify a stereotypic, dominant, mature virion (MV) neutralizing antibody target in humans which could be used as a diagnostic serological marker of protective humoral immunity induced by the smallpox vaccine (vaccinia virus [VACV]). We have instead found that diversity is a defining characteristic of the human antibody response to the smallpox vaccine. We show that H3 is the most immunodominant VACV neutralizing antibody target, as determined by correlation analysis of immunoglobulin G (IgG) specificities to MV neutralizing antibody titers. It was determined that purified human anti-H3 IgG is sufficient for neutralization of VACV; however, depletion or blockade of anti-H3 antibodies revealed no significant reduction in neutralization activity, showing anti-H3 IgG is not required in vaccinated humans (or mice) for neutralization of MV. Comparable results were obtained for human (and mouse) anti-L1 IgG and even for anti-H3 and anti-L1 IgG in combination. In addition to H3 and L1, human antibody responses to D8, A27, D13, and A14 exhibited statistically significant correlations with virus neutralization. Altogether, these data indicate the smallpox vaccine succeeds in generating strong neutralizing antibody responses not by eliciting a stereotypic response to a single key antigen but instead by driving development of neutralizing antibodies to multiple viral proteins, resulting in a "safety net" of highly redundant neutralizing antibody responses, the specificities of which can vary from individual to individual. We propose that this is a fundamental attribute of the smallpox vaccine.  相似文献   

12.
Influenza is a significant cause of morbidity and mortality worldwide despite extensive research and vaccine availability. The cyclooxygenase (COX) pathway is important in modulating immune responses and is also a major target of nonsteroidal anti-inflammatory drugs (NSAIDs) and the newer COX-2 inhibitors. The purpose of the present study was to examine the effect of deficiency of COX-1 or COX-2 on the host response to influenza. We used an influenza A viral infection model in wild type (WT), COX-1-/-, and COX-2-/- mice. Infection induced less severe illness in COX-2-/- mice in comparison to WT and COX-1-/- mice as evidenced by body weight and body temperature changes. Mortality was significantly reduced in COX-2-/- mice. COX-1-/- mice had enhanced inflammation and earlier appearance of proinflammatory cytokines in the BAL fluid, whereas the inflammatory and cytokine responses were blunted in COX-2-/- mice. However, lung viral titers were markedly elevated in COX-2-/- mice relative to WT and COX-1-/- mice on day 4 of infection. Levels of PGE2 were reduced in COX-1-/- airways whereas cysteinyl leukotrienes were elevated in COX-2-/- airways following infection. Thus, deficiency of COX-1 and COX-2 leads to contrasting effects in the host response to influenza infection, and these differences are associated with altered production of prostaglandins and leukotrienes following infection. COX-1 deficiency is detrimental whereas COX-2 deficiency is beneficial to the host during influenza viral infection.  相似文献   

13.
The 2003 monkeypox virus (MPXV) outbreak and subsequent laboratory studies demonstrated that the black-tailed prairie dog is susceptible to MPXV infection and that the ensuing rash illness is similar to human systemic orthopoxvirus (OPXV) infection, including a 7- to 9-day incubation period and, likely, in some cases a respiratory route of infection; these features distinguish this model from others. The need for safe and efficacious vaccines for OPVX in areas where it is endemic or epidemic is important to protect an increasingly OPXV-naïve population. In this study, we tested current and investigational smallpox vaccines for safety, induction of anti-OPXV antibodies, and protection against mortality and morbidity in two MPXV challenges. None of the smallpox vaccines caused illness in this model, and all vaccinated animals showed anti-OPXV antibody responses and neutralizing antibody. We tested vaccine efficacy by challenging the animals with 105 or 106 PFU Congo Basin MPXV 30 days postvaccination and evaluating morbidity and mortality. Our results demonstrated that vaccination with either Dryvax or Acambis2000 protected the animals from death with no rash illness. Vaccination with IMVAMUNE also protected the animals from death, albeit with (modified) rash illness. Based on the results of this study, we believe prairie dogs offer a novel and potentially useful small animal model for the safety and efficacy testing of smallpox vaccines in pre- and postexposure vaccine testing, which is important for public health planning.  相似文献   

14.
Immunosuppressed patients are at risk for developing Epstein-Barr Virus (EBV)-positive lymphomas that express the major EBV oncoprotein, LMP1. Although increasing evidence suggests that a small number of lytically infected cells may promote EBV-positive lymphomas, the impact of enhanced lytic gene expression on the ability of EBV to induce lymphomas is unclear. Here we have used immune-deficient mice, engrafted with human fetal hematopoietic stem cells and thymus and liver tissue, to compare lymphoma formation following infection with wild-type (WT) EBV versus infection with a "superlytic" (SL) mutant with enhanced BZLF1 (Z) expression. The same proportions (2/6) of the WT and SL virus-infected animals developed B-cell lymphomas by day 60 postinfection; the remainder of the animals had persistent tumor-free viral latency. In contrast, all WT and SL virus-infected animals treated with the OKT3 anti-CD3 antibody (which inhibits T-cell function) developed lymphomas by day 29. Lymphomas in OKT3-treated animals (in contrast to lymphomas in the untreated animals) contained many LMP1-expressing cells. The SL virus-infected lymphomas in both OKT3-treated and untreated animals contained many more Z-expressing cells (up to 30%) than the WT virus-infected lymphomas, but did not express late viral proteins and thus had an abortive lytic form of EBV infection. LMP1 and BMRF1 (an early lytic viral protein) were never coexpressed in the same cell, suggesting that LMP1 expression is incompatible with lytic viral reactivation. These results show that the SL mutant induces an "abortive" lytic infection in humanized mice that is compatible with continued cell growth and at least partially resistant to T-cell killing.  相似文献   

15.
16.
Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.  相似文献   

17.
Pertussis (whooping cough) is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8) infection in mouse models and the role of pertussis toxin (PT) in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT) and subsequently (up to 14 days later) infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (ΔPT) and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs) in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1β, IL-12, IFN-γ, IL-6, KC, MCP-1 and TNF-α in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers.  相似文献   

18.

Background

Despite the fact that smallpox eradication was declared by the World Health Organization (WHO) in 1980, other poxviruses have emerged and re-emerged, with significant public health and economic impacts. Vaccinia virus (VACV), a poxvirus used during the WHO smallpox vaccination campaign, has been involved in zoonotic infections in Brazilian rural areas (Bovine Vaccinia outbreaks – BV), affecting dairy cattle and milkers. Little is known about VACV''s natural hosts and its epidemiological and ecological characteristics. Although VACV was isolated and/or serologically detected in Brazilian wild animals, the link between wildlife and farms has not yet been elucidated.

Methodology/Principal Findings

In this study, we describe for the first time, to our knowledge, the isolation of a VACV (Mariana virus - MARV) from a mouse during a BV outbreak. Genetic data, in association with biological assays, showed that this isolate was the same etiological agent causing exanthematic lesions observed in the cattle and human inhabitants of a particular BV-affected area. Phylogenetic analysis grouped MARV with other VACV isolated during BV outbreaks.

Conclusion/Significance

These data provide new biological and epidemiological information on VACV and lead to an interesting question: could peridomestic rodents be the link between wildlife and BV outbreaks?  相似文献   

19.
Eradication of smallpox and discontinuation of the vaccination campaign resulted in an increase in the percentage of unvaccinated individuals, highlighting the need for postexposure efficient countermeasures in case of accidental or deliberate viral release. Intranasal infection of mice with ectromelia virus (ECTV), a model for human smallpox, is curable by vaccination with a high vaccine dose given up to 3 days postexposure. To further extend this protective window and to reduce morbidity, mice were vaccinated postexposure with Vaccinia-Lister, the conventional smallpox vaccine or Modified Vaccinia Ankara, a highly attenuated vaccine in conjunction with TLR3 or TLR9 agonists. We show that co-administration of the TLR3 agonist poly(I:C) even 5 days postexposure conferred protection, avoiding the need to increase the vaccination dose. Efficacious treatments prevented death, ameliorated disease symptoms, reduced viral load and maintained tissue integrity of target organs. Protection was associated with significant elevation of serum IFNα and anti-vaccinia IgM antibodies, modulation of IFNγ response, and balanced activation of NK and T cells. TLR9 agonists (CpG ODNs) were less protective than the TLR3 agonist poly(I:C). We show that activation of type 1 IFN by poly(I:C) and protection is achievable even without co-vaccination, requiring sufficient amount of the viral antigens of the infective agent or the vaccine. This study demonstrated the therapeutic potential of postexposure immune modulation by TLR activation, allowing to alleviate the disease symptoms and to further extend the protective window of postexposure vaccination.  相似文献   

20.
Engle MJ  Diamond MS 《Journal of virology》2003,77(24):12941-12949
West Nile virus (WNV) is a mosquito-borne Flavivirus that causes encephalitis in a subset of susceptible humans. Current treatment for WNV infections is supportive, and no specific therapy or vaccine is available. In this study, we directly tested the prophylactic and therapeutic efficacy of polyclonal antibodies against WNV. Passive administration of human gamma globulin or mouse serum prior to WNV infection protected congenic wild-type, B-cell-deficient ( micro MT), and T- and B-cell-deficient (RAG1) C57BL/6J mice. Notably, no increased mortality due to immune enhancement was observed. Although immune antibody completely prevented morbidity and mortality in wild-type mice, its effect was not durable in immunocompromised mice: many micro MT and RAG1 mice eventually succumbed to infection. Thus, antibody by itself did not completely eliminate viral reservoirs in host tissues, consistent with an intact cellular immune response being required for viral clearance. In therapeutic postexposure studies, human gamma globulin partially protected against WNV-induced mortality. In micro MT mice, therapy had to be initiated within 2 days of infection to gain a survival benefit, whereas in the wild-type mice, therapy even 5 days after infection reduced mortality. This time point is significant because between days 4 and 5, WNV was detected in the brains of infected mice. Thus, passive transfer of immune antibody improves clinical outcome even after WNV has disseminated into the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号