首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Centrosome separation is regulated by balance of in situ protein kinase/phosphatase activities during the cell cycle. The mammalian NimA-related kinase Nek2 forms a complex with the catalytic subunit of protein phosphatase-1 (PP1C). This complex is located at centrosomes and has been implicated in regulation of the cycle of duplication and separation. Inhibitor-2 (Inh2) is an inhibitor protein specific for PP1C, and its expression level fluctuates during the cell cycle. Here we report cellular regulation of the Nek2.PP1C complex by Inh2. PP1C-binding segments of Nek2 were isolated by yeast two-hybrid screening using Inh2 bait. Inh2 indirectly associates with Nek2 via PP1C, which binds to both proteins, forming a bridged heterotrimeric complex. Double Ala mutation of the PP1C-binding site (KVHF) in Nek2 eliminated both PP1C and Inh2 interactions in both a yeast conjugation assay and an in vitro binding assay. The kinase activity of Nek2.PP1C was enhanced 2-fold by addition of recombinant Inh2, with EC(50) = 10 nm. Immunofluorescence showed concentration of endogenous Inh2 at centrosomes and in a region surrounding the centrosomes. Transient expression of wild-type Inh2 increased by 5-fold dispersed/split centrosomes in fibroblasts, mimicking the phenotype produced by overexpression of Nek2. Deletion of the Inh2 C-terminal domain yielded Inh2-(1-118), which failed to interact with or activate the Nek2.PP1C complex, suggesting that the C-terminal region of Inh2 is required for regulation of the Nek2.PP1C complex. Thus, Inh2 can enhance the kinase activity of the Nek2.PP1C complex via inhibition of phosphatase activity to initiate centrosome separation.  相似文献   

2.
Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.  相似文献   

3.
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) is a member of the serine/threonine protein phosphatases and shares 29% sequence identity with protein phosphatase 2Calpha (PP2Calpha) in its catalytic domain. To investigate the functional domains of CaMKP, mutational analysis was carried out using various recombinant CaMKPs expressed in Escherichia coli. Analysis of N-terminal deletion mutants showed that the N-terminal region of CaMKP played important roles in the formation of the catalytically active structure of the enzyme, and a critical role in polycation stimulation. A chimera mutant, a fusion of the N-terminal domain of CaMKP and the catalytic domain of PP2Calpha, exhibited similar substrate specificity to CaMKP but not to PP2Calpha, suggesting that the N-terminal region of CaMKP is crucial for its unique substrate specificity. Point mutations at Arg-162, Asp-194, His-196, and Asp-400, highly conserved amino acid residues in the catalytic domain of PP2C family, resulted in a significant loss of phosphatase activity, indicating that these amino acid residues may play important roles in the catalytic activity of CaMKP. Although CaMKP(1-412), a C-terminal truncation mutant, retained phosphatase activity, it was found to be much less stable upon incubation at 37 degrees C than wild type CaMKP, indicating that the C-terminal region of CaMKP is important for the maintenance of the catalytically active conformation. The results suggested that the N- and C-terminal sequences of CaMKP are essential for the regulation and stability of CaMKP.  相似文献   

4.
5.
In this study, we show that protein phosphatase-1 (PP1) inhibitor-3 (Inh3) is localized to the nucleoli and centrosomes in interphase HEK 293 cells. Inh3 exhibited a specific co-localization to the nucleoli with PP1gamma1, and to the centrosomes with PP1alpha. These findings indicate that Inh3 may act as a modulator of PP1 functions in the processes of cytokinesis, as well as of nucleolar events. The specificity of the interaction of Inh3 with the PP1 isoforms was also demonstrated in vitro, where Inh3 co-immunoprecipitated with PP1alpha and PP1gamma1, but not with PP1beta. The nuclear localization signal of Inh3 was identified as a N-terminal basic cluster (33RKRK36), while nucleolar localization was shown to be dependent on a C-terminal basic cluster (94HRKGRRR100). The importance of the individual basic residues was quantitatively assessed by site-directed mutagenesis and a novel use of laser scanning cytometry.  相似文献   

6.
The PrrBA two-component activation system of Rhodobacter sphaeroides plays a major role in the induction of photosynthesis gene expression under oxygen-limiting or anaerobic conditions. The PrrB histidine kinase is composed of two structurally identifiable regions, the conserved C-terminal kinase/phosphatase domain and the N-terminal membrane-spanning domain with six transmembrane helices framing three periplasmic and two cytoplasmic loops. Using a set of PrrB mutants with lesions in the transmembrane domain, we demonstrate that the central portion of the PrrB transmembrane domain including the second periplasmic loop plays an important role in both sensing and signal transduction. Signal transduction via the transmembrane domain is ultimately manifested by controlling the activity of the C-terminal kinase/phosphatase domain. The extent of signal transduction is determined by the ability of the transmembrane domain to sense the strength of the inhibitory signal received from the cbb(3) terminal oxidase (J.-I Oh, and S. Kaplan, EMBO J. 19:4237-4247, 2000). Therefore, the intrinsic ("default") state of PrrB is in the kinase-dominant mode. It is also demonstrated that the extent of prrB gene expression is subject to the negative autoregulation of the PrrBA system.  相似文献   

7.
8.
The network controlling the general stress response in Bacillus subtilis requires both the RsbP phosphatase and the RsbQ α/β hydrolase to convey signals of energy stress. RsbP contains three domains: an N-terminal PAS, a central coiled-coil and a C-terminal PP2C phosphatase. We report here a genetic analysis that established the functional interactions of the domains and their relationship to RsbQ. Random mutagenesis of rsbP yielded 17 independent bypass suppressors that had activity in an rsbQ null strain background. The altered residues clustered in three regions of RsbP: the coiled-coil and two predicted helices of the phosphatase domain. One helix (α0) is unique to a subfamily of bacterial PP2C phosphatases that possess N-terminal sensing domains. The other (α1) is distinct from the active site in all solved PP2C structures. The phenotypes of the suppressors and directed deletions support a model in which the coiled-coil negatively controls phosphatase activity, perhaps via the α0-α1 helices, with RsbQ hydrolase activity and the PAS domain jointly comprising a positive sensing module that counters the coiled-coil. We propose that the α0 helix characterizes an extended PP2C domain in many bacterial signalling proteins, and suggest it provides a means to communicate information from diverse input domains.  相似文献   

9.
PNUTS, Phosphatase 1 NUclear Targeting Subunit, is a recently described protein that targets protein phosphatase 1 (PP1) to the nucleus. In the present study, we characterized the biochemical properties of PNUTS. A variety of truncation and site-directed mutants of PNUTS was prepared and expressed either as glutathione S-transferase fusion proteins in Escherichia coli or as FLAG-tagged proteins in 293T cells. A 50-amino acid domain in the center of PNUTS mediated both high affinity PP1 binding and inhibition of PP1 activity. The PP1-binding domain is related to a motif found in several other PP1-binding proteins but is distinct in that Trp replaces Phe. Mutation of the Trp residue essentially abolished the ability of PNUTS to bind to and inhibit PP1. The central PP1-binding domain of PNUTS was an effective substrate for protein kinase A in vitro, and phosphorylation substantially reduced the ability of PNUTS to bind to PP1 in vitro and following stimulation of protein kinase A in intact cells. In vitro RNA binding experiments showed that a C-terminal region including several RGG motifs and a novel repeat domain rich in His and Gly interacted with mRNA and single-stranded DNA. PNUTS exhibited selective binding for poly(A) and poly(G) compared with poly(U) or poly(C) ribonucleotide homopolymers, with specificity being mediated by distinct regions within the domain rich in His and Gly and the domain containing the RGG motifs. Finally, a PNUTS-PP1 complex was isolated from mammalian cell lysates using RNA-conjugated beads. Together, these studies support a role for PNUTS in protein kinase A-regulated targeting of PP1 to specific RNA-associated complexes in the nucleus.  相似文献   

10.
Chiang WC  Knowles AF 《Biochemistry》2008,47(33):8775-8785
Human NTPDase 2 is a cell surface integral membrane glycoprotein that is anchored to the membranes by two transmembrane domains while the bulk of the protein containing the active site faces the extracellular milieu. It contains 10 conserved cysteine residues in the extracellular domain that are involved in disulfide bond formation and one free cysteine residue, C26, which is located in the N-terminal transmembrane domain. The human NTPDase 2 activity is inactivated by membrane perturbation that disrupts interaction of the transmembrane domains and is inhibited by p-chloromercuriphenylsulfonate (pCMPS), a sulfhydryl reagent. In this report, we show that C26 is the target of pCMPS modification, since a mutant in which C26 was replaced with a serine was no longer inhibited by pCMPS. Mutants in which cysteine residues are placed in the C-terminal transmembrane domain near the extracellular surface were still modified by pCMPS, but the degree of inhibition of their ATPase activity was lower than that of the wild-type enzyme. Thus, loss of the ATPase activity of human NTPDase 2 in the presence of pCMPS probably results from the disturbance of both transmembrane domain interaction and its active site. Inhibition of human NTPDase 2 activity by pCMPS and membrane perturbation is attenuated when the enzyme is cross-linked by glutaraldehyde. On the other hand, NTPDase 2 dimers formed from oxidative cross-linking of the wild-type enzyme and mutants containing a single cysteine residue in the C-terminal transmembrane domain displayed reduced ATPase activity. A similar reduction in activity was also obtained upon intramolecular disulfide formation in mutants that contain a cysteine residue in each of the two transmembrane domains. These results indicate that the mobility of the transmembrane helices is necessary for maximal catalysis.  相似文献   

11.
The PKR protein kinase is among the best-studied effectors of the host interferon (IFN)-induced antiviral and antiproliferative response system. In response to stress signals, including virus infection, the normally latent PKR becomes activated through autophosphorylation and dimerization and phosphorylates the eIF2alpha translation initiation factor subunit, leading to an inhibition of mRNA translation initiation. While numerous virally encoded or modulated proteins that bind and inhibit PKR during virus infection have been studied, little is known about the cellular proteins that counteract PKR activity in uninfected cells. Overexpression of PKR in yeast also leads to an inhibition of eIF2alpha-dependent protein synthesis, resulting in severe growth suppression. Screening of a human cDNA library for clones capable of counteracting the PKR-mediated growth defect in yeast led to the identification of the catalytic subunit (PP1(C)) of protein phosphatase 1alpha. PP1(C) reduced double-stranded RNA-mediated auto-activation of PKR and inhibited PKR transphosphorylation activities. A specific and direct interaction between PP1(C) and PKR was detected, with PP1(C) binding to the N-terminal regulatory region regardless of the double-stranded RNA-binding activity of PKR. Importantly, a consensus motif shared by many PP1(C)-interacting proteins was necessary for PKR binding to PP1(C). The PKR-interactive site was mapped to a C-terminal non-catalytic region that is conserved in the PP1(C)2 isoform. Indeed, co-expression of PP1(C) or PP1(C)2 inhibited PKR dimer formation in Escherichia coli. Interestingly, co-expression of a PP1(C) mutant lacking the catalytic domain, despite retaining its ability to bind PKR, did not prevent PKR dimerization. Our findings suggest that PP1(C) modulates PKR activity via protein dephosphorylation and subsequent disruption of PKR dimers.  相似文献   

12.
Aurora-A is a centrosome-localized serine/threonine kinase that is overexpressed in multiple human cancers. Here, we report an intramolecular inhibitory regulation in Aurora-A between its N-terminal regulatory domain (aa 1-128, Nt) and the C-terminal catalytic domain (aa 129-403, Cd). Removal of Nt results in a significant increase in kinase activity. Nt inhibited the activity of the single C-terminal kinase domain, but had little effect on the activity of the full-length of Aurora-A. PP1 is not involved in this regulation, instead, Nt interacts Cd directly in vitro and in vivo. The non-Aurora box (aa 64-128) in the N-terminal negatively regulated the kinase activity of the C-terminal kinase domain by intramolecular interaction with aa 240-300 within the C-terminal.  相似文献   

13.
Protein phosphatases regulated by calmodulin (CaM) mediate the action of intracellular Ca2+ and modulate functions of various target proteins by dephosphorylation. In plants, however, the role of Ca2+ in the regulation of protein dephosphorylation is not well understood due to a lack of information on characteristics of CaM-regulated protein phosphatases. Screening of a cDNA library of the moss Physcomitrella patens by using 35S-labeled calmodulin as a ligand resulted in identification of a gene, PCaMPP, that encodes a protein serine/threonine phosphatase with 373 amino acids. PCaMPP had a catalytic domain with sequence similarity to type 2C protein phosphatases (PP2Cs) with six conserved metal-associating amino acid residues and also had an extra C-terminal domain. Recombinant GST fusion proteins of PCaMPP exhibited Mn2+-dependent phosphatase activity, and the activity was inhibited by pyrophosphate and 1 mm Ca2+ but not by okadaic acid, orthovanadate, or beta-glycerophosphate. Furthermore, the PCaMPP activity was increased 1.7-fold by addition of CaM at nanomolar concentrations. CaM binding assays using deletion proteins and a synthetic peptide revealed that the CaM-binding region resides within the basic amphiphilic amino acid region 324-346 in the C-terminal domain. The CaM-binding region had sequence similarity to amino acids in one of three alpha-helices in the C-terminal domain of human PP2Calpha, suggesting a novel role of the C-terminal domains for the phosphatase activity. These results provide the first evidence showing possible regulation of PP2C-related phosphatases by Ca2+/CaM in plants. Genes similar to PCaMPP were found in genomes of various higher plant species, suggesting that PCaMPP-type protein phosphatases are conserved in land plants.  相似文献   

14.
In plants, clade A type 2C protein phosphatases (PP2CAs) have emerged as major players in abscisic acid (ABA)-regulated stress responses by inhibiting protein kinase activity. However, how different internal and external environmental signals modulate the activity of PP2CAs are not well known. The transmembrane kinase (TMK) protein 4 (TMK4), one member of a previously identified receptor kinase subfamily on the plasma membrane that plays vital roles in plant cell growth, directly interacts with PP2CAs member (ABA-Insensitive 2, ABI2). tmk4 mutant is hypersensitive to ABA in both ABA-inhibited seed germination and primary root growth, indicating that TMK4 is a negative regulator in ABA signaling pathway. Further analyses indicate that TMK4 phosphorylates ABI2 at three conserved Ser residues, thus enhancing the activity of ABI2. The phosphorylation-mimic ABI2S139DS140DS266D can complement but non-phosphorylated form ABI2S139AS140AS266A cannot complement ABA hypersensitive phenotype of the loss-of-function mutant abi1-2abi2-2. This study provides a previously unidentified mechanism for positively regulating ABI2 by a plasma membrane protein kinase.  相似文献   

15.
Protein phosphatase 1 (PP1) is a eukaryotic serine/threonine protein phosphatase, and mediates diverse cellular processes in animal systems via the association of a catalytic subunit (PP1c) with multiple regulatory subunits that determine the catalytic activity, the subcellular localization, and the substrate specificity. However, no regulatory subunit of PP1 has been identified in plants so far. In this study, we identified inhibitor-3 (Inh3) as a regulatory subunit of PP1 and characterized a functional role of Inh3 in Vicia faba and Arabidopsis (Arabidopsis thaliana). We found Inh3 as one of the proteins interacting with PP1c using a yeast two-hybrid system. Biochemical analyses demonstrated that Arabidopsis Inh3 (AtInh3) bound to PP1c via the RVxF motif of AtInh3, a consensus PP1c-binding sequence both in vitro and in vivo. AtInh3 inhibited the PP1c phosphatase activity in the nanomolar range in vitro. AtInh3 was localized in both the nucleus and cytoplasm, and it colocalized with Arabidopsis PP1c in these compartments. Disruption mutants of AtINH3 delayed the progression of early embryogenesis, arrested embryo development at the globular stage, and eventually caused embryo lethality. Furthermore, reduction of AtINH3 expression by RNA interference led to a decrease in fertility. Transformation of the lethal mutant of inh3 with wild-type AtINH3 restored the phenotype, whereas that with the AtINH3 gene having a mutation in the RVxF motif did not. These results define Inh3 as a regulatory subunit of PP1 in plants and suggest that Inh3 plays a crucial role in early embryogenesis in Arabidopsis.  相似文献   

16.
Cyclic AMP acting on protein kinase A controls sporulation and encystation in social and solitary amoebas. In Dictyostelium discoideum, adenylate cyclase R (ACR), is essential for spore encapsulation. In addition to its cyclase (AC) domain, ACR harbors seven transmembrane helices, a histidine kinase domain, and two receiver domains. We investigated the role of these domains in the regulation of AC activity. Expression of an ACR-YFP fusion protein in acr(-) cells rescued their sporulation defective phenotype and revealed that ACR is associated with the nuclear envelope and endoplasmic reticulum. Loss of the transmembrane helices (ΔTM) caused a 60% reduction of AC activity, but ΔTM-ACR still rescued the acr(-) phenotype. The isolated AC domain was properly expressed but inactive. Mutation of three essential ATP-binding residues in the histidine kinase domain did not affect the AC activity or phenotypic rescue. Mutation of the essential phosphoryl-accepting aspartate in receivers 1, 2, or both had only modest effects on AC activity and did not affect phenotypic rescue, indicating that AC activity is not critically regulated by phosphorelay. Remarkably, the dimerizing histidine phosphoacceptor subdomain, which in ACR lacks the canonical histidine for autophosphorylation, was essential for AC activity. Transformation of wild-type cells with an ACR allele (ΔCRA) that is truncated after this domain inhibited AC activity of endogenous ACR and replicated the acr(-) phenotype. Combined with the observation that the isolated AC domain was inactive, the dominant-negative effect of ΔCRA strongly suggests that the defunct phosphoacceptor domain acquired a novel role in enforcing dimerization of the AC domain.  相似文献   

17.
The 2 major molecular switches in biology, kinases and GTPases, are both contained in the Parkinson disease–related leucine-rich repeat kinase 2 (LRRK2). Using hydrogen–deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulations, we generated a comprehensive dynamic allosteric portrait of the C-terminal domains of LRRK2 (LRRK2RCKW). We identified 2 helices that shield the kinase domain and regulate LRRK2 conformation and function. One helix in COR-B (COR-B Helix) tethers the COR-B domain to the αC helix of the kinase domain and faces its activation loop, while the C-terminal helix (Ct-Helix) extends from the WD40 domain and interacts with both kinase lobes. The Ct-Helix and the N-terminus of the COR-B Helix create a “cap” that regulates the N-lobe of the kinase domain. Our analyses reveal allosteric sites for pharmacological intervention and confirm the kinase domain as the central hub for conformational control.

The Parkinson’s disease-related protein LRRK2 contains the two major molecular switches in biology; a kinase and a GTPase. This study uses hydrogen-deuterium exchange mass-spectrometry and molecular dynamics simulations to explore the conformational space of the four C-terminal domains of LRRK2, highlighting two essential regulatory helices that control LRRK2 dynamics.  相似文献   

18.
We recently found that the adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain and leucine zipper motif (APPL)1 is essential for mediating adiponectin signal to induce liver kinase B (LKB)1 cytosloic translocation, an essential step for activation of AMP-activated protein kinase (AMPK) in cells. However, the underlying molecular mechanisms remain unknown. Here, we demonstrate that treating C2C12 myotubes with adiponectin promoted APPL1 interaction with protein phosphatase 2A (PP2A) and protein kinase Cζ (PKCζ), leading to the activation of PP2A and subsequent dephosphorylation and inactivation of PKCζ. The adiponectin-induced inactivation of PKCζ results in dephosphorylation of LKB1 at Ser(307) and its subsequent translocation to the cytosol, where it stimulates AMPK activity. Interestingly, we found that metformin also induces LKB1 cytosolic translocation, but the stimulation is independent of APPL1 and the PP2A-PKCζ pathway. Together, our study uncovers a new mechanism underlying adiponectin-stimulated AMPK activation in muscle cells and shed light on potential targets for prevention and treatment of insulin resistance and its associated diseases.  相似文献   

19.
The N -methyl-D-aspartate receptor (NMDAR) is a multimeric transmembrane protein composed of at least two subunits. One subunit, NR1, is derived from a single gene and can be subdivided into three regions: the N-terminal extracellular domain, the transmembrane regions, and the C-terminal intracellular domain. The N-terminal domain is responsible for Mg2+ metal ion binding and channel activity, while the transmembrane domains are important for ion channel formation. The intracellular C-terminal domain is involved in regulating receptor activity and subcellular localization. Our recent experiments indicated that the intracellular C-terminal domain, when expressed independently, localizes almost exclusively in the nucleus. An examination of the amino acid sequence reveals the presence of a putative nuclear localization sequence (NLS) in the C1 cassette of the NR1 intracellular C-terminus. Using an expression vector designed to test whether a putative NLS sequence is a valid, functional NLS, we have demonstrated that a bi-partite NLS does in fact exist within the NR1-1 C-terminus. Computer algorithms identified a putative helix-loop-helix motif that spanned the C0C1 cassettes of the C-terminus. These data suggest that the NR1 subunit may represent another member of a family of transmembrane proteins that undergo intramembrane proteolysis, releasing a cytosolic peptide that is actively translocated to the nucleus leading to alterations in gene regulation.  相似文献   

20.
Protein phosphatase 2Cepsilon (PP2Cepsilon), a mammalian PP2C family member, is expressed in various tissues and is implicated in the negative regulation of stress-activated protein kinase pathways. We show that PP2Cepsilon is an endoplasmic reticulum (ER) transmembrane protein with a transmembrane domain at the amino terminus and the catalytic domain facing the cytoplasm. Yeast two-hybrid screening of a human brain library using PP2Cepsilon as bait resulted in the isolation of a cDNA that encoded vesicle-associated membrane protein-associated protein A (VAPA). VAPA is an ER resident integral membrane protein involved in recruiting lipid-binding proteins such as the ceramide transport protein CERT to the ER membrane. Expression of PP2Cepsilon resulted in dephosphorylation of CERT in a VAPA expression-dependent manner, which was accompanied by redistribution of CERT from the cytoplasm to the Golgi apparatus. The expression of PP2Cepsilon also enhanced the association between CERT and VAPA. In addition, knockdown of PP2Cepsilon expression by short interference RNA attenuated the interaction between CERT and VAPA and the sphingomyelin synthesis. These results suggest that CERT is a physiological substrate of PP2Cepsilon and that dephosphorylation of CERT by PP2Cepsilon may play an important role in the regulation of ceramide trafficking from the ER to the Golgi apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号