首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Male woodchucks (Marmota monax) were maintained in northern vs. southern hemisphere photoperiods, provided feed and water ad libitum, and evaluated every 2 wk for 23 mo for body weight, absolute and relative food intake, body temperature, serum testosterone, and serum concentrations of leptin measured using an anti-mouse leptin enzyme-linked immunoassay. During late spring and summer, body weight increased 56 +/- 4% above winter nadirs, and during the autumn and early winter weights decreased 27 to 43% below midsummer maxima. Serum leptin initially increased during increases in body weight, in the late spring, reached peak values (490 +/- 32 pg/ml) in summer during the initial decline in body weight, and later decreased along with body weight to reach basal values (20 +/- 5 pg/ml) in late winter. Spontaneous declines in food intakes in summer began 2-6 wk before resulting declines in body weight and occurred during increases in leptin >100 pg/ml. The rate of decline in food intakes was greatest when serum leptin was at or near peak values. Food intake increased in late winter when leptin was low and 7-10 wk before resulting increases in body weight. Testis recrudescence occurred when leptin was declining to near basal levels. The results suggest that leptin is involved in the hormonal regulation of the circannual cycle in the drive for voluntary food intake in this species.  相似文献   

2.
Chronic administration of anorexigenic substances to experimental animals by injections or continuous infusion typically produces either no effect or a transient reduction in food intake and body weight. Our aim here was to identify an intermittent dosing strategy for intraperitoneal infusion of peptide YY(3-36) [PYY(3-36)] that produces a sustained reduction in daily food intake and adiposity in diet-induced obese rats. Rats (665+/-10 g body wt, 166+/-7 g body fat) with intraperitoneal catheters tethered to infusion swivels had free access to a high-fat diet. Vehicle-treated rats (n=23) had relatively stable food intake, body weight, and adiposity during the 9-wk test period. None of 15 PYY(3-36) dosing regimens administered in succession to a second group of rats (n=22) produced a sustained 15-25% reduction in daily food intake for >5 days, although body weight and adiposity were reduced across the 9-wk period by 12% (594+/-15 vs. 672+/-15 g) and 43% (96+/-7 vs. 169+/-9 g), respectively. The declining inhibitory effect of PYY(3-36) on daily food intake when the interinfusion interval was >or=3 h appeared to be due in part to an increase in food intake between infusions. The declining inhibitory effect of PYY(3-36) on daily food intake when the interinfusion interval was <3 h suggested possible receptor downregulation and tolerance to frequent PYY(3-36) administration; however, food intake significantly increased when PYY(3-36) treatments were discontinued for 1 day following apparent loss in treatment efficacies. Together, these results demonstrate the development of a potent homeostatic response to increase food intake when PYY(3-36) reduces food intake and energy reserves in diet-induced obese rats.  相似文献   

3.
We previously showed that peptides containing leptin sequences 1-33 or 61-90 are taken up by the rat brain. We now report the effects of these peptides on food intake and body weight in mature rats. Peptides were infused intravenously for 4weeks, using Alzet minipumps. Dosages were 20μg/kg/day in experiment I, and 60μg/kg/day in experiment 2. In experiment 1, female rats receiving peptides 1-33 and 61-90 each underwent an approximate doubling of the weight gain of control rats. These peptides also increased food intake in female rats. Peptide 15-32, which has a lesser degree of brain uptake, gave a smaller weight gain. Peptide 83-108, which is not taken up by the brain, had no effect on weight gain or food intake. Similar results were obtained in experiment 2. In male rats, however, none of the peptides caused significant changes in food intake or body weight. This was at least partly due to the fact that all male rats underwent vigorous weight increases. We conclude that peptides 1-33 and 61-90 acted as leptin antagonists, stimulating food intake and body weight increases, at least in female rats. These peptides may lead to clinical applications in conditions such as anorexia and cachexia.  相似文献   

4.
Oh YB  Kim JH  Park BM  Park BH  Kim SH 《Peptides》2012,37(1):79-85
Angiotensin-(1-7) [Ang-(1-7)] plays a beneficial role in cardiovascular physiology by providing a counterbalance to the function of angiotensin II (Ang II). Although Ang II has been shown to be an adipokine secreted by adipocyte and affect lipid metabolism, the role of Ang-(1-7) in adipose tissue remains to be clarified. The aim of the present study was to investigate whether Ang-(1-7) affects lipid metabolism in adipose tissue. Ang-(1-7) increased glycerol release from primary adipocytes in a dose-dependent manner. A lipolytic effect of Ang-(1-7) was attenuated by pretreatment with A-779, a Mas receptor blocker and with an inhibitor of phosphoinositol 3-kinase (PI3K), or eNOS. However, losartan and PD123319 did not cause any change in Ang-(1-7)-induced lipolysis. Ang-(1-7)-induced lipolysis had an addictive effect with isoproterenol. In normal rats, chronic intake of captopril for 4 wks decreased body weight gain and the amount of adipose tissue and increased plasma Ang-(1-7) level. These effects were attenuated by administration of A-779. The levels of Mas receptor and phosphorylation of hormone-sensitive lipase (p-HSL) were significantly increased by treatment with captopril and these captopril-mediated effects were attenuated by the administration of A-779. There was no difference in diameter of adipocytes among sham, captopril- and captopril+A-779-treated groups. The similar effects of captopril on body weight, expression of Mas receptor, and p-HSL were observed in Ang-(1-7)-treated rats. These results suggest that captopril intake decreased body weight gain partly through Ang-(1-7)/Mas receptor/PI3K pathway.  相似文献   

5.
PYY (3-36) is postulated to act as a satiety factor in the gut-hypothalamic pathway to inhibit food intake and body weight gain in humans and rodent models. We determined the effect of 14-day continuous intravenous infusion of PYY (3-36) (175 microg/kg/day) on food intake and body weight gain in colectomized male Wistar rats. Colectomy caused an increase in plasma PYY levels at 7 days which was reduced at 14 days but still significantly elevated compared to basal preoperative values. Animals treated with continuous PYY (3-36) infusion had significantly elevated PYY levels compared to the control group throughout the whole experiment, but showed a similar pattern of food intake and body weight gain. In conclusion, although continuous intravenous infusion is the most physiologically relevant method to mimic high postprandial PYY levels, we did not observe any significant effect on food intake and body weight gain in non-food deprived colectomized animals. This suggests that PYY has, if at all, only a minor role in food intake in rats.  相似文献   

6.
We investigated the effects of dietary whey protein on food intake, body fat, and body weight gain in rats. Adult (11-12 week) male Sprague-Dawley rats were divided into three dietary treatment groups for a 10-week study: control. Whey protein (HP-W), or high-protein content control (HP-S). Albumin was used as the basic protein source for all three diets. HP-W and HP-S diets contained an additional 24% (wt/wt) whey or isoflavone-free soy protein, respectively. Food intake, body weight, body fat, respiratory quotient (RQ), plasma cholecystokinin (CCK), glucagon like peptide-1 (GLP-1), peptide YY (PYY), and leptin were measured during and/or at the end of the study. The results showed that body fat and body weight gain were lower (P < 0.05) at the end of study in rats fed HP-W or HP-S vs. control diet. The cumulative food intake measured over the 10-week study period was lower in the HP-W vs. control and HP-S groups (P < 0.01). Further, HP-W fed rats exhibited lower N(2) free RQ values than did control and HP-S groups (P < 0.01). Plasma concentrations of total GLP-1 were higher in HP-W and HP-S vs. control group (P < 0.05), whereas plasma CCK, PYY, and leptin did not differ among the three groups. In conclusion, although dietary HP-W and HP-S each decrease body fat accumulation and body weight gain, the mechanism(s) involved appear to be different. HP-S fed rats exhibit increased fat oxidation, whereas HP-W fed rats show decreased food intake and increased fat oxidation, which may contribute to the effects of whey protein on body fat.  相似文献   

7.
Although chronic administration of naloxone has been reported to reduce food intake and body weight in rats, there have been no comparable investigations using a nonhuman primate. We examined the effects of repeated injections of two long acting opiate antagonists - naltrexone and diprenorphine - on the ad libitum intake of a nutritional complete liquid diet and on body weight in squirrel monkeys. Naltrexone binds with highest affinity to the mu opioid receptor whereas diprenorphine binds with equally high affinity to several subtypes of opioid receptor. Diprenorphine (ED50 = 0.01 mg/kg) was 22 times more potent than naltrexone (ED50 = 0.22 mg/kg) in decreasing 2 h food intake, suggesting that more than one opioid receptor subtype may be involved in the anorectic effects of opiate antagonists. A 1.0 mg/kg dose of drug reduced 24 h food intake by 50% and was associated with a weekly reduction in body weight of 4 and 5% for naltrexone and diprenorphine, respectively. Thus, in contrast with shorter time intervals, 24 h food intakes were similar for the two drugs, and this was associated with comparable body weight profiles. The decreases in food intake and body weight remained constant over the period of drug administration. Some monkeys showed profuse salivation and "wet dog shakes" after 4 days of treatment with the 1.0 mg/kg dose but not after 1 day. Therefore, opiate antagonists given chronically to monkeys reduced food intake and body weight in a dose-dependent manner with no evidence of tolerance to these effects.  相似文献   

8.
The aim of this study was to investigate the central actions of the stable pansomatostatin peptide agonist, ODT8-SST on body weight. ODT8-SST or vehicle was acutely (1μg/rat) injected or chronically infused (5μg/rat/d, 14d) intracerebroventricularly and daily food intake, body weight and composition were monitored. In lean rats, neither acute nor chronic ODT8-SST influenced daily food intake while body weight was reduced by 2.2% after acute injection and there was a 14g reduction of body weight gain after 14d compared to vehicle (p<0.01). In diet-induced obese (DIO) rats, chronic ODT8-SST increased cumulative 2-week food intake compared to vehicle (+14%, p<0.05) and also blunted body weight change (-11g, p<0.05). ODT8-SST for 14d reduced lean mass (-22g and -25g respectively, p<0.001) and total water (-19g and -22g respectively, p<0.001) in lean and DIO rats and increased fat mass in DIO (+16g, p<0.001) but not lean rats (+1g, p>0.05) compared to vehicle. In DIO rats, ODT8-SST reduced ambulatory (-27%/24h, p<0.05) and fine movements (-38%, p<0.01) which was associated with an increased positive energy balance compared to vehicle (+50g, p<0.01). Chronic central somatostatin receptor activation in lean rats reduces body weight gain and lean mass independently of food intake which is likely related to growth hormone inhibition. In DIO rats, ODT8-SST reduces lean mass but promotes food intake and fat mass, indicating differential responsiveness to somatostatin under obese conditions.  相似文献   

9.
For this study, we have determined the effects of neonatal leptin treatment on the evolution of body weight. Experiment 1: pups were divided into two groups: LepF - injected with leptin (8 micro g/100 g of body weight) for the first 10 days of lactation and control (C) - receiving saline. Experiment 2: pups were divided into two groups: LepL - injected with the same leptin concentration of experiment one for the last 10 days of lactation, and C, which received saline. Body weight and food intake were monitored until age 150 days, after which leptin concentrations were measured by ELISA. The LepF group had a significant increase in body weight (p < 0.05) from day 98 onward, in food intake (p < 0.05) from day 74 onward, and higher serum leptin concentration compared to the control (108 %, p < 0.05). The LepL group had a significant increase in body weight (p < 0.05) from day 113 onward, in food intake from day 121 onward (p < 0.001), and higher serum leptin concentration compared to controls (6.9 %, p < 0.05). These results suggest that both periods of lactation constituted a critical window for body weight and food intake programming, but the effects are more marked when the leptin is injected within the first ten days.  相似文献   

10.
脂肪酰基辅酶A氧化酶1(acyl-coenzyme A oxidase 1,Acox1)缺失可通过内源性配体激活过氧化物酶体增殖物激活受体α(peroxisome proliferator-activated receptor-α,PPARα)及其调控的信号通路,从而减轻肥胖基因leptin突变型(ob/ob)小鼠的肥胖和脂肪肝症状,但提高了其肝癌发生率.为进一步研究PPARα信号通路在高脂日粮和leptin缺失诱导的脂肪肝形成过程中的作用,本研究以野生型、Acox1-/-、ob/ob和Acox1Δob/ob小鼠为模型,用正常日粮或60%高脂日粮饲喂10个月.结果显示,正常日粮或高脂日粮饲喂情况下,Acox1-/-和Acox1Δob/ob小鼠的体重、白色脂肪细胞体积、棕色脂肪组织含量及肝脏脂肪含量均分别显著低于WT和ob/ob小鼠.溴化脱氧尿嘧啶核苷(Brdurd)及烯酰辅酶A水合酶(L-PBE)免疫组化染色结果显示Acox1-/-和Acox1Δob/ob小鼠肝脏内肝细胞增殖及L-PBE活性、肝脏重量及其占体重的百分比均显著高于WT和ob/ob小鼠.正常日粮饲喂的WT、Acox1-/-、ob/ob和Acox1Δob/ob小鼠肝癌发生率分别为0%、100%、0%和4%,高脂日粮饲喂后,其肝癌发生率分别为0%、100%、2.9%和100%.Q-PCR结果显示Acox1-/-和Acox1Δob/ob小鼠肝脏内L-PBE、Cyp4a3、Akr1b10、ap2等基因的表达水平显著高于WT和ob/ob小鼠.综上所述,PPARα信号通路激活可以抵抗高脂日粮和leptin缺失诱导的肥胖和脂肪肝,但脂质过氧化反应可能通过Nrf2-Akr1b10信号通路促进了肝癌发生.  相似文献   

11.
研究β-酪啡肽-7(β-casomorphin-7,β-CM-7)对链脲佐菌素诱导的糖尿病大鼠肾损伤的保护作用.结果显示:(1)β-酪啡肽-7降低糖尿病大鼠的采食量、饮水量和空腹血糖值,提高糖尿病大鼠的体重,但是差异不显著(P>0.05).(2)β-酪啡肽-7显著降低糖尿病大鼠尿糖、尿蛋白、血清肌酐、血清尿素氮、肾脏指数和血清中转化生长因子-β1(TGF-β1)的含量;Masson染色结果显示,β-酪啡肽-7治疗显著降低糖尿病大鼠肾脏的纤维化程度.(3)RT-RCR结果显示,β-酪啡肽-7显著降低糖尿病大鼠肾脏TGF-β1、Ⅰ型和Ⅲ型胶原蛋白基因的表达.Western印迹显示,β-酪啡肽-7显著降低糖尿病大鼠肾脏Ⅰ型和Ⅲ型胶原蛋白的表达.上述结果表明,β-酪啡肽-7能够减缓糖尿病大鼠肾脏功能和肾脏纤维化程度,其机制可能与降低TGF-β1含量、减少胶原蛋白在肾脏的沉积有关.  相似文献   

12.
The changes in body weight of 12 octopuses, fed on fish or crabs, were followed under laboratory conditions for periods of 1 to 7 1/2 months. The food intake was estimated and compared with the changes in body weight of the octopuses; 25 to 55% of the total intake of food appeared to be incorporated. The range of the average increase in weight over the whole observation period of each of the animals was 1.9 to 7.7g per day (1 to 7 1/2 months); the mean value was 4.8g per day. The effect of changing the diet of small octopuses (fish or crab)was followed for four weeks but there was no evidence that alteration of the diet affected the rate of changes in body weight of animals of more than 47g initial body weight.  相似文献   

13.
The ability of amylin to reduce acute food intake in rodents is well established. Longer-term administration in rats (up to 24 days) shows a concomitant reduction in body weight, suggesting energy intake plays a significant role in mediating amylin-induced weight loss. The current set of experiments further explores the long-term effects of amylin (4-11 wk) on food preference, energy expenditure, and body weight and composition. Furthermore, we describe the acute effect of amylin on locomotor activity and kaolin consumption to test for possible nonhomeostatic mechanisms that could affect food intake. Four-week subcutaneous amylin infusion of high-fat fed rats (3-300 microg.kg(-1).day(-1)) dose dependently reduced food intake and body weight gain (ED(50) for body weight gain = 16.5 microg.kg(-1).day(-1)). The effect of amylin on body weight gain was durable for up to 11 wks and was associated with a specific loss of fat mass and increased metabolic rate. The body weight of rats withdrawn from amylin (100 microg.kg(-1).day(-1)) after 4 wks of infusion returned to control levels 2 wks after treatment cessation, but did not rebound above control levels. When self-selecting calories from a low- or high-fat diet during 11 wks of infusion, amylin-treated rats (300 microg.kg(-1).day(-1)) consistently chose a larger percentage of calories from the low-fat diet vs. controls. Amylin acutely had no effect on locomotor activity or kaolin consumption at doses that decreased food intake. These results demonstrate pharmacological actions of amylin in long-term body weight regulation in part through appetitive-related mechanisms and possibly via changes in food preference and energy expenditure.  相似文献   

14.
Administration of peptide YY(3-36) (PYY(3-36)) to fasting humans or mice shortly before re-feeding effectively reduced their food intake, but PYY(3-36) exhibited a functional half-life of only approximately 3 h. Attachment of poly(ethylene glycol) to proteins and peptides (PEGylation) prolongs their half-life in vivo, but completely inactivated PYY(3-36). We developed a reversibly PEGylated PYY(3-36) derivative by coupling it to a 40 kDa PEG through a spontaneously cleavable linker. The resulting conjugate (PEG(40)-FMS-PYY(3-36)) gradually released unmodified PYY(3-36) in vivo, exhibiting an eightfold increase in its functional half-life, to approximately 24h. This long-acting PYY(3-36) pro-drug may serve as an effective means for controlling food intake in humans.  相似文献   

15.
We recently reported that intracerebroventricular infusions of ANG II decreased food intake and increased energy expenditure in young rats. The aim of the present study was to determine if intracerebroventricular ANG II has similar effects in adult rats. The time course of the effect was also investigated with the idea that at earlier time points, a potential role for increased hypothalamic expression of corticotropin-releasing hormone (CRH) in the anorexia could be established. Finally, the contribution of ANG II-induced water drinking to the decrease in food intake was directly investigated. Rats received intracerebroventricular saline or ANG II using osmotic minipumps. Food intake, water intake, and body weight were measured daily. Experiments were terminated 2, 5, or 11 days after the beginning of the infusions. ANG II (approximately 32 ng.kg(-1).min(-1)) produced a transient decrease in food intake that lasted for 4-5 days although body weight continued to be decreased for the entire experiment most likely due to increased energy expenditure as evidenced by increased uncoupling protein-1 mRNA expression in brown adipose tissue. At 11 and 5 days, the expression of CRH mRNA was decreased. At 2 days, CRH expression was not suppressed even though body weight was decreased. The decrease in food intake and body weight was identical whether or not rats were allowed to increase water consumption. These data suggest that in adult rats ANG II acts within the brain to affect food intake and energy expenditure in a manner that is not related to water intake.  相似文献   

16.
Opioid regulation of food intake and body weight in humans   总被引:1,自引:0,他引:1  
Relatively few studies of humans have evaluated the effects of opioids on food intake and body weight. Most have focused on the potential role of opioids in the etiology of obesity. Measurements of endogenous opioids in plasma or spinal fluid of humans reveal higher levels, particularly of beta-endorphin, in obese subjects. Opioid agonists such as methadone and butorphanol tartrate stimulate food intake, and all studies with naloxone, an opioid antagonist, demonstrate a reduction of short-term food intake in obese or lean humans. Long-term studies with naltrexone, an antagonist similar to naloxone, show no effect on food intake or body weight. Opioid agonists or antagonists have little effect on nutrient selection in humans. The effects on feeding-related hormones is equivocal. Further studies with more specific opioid receptor activities are needed.  相似文献   

17.
The gut hormone peptide YY(3-36)-amide [PYY(3-36)-NH2] is significantly more potent than PYY(1-36)-NH2 in reducing food intake in rats and humans. Other Gly-extended and Ser13-phosphorylated PYY forms have been detected or predicted based upon known cellular processes of PYY synthesis and modification. Here we compared the effects of 3-h IV infusion of PYY(1-36)-NH2, PYY(3-36)-NH2, PYY(1-36)-Gly-OH, PYY(3-36)-Gly-OH, Ser13(PO3)-PYY(1-36)-NH2, Ser13(PO3)-PYY(3-36)-NH2, Ser13(PO3)-PYY(1-36)-Gly-OH, and Ser13(PO3)-PYY(3-36)-Gly-OH during the early dark period on food intake in freely feeding rats. PYY(3-36)-NH2 and Ser13(PO3)-PYY(3-36)-NH2 reduced food intake similarly at 50 pmol/kg/min, while only PYY(3-36)-NH2 reduced food intake at 15 pmol/kg/min. PYY(1-36)-NH2 and Ser13(PO3)-PYY(1-36)-NH2 reduced food intake similarly at 50 and 150 pmol/kg/min. In contrast, PYY(1-36)-Gly-OH, PYY(3-36)-Gly-OH, Ser13(PO3)-PYY(3-36)-Gly-OH, and Ser13(PO3)-PYY(1-36)-Gly-OH had no effect on food intake at doses of 50 or 150 pmol/kg/min. Taken together, these results indicate that (i) PYY(3-36)-NH2 is significantly more potent than PYY(1-36)-NH2 in reducing food intake, (ii) Gly-extended forms of PYY are significantly less potent than non-extended forms, and (iii) Ser13-phosphorylation of PYY(3-36)-NH2 decreases the anorexigenic potency PYY(3-36)-NH2, but not PYY(1-36)-NH2. Thus, PYY(3-36)-NH2 appears to be the most potent PYY form for reducing food intake in rats.  相似文献   

18.
Pharmacological activation of the glucagon-like peptide-1 (GLP-1) receptor and inhibition of the cannabinoid CB1 receptor were found to reduce food intake and body weight in humans and animals. Since earlier studies revealed that endocannabinoids may interact with other neurotransmitters to affect feeding behavior, we have examined whether a stable GLP-1 agonist, exendin-4 and a CB1 receptor antagonist, AM 251, may reciprocally enhance their inhibitory effects on food consumption in the rat. Additionally, we have tested whether the blockade of the GLP-1 receptor by exendin (9-39) modifies AM 251-dependent effects on energy balance. In a dose-response study, male Wistar rats were injected intraperitoneally with either 1.5-6.0 μg/kg exendin-4, 0.5-2 mg/kg AM 251, 80-320 μg/kg exendin (9-39) or their vehicle and the daily food and water intake as well as body weight changes were monitored two days before and two days after the injection. Exendin-4 at a dose of 3.0 and 6.0 μg/kg and AM 251 at a dose 2 mg/kg decreased significantly 24-hour food intake and body weight. Therefore, in the next study, the effects of lower doses of exendin-4 (1.5 μg/kg) and AM 251 (1.0 mg/kg) administered alone or together on food consumption were compared. As opposed to being injected alone, the co-administration of the two resulted in a marked decrease in both daily food intake and body weight. Exendin (9-39) did not modify the suppressory effect of the highest AM 251 dose on food consumption. Apparently, the effect of AM 251 on the appetite is not mediated by GLP-1. The concomitant stimulation of GLP-1 receptor and blockade of CB1 receptor, however, may act synergistically to inhibit appetite in the rat.  相似文献   

19.
In two experiments, we examined the relationship between estradiol-induced undereating and body weight loss in ovariectomized (OVX) rats. In the first experiment, both estradiol benzoate (EB) and the nonsteroidal anti-estrogen, MER-25, produced body weight losses that could not be duplicated simply by pair-feeding. In the second experiment, we compared the effects of EB treatments in obese OVX rats and in OVX rats in which the post-OVX obesity was prevented by food restriction. When fed ad libitum, both groups of oil-treated OVX rats exhibited substantial body weight gains that were not accompanied by overeating. In lean OVX rats, EB treatments caused a transient hypophagia but did not reduce body weight. These results suggest three conclusions. (1) Changes in food intake are neither necessary nor sufficient to cause some of the body weight changes induced by ovarian hormones. (2) Estradiol can depress food intake in female rats without altering the regulated body weight. (3) More attention should be paid to metabolic factors when studying gonadal influences on body weight.  相似文献   

20.
The experiments reported here attempted to examine in two groups of rats the effects on the taste preferences, food and fluid intake, energy balance and body weight gain of corticocerebellar lesions involving, primarily, the Lobulus VI (LVI) or the Lobulus Paramedianus (LP). The results showed that the lesions of LVI or LP did not affect the daily intake of total fluid and salty solution. The intake of sweet solution increased in both groups of lesioned rats, while the intake of deionized water and acid and bitter solutions decreased only in the LVI lesioned rats. Food intake decreased in the LVI-lesioned rats but not in the LP-lesioned animals. Body weight gain, efficiency of food utilization, caloric intake and body surface gain decreased in both groups. It seems therefore that the cerebellar cortex, which probably receives taste fibers, somehow influences taste preferences and water intake, and that it may be involved in the mechanisms of food intake, its utilization and body energy balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号