首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first and third extracellular loops (ECL) of G protein-coupled receptors (GPCRs) have been implicated in ligand binding and receptor function. This study describes the results of an alanine/leucine scan of ECLs 1 and 3 and loop-associated transmembrane (TM) domains of the secretin-like GPCR calcitonin receptor-like receptor which associates with receptor activity modifying protein 1 to form the CGRP receptor. Leu195Ala, Val198Ala and Ala199Leu at the top of TM2 all reduced αCGRP-mediated cAMP production and internalization; Leu195Ala and Ala199Leu also reduced αCGRP binding. These residues form a hydrophobic cluster within an area defined as the “minor groove” of rhodopsin-like GPCRs. Within ECL1, Ala203Leu and Ala206Leu influenced the ability of αCGRP to stimulate adenylate cyclase. In TM3, His219Ala, Leu220Ala and Leu222Ala have influences on αCGRP binding and cAMP production; they are likely to indirectly influence the binding site for αCGRP as well as having an involvement in signal transduction. On the exofacial surfaces of TMs 6 and 7, a number of residues were identified that reduced cell surface receptor expression, most noticeably Leu351Ala and Glu357Ala in TM6. The residues may contribute to the RAMP1 binding interface. Ile360Ala impaired αCGRP-mediated cAMP production. Ile360 is predicted to be located close to ECL2 and may facilitate receptor activation. Identification of several crucial functional loci gives further insight into the activation mechanism of this complex receptor system and may aid rational drug design.  相似文献   

2.
Qi T  Ly K  Poyner DR  Christopoulos G  Sexton PM  Hay DL 《Peptides》2011,32(5):1060-1067
The receptors for calcitonin gene-related peptide (CGRP) and adrenomedullin (AM) are complexes of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying proteins (RAMP). The CGRP receptor is a CLR/RAMP1 pairing whereas CLR/RAMP2 and CLR/RAMP3 constitute two subtypes of AM receptor: AM1 and AM2, respectively. Previous studies identified Glu74 in RAMP3 to be important for AM binding and potency. To further understand the importance of this residue and its equivalent in RAMP1 (Trp74) we substituted the native amino acids with several others. In RAMP3, these were Trp, Phe, Tyr, Ala, Ser, Thr, Arg and Asn; in RAMP1, Glu, Phe, Tyr, Ala and Asn substitutions were made. The mutant RAMPs were co-expressed with CLR in Cos7 cells; receptor function in response to AM, AM2/intermedin and CGRP was measured in a cAMP assay and cell surface expression was determined by ELISA. Phe reduced AM potency in RAMP3 but had no effect in RAMP1. In contrast, Tyr had no effect in RAMP3 but enhanced AM potency in RAMP1. Most other substitutions had a small effect on AM potency in both receptors whereas there was little impact on CGRP or AM2 potency. Overall, these data suggest that the geometry and charge of the residue at position 74 contribute to how AM interacts with the AM2 and CGRP receptors and confirms the role of this position in dictating differential AM pharmacology at the AM2 and CGRP receptors.  相似文献   

3.
Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [125I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2 complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser449 to Ser467 were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.  相似文献   

4.
The calcitonin (CT)/CT gene-related peptide (CGRP) family is conserved in vertebrates. The activities of this peptide family are regulated by a combination of two receptors, namely the calcitonin receptor (CTR) and the CTR-like receptor (CLR), and three receptor activity-modifying proteins (RAMPs). Furthermore, RAMPs act as escort proteins by translocating CLR to the cell membrane. Recently, CT/CGRP family peptides have been identified or inferred in several invertebrates. However, the molecular characteristics and relevant functions of the CTR/CLR and RAMPs in invertebrates remain unclear. In this study, we identified three CT/CGRP family peptides (Bf-CTFPs), one CTR/CLR-like receptor (Bf-CTFP-R), and three RAMP-like proteins (Bf-RAMP-LPs) in the basal chordate amphioxus (Branchiostoma floridae). The Bf-CTFPs were shown to possess an N-terminal circular region typical of the CT/CGRP family and a C-terminal Pro-NH2. The Bf-CTFP genes were expressed in the central nervous system and in endocrine cells of the midgut, indicating that Bf-CTFPs serve as brain and/or gut peptides. Cell surface expression of the Bf-CTFP-R was enhanced by co-expression with each Bf-RAMP-LP. Furthermore, Bf-CTFPs activated Bf-CTFP-R·Bf-RAMP-LP complexes, resulting in cAMP accumulation. These results confirmed that Bf-RAMP-LPs, like vertebrate RAMPs, are prerequisites for the function and translocation of the Bf-CTFP-R. The relative potencies of the three peptides at each receptor were similar. Bf-CTFP2 was a potent ligand at all receptors in cAMP assays. Bf-RAMP-LP effects on ligand potency order were distinct to vertebrate CGRP/adrenomedullin/amylin receptors. To the best of our knowledge, this is the first molecular and functional characterization of an authentic invertebrate CT/CGRP family receptor and RAMPs.  相似文献   

5.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

6.
G protein-coupled receptor (GPCR) instability represents one of the most profound obstacles in the structural study of GPCRs that bind diffusible ligands. The introduction of targeted mutations at nonconserved residues that lie proximal to helix interfaces has the potential to enhance the fold stability of the receptor helix bundle while maintaining wild-type receptor function. To test this hypothesis, we studied the effect of amino acid substitutions at Glu1223.41 in the well-studied β2-adrenergic receptor (β2AR), which was predicted from sequence conservation to lie at a position equivalent to a tryptophan residue in rhodopsin at the 3,4,5 helix interface among transmembrane (TM) domains 3, 4, and 5. Replacement of Glu1223.41 with bulky hydrophobic residues, such as tryptophan, tyrosine, and phenylalanine, increases the yield of functionally folded β2AR by as much as 5-fold. Receptor stability in detergent solution was studied by isothermal denaturation, and it was found that the E122W and E122Y mutations enhanced the β2AR thermal half-life by 9.3- and 6.7-fold, respectively, at 37 °C. The β1AR was also stabilized by the introduction of tryptophan at Glu1473.41, and the effect on protein behavior was similar to the rescue of the unstable wild-type receptor by the antagonist propranolol. Molecular modeling of the E122W and E122Y mutants revealed that the tryptophan ring edge and tyrosine hydroxyl are positioned proximal to the helical break in TM5 introduced by the conserved Pro2115.50 and may stabilize the helix by interacting favorably with the unpaired carbonyl oxygen of Val2065.45. Conformational flexibility of TM5 is likely to be a general property of class A GPCRs; therefore, engineering of the TM4-TM3-TM5 interface at the 3.41 position may provide a general strategy for the stabilization of other receptors.  相似文献   

7.
Helical membrane proteins are more tightly packed and the packing interactions are more diverse than those found in helical soluble proteins. Based on a linear correlation between amino acid packing values and interhelical propensity, we propose the concept of a helix packing moment to predict the orientation of helices in helical membrane proteins and membrane protein complexes. We show that the helix packing moment correlates with the helix interfaces of helix dimers of single pass membrane proteins of known structure. Helix packing moments are also shown to help identify the packing interfaces in membrane proteins with multiple transmembrane helices, where a single helix can have multiple contact surfaces. Analyses are described on class A G protein-coupled receptors (GPCRs) with seven transmembrane helices. We show that the helix packing moments are conserved across the class A family of GPCRs and correspond to key structural contacts in rhodopsin. These contacts are distinct from the highly conserved signature motifs of GPCRs and have not previously been recognized. The specific amino acid types involved in these contacts, however, are not necessarily conserved between subfamilies of GPCRs, indicating that the same protein architecture can be supported by a diverse set of interactions. In GPCRs, as well as membrane channels and transporters, amino acid residues with small side-chains (Gly, Ala, Ser, Cys) allow tight helix packing by mediating strong van der Waals interactions between helices. Closely packed helices, in turn, facilitate interhelical hydrogen bonding of both weakly polar (Ser, Thr, Cys) and strongly polar (Asn, Gln, Glu, Asp, His, Arg, Lys) amino acid residues. We propose the use of the helix packing moment as a complementary tool to the helical hydrophobic moment in the analysis of transmembrane sequences.  相似文献   

8.
The CGRP (calcitonin gene-related peptide) receptor is a family B GPCR (G-protein-coupled receptor). It consists of a GPCR, CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity-modifying protein 1). RAMP1 is needed for CGRP binding and also cell-surface expression of CLR. There have been few systematic studies of the ECLs (extracellular loops) of family B GPCRs. However, they are likely to be especially important for the interaction of the N-termini of the peptide agonists that are the natural agonists for these receptors. We have carried out alanine scans on all three ECLs of CLR, as well as their associated juxtamembrane regions. Residues within all three loops influence CGRP binding and receptor activation. Mutation of Ala203 and Ala206 on ECL1 to leucine increased the affinity of CGRP. Residues at the top of TM (transmembrane) helices 2 and 3 influenced CGRP binding and receptor activation. L351A and E357A in TM6/ECL3 reduced receptor expression and may be needed for CLR association with RAMP1. ECL2 seems especially important for CLR function; of the 16 residues so far examined in this loop, eight residues reduce the potency of CGRP at stimulating cAMP production when mutated to alanine.  相似文献   

9.
The CGRP(1) receptor exists as a heterodimeric complex between a single-pass transmembrane accessory protein (RAMP1) and a family B G-protein-coupled receptor (GPCR) called the calcitonin receptor-like receptor (CLR). This study investigated the structural motifs found in the intracellular loops (ICLs) of this receptor. Molecular modeling was used to predict active and inactive conformations of each ICL. Conserved residues were altered to alanine by site-directed mutagenesis. cAMP accumulation, cell-surface expression, agonist affinity, and CGRP-stimulated receptor internalization were characterized. Within ICL1, L147 and particularly R151 were important for coupling to G(s). R151 may interact directly with the G-protein, accessing it following conformational changes involving ICL2 and ICL3. At the proximal end of ICL3, I290 and L294, probably lying on the same face of an alpha helix, formed a G-protein coupling motif. The largest effects on coupling were observed with I290A; additionally, it reduced CGRP affinity and impaired internalization. I290 may interact with TM6 to stabilize the conformation of ICL3, but it could also interact directly with Gs. R314, at the distal end of ICL3, impaired G-protein coupling and to a lesser extent reduced CGRP affinity; it may stabilize the TM6-ICL3 junction by interacting with the polar headgroups of membrane phospholipids. Y215 and L214 in ICL2 are required for cell-surface expression; they form a microdomain with H216 which has the same function. This study reveals similarities between the activation of CLR and other GPCRs in the role of TM6 and ICL3 but shows that other conserved motifs differ in their function.  相似文献   

10.
Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR·RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility.  相似文献   

11.
The peptide Arg.Arg.Leu.Glu.Glu.Glu.Glu.Glu.Ala.Tyr.Gly was synthesized as an analogue of residues 20–30 of human gastrin 34. The epidermal growth factor-stimulated tyrosine kinase of A431 cell membranes phosphorylated the peptide's single tyrosine residue. Km values of 0.11 and 0.61mM and Vmax values of 1.71 and 0.68nmol/min/mg were obtained in the presence and absence of epidermal growth factor respectively. This is the first report of phosphorylation of tyrosine in a sequence related to a human hormone.  相似文献   

12.
During the past few years several new interacting partners for G protein-coupled receptors (GPCRs) have been discovered, suggesting that the activity of these receptors is more complex than previously anticipated. Recently, candidate G protein-coupled receptor associated sorting protein (GASP-1) has been identified as a novel interacting partner for the delta opioid receptor and has been proposed to determine the degradative fate of this receptor. We show here that GASP-1 associates in vitro with other opioid receptors and that the interaction domain in these receptors is restricted to a small portion of the carboxyl-terminal tail, corresponding to helix 8 in the three-dimensional structure of rhodopsin. In addition, we show that GASP-1 interacts with COOH-terminus of several other GPCRs from subfamilies A and B and that two conserved residues within the putative helix 8 of these receptors are critical for the interaction with GASP-1. In situ hybridization and northern blot analysis indicate that GASP-1 mRNA is mainly distributed throughout the central nervous system, consistent with a potential interaction with numerous GPCRs in vivo. Finally, we show that GASP-1 is a member of a novel family comprising at least 10 members, whose genes are clustered on chromosome X. Another member of the family, GASP-2, also interacts with the carboxyl-terminal tail of several GPCRs. Therefore, GASP proteins may represent an important protein family regulating GPCR physiology.  相似文献   

13.
Activation of family A G-protein-coupled receptors involves a rearrangement of a conserved interhelical cytoplasmic hydrogen bond network between the E(D)RY motif on transmembrane helix 3 (H3) and residues on H6, which is commonly termed the cytoplasmic “ionic lock.” Glu1343.49 of the E(D)RY motif also forms an intrahelical salt bridge with neighboring Arg1353.50 in the dark-state crystal structure of rhodopsin. We examined the roles of Glu1343.49 and Arg1353.50 on H3 and Glu2476.30 and Glu2496.32 on H6 on the activation of rhodopsin using Fourier transform infrared spectroscopy of wild-type and mutant pigments reconstituted into lipid membranes. Activation of rhodopsin is pH-dependent with proton uptake during the transition from the inactive Meta I to the active Meta II state. Glu1343.49 of the ERY motif is identified as the proton-accepting group, using the Fourier transform infrared protonation signature and the absence of a pH dependence of activation in the E134Q mutant. Neutralization of Arg1353.50 similarly leads to pH-independent receptor activation, but with structural alterations in the Meta II state. Neutralization of Glu2476.30 and Glu2496.32 on H6, which are involved in interhelical interactions with H3 and H7, respectively, led to a shift toward Meta II in the E247Q and E249Q mutants while retaining the pH sensitivity of the equilibrium. Disruption of the interhelical interaction of Glu2476.30 and Glu2496.32 on H6 with H3 and H7 plays its role during receptor activation, but neutralization of the intrahelical salt bridge between Glu1343.49 and Arg1353.50 is considerably more critical for shifting the photoproduct equilibrium to the active conformation. These conclusions are discussed in the context of recent structural data of the β2-adrenergic receptor.  相似文献   

14.
15.
Adrenomedullin (AM) is a peptide hormone with numerous effects in the vascular systems. AM signals through the AM1 and AM2 receptors formed by the obligate heterodimerization of a G protein-coupled receptor, the calcitonin receptor-like receptor (CLR), and receptor activity-modifying proteins 2 and 3 (RAMP2 and RAMP3), respectively. These different CLR-RAMP interactions yield discrete receptor pharmacology and physiological effects. The effective design of therapeutics that target the individual AM receptors is dependent on understanding the molecular details of the effects of RAMPs on CLR. To understand the role of RAMP2 and -3 on the activation and conformation of the CLR subunit of AM receptors, we mutated 68 individual amino acids in the juxtamembrane region of CLR, a key region for activation of AM receptors, and determined the effects on cAMP signaling. Sixteen CLR mutations had differential effects between the AM1 and AM2 receptors. Accompanying this, independent molecular modeling of the full-length AM-bound AM1 and AM2 receptors predicted differences in the binding pocket and differences in the electrostatic potential of the two AM receptors. Druggability analysis indicated unique features that could be used to develop selective small molecule ligands for each receptor. The interaction of RAMP2 or RAMP3 with CLR induces conformational variation in the juxtamembrane region, yielding distinct binding pockets, probably via an allosteric mechanism. These subtype-specific differences have implications for the design of therapeutics aimed at specific AM receptors and for understanding the mechanisms by which accessory proteins affect G protein-coupled receptor function.  相似文献   

16.
Functional roles of putative helix 8 in the carboxy-terminal tail of the human histamine H3 receptor were investigated using deleted and alanine-substituted mutant receptors. While the deletion of the carboxy-terminal tail did not decrease the total expression level, surface expression, or ligand binding affinity, the agonist-stimulated cAMP response, [35S] GTPγS binding, and MAPK activation were totally abolished. The receptor lacking the carboxy-terminal tail also failed to respond to an inverse agonist, thioperamide, suggesting that the carboxy-terminal tail is involved in the regulation of receptor activity by changing G-protein coupling with the receptor. Site-directed mutagenesis revealed that hydrophobic amino acids in the putative helix 8 such as phenylalanines at position 419 (F7.60) and 423 (F7.64) or leucines at 426 (L7.67) and 427 (L7.68) were important for the agonist-induced activation of H3 receptor. Substitution of F7.60 also resulted in a receptor that was less responsive to inactivation by the inverse agonist, implying the existence of an intermediate conformation that can be either activated or inactivated. Our results suggest that hydrophobic interface of putative helix 8 is important for the regulation of H3 receptor activity, presumably by stabilizing the helix to the plasma membrane.  相似文献   

17.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

18.
Three homology models of the human ghrelin receptor (GHS-R1a) have been generated from the available X-ray structures of rhodopsin (RHO model), opsin (OPS model) and beta-2 adrenergic receptor (B2 model). The latter was used as a starting point for combined molecular dynamics simulation (MDS) and full atom normal modes analysis (NMA). A low-frequency normal mode (mode 16) perfectly reproduced the intracellular motions observed between B2 and RHO models; in the opposite direction along the same mode, the generated structures are closer to the OPS model, suggesting a direct link with GHS-R1a activation. This was in agreement with motions of the seven transmembranous segments, increase of the solvent accessibility of the 140-ERY-142 sequence, and flip of the Trp276 (C WLP) residue, some features related to GPCRs activation. According to our model, His280 was proposed to stabilize Trp276 in the active state; this was verified by site-directed mutagenesis and biochemical characterization of the resulting H280A and H280S mutants, which were fully functional but sharing an important decrease of their basal activities. Docking performed with short ghrelin derivatives Gly-Ser-Ser [octa]-Phe-NH 2 and Gly-Ser-Ser [octa]-Phe-Leu-NH 2 allowed the identification of a robust position of these peptides in the active site of the receptor. This model was refined by MDS and validated by docking experiments performed on a set of 55 ghrelin receptor ligands based on the 1,2,4- triazole scaffold. Finally, NMA performed on the obtained peptide-receptor complex suggested stabilization of the Trp276 residue and of the whole receptor in the active state, preventing the motion observed along mode 16 computed for the unbound receptor. Our results show that NMA offers a powerful approach to study the conformational diversity and the activation mechanism of GPCRs.  相似文献   

19.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

20.
The human adrenomedullin (ADM) is a 52 amino acid peptide hormone belonging to the calcitonin family of peptides, which plays a major role in the development and regulation of cardiovascular and lymphatic systems. For potential use in clinical applications, we aimed to investigate the fate of the peptide ligand after binding and activation of the adrenomedullin receptor (AM1), a heterodimer consisting of the calcitonin receptor‐like receptor (CLR), a G protein‐coupled receptor, associated with the receptor activity‐modifying protein 2 (RAMP2). Full length and N‐terminally shortened ADM peptides were synthesized using Fmoc/tBu solid phase peptide synthesis and site‐specifically labeled with the fluorophore carboxytetramethylrhodamine (Tam) either by amide bond formation or copper(I)‐catalyzed azide alkyne cycloaddition. For the first time, Tam‐labeled ligands allowed the observation of co‐internalization of the whole ligand‐receptor complex in living cells co‐transfected with fluorescent fusion proteins of CLR and RAMP2. Application of a fluorescent probe to track lysosomal compartments revealed that ADM together with the CLR/RAMP2‐complex is routed to the degradative pathway. Moreover, we found that the N‐terminus of ADM is not a crucial component of the peptide sequence in terms of AM1 internalization behavior. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号