首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of a novel nonpeptide NK1 tachy-kinin receptor antagonist, SR 140333, on the functional consequences of NK1 receptor activation in a human astrocytoma cell line, U373MG, were investigated. Radioligand binding conducted with 125l-Bolton-Hunter substance P revealed a competitive inhibition by SR 140333 and its R enantiomer SR 140603 with Ki values of 0.74 and 7.40 nM, respectively. The NK1-selective agonist, [Sar9,Met(O2)11]-substance P, stimulated the formation of inositol phosphates with an EC50 of 3.8 × 10?9M. SR 140333 blocked the stimulatory effect of this agonist (10?7M) with an IC50 of 1.6 × 10?9M,whereas the effect of another NK1 agonist, septide (EC50= 1.5 × 10?8M)was antagonized with an IC50 of 2.1 × 10?10M.Enhancement of [3H]taurine release by [Sar9,Met(O2)11]-substance P (EC50= 7.4 × 10?9M) was also inhibited by SR 140333 with an IC50 of 1.8 × 10?9 M. SR 140603 was 10-fold less potent than SR 140333 in inhibiting inositol monophosphate formation and [3H]taurine release. The calcium mobilization induced by [Sar9,Met(O2)11]-substance P (10?8M) was totally prevented by 10?8MSR 140333. Patchclamp experiments showed that SR 140333 depressed the outward current evoked by 5 × 10?8M [Sar9, Met(O2)11]-substance P with an IC50 of 1.3 × 10?9M. The expression of c-fos was stimulated by [Sar9,Met(O2)11]-substance P with an EC50 of 2.5 × 10?10M, an effect that was also inhibited by SR 140333 with an IC50 of 1.1 × 10?9M. The present results illustrate the sequential events of the response elicited by NK1 agonists, which were antagonized by SR 140333, demonstrating its powerful NK1 antagonist activity on a functional basis.  相似文献   

2.
The current study evaluated the effects of hemopressin (HP) on pain modulation by endokinin A/B (EKA/B) and endokinin C/D (EKC/D) at the supraspinal level in mice. Intracerebroventricular administration of HP (10 nmol) fully antagonized the hyperalgesia induced by EKA/B (10, 30, and 100 pmol), and induced a dose-dependent potent analgesic effect. HP at different concentrations (10 pmol, 100 pmol, and 1 nmol) showed varying effects on the analgesic effect of EKA/B (3 nmol). HP extended the duration of the analgesic effect of EKC/D (3 nmol). Moreover, HP at different concentrations (10 pmol, 5 pmol, 1 pmol, and 100 fmol) co-administered with EKC/D (30 pmol) induced significant analgesia at two different time points: 5 min and 50 min. To investigate the antinociceptive mechanism, we used SR140333B and SR142801. HP (1 pmol) potentiated the analgesic effect of SR140333B (100 pmol) + EKA/B (30 pmol) in 5–10 min, while HP (100 pmol) had no effect in the analgesia induced by SR140333B (3 nmol) + EKA/B (3 nmol). HP (1 nmol) fully inhibited the analgesic effect of SR140333B (3 nmol) + EKC/D (3 nmol) or SR142801 (3 nmol) + EKC/D (3 nmol). HP (1 pmol) weakened the analgesic effect of SR142801 (100 pmol) + EKA/B (30 pmol), but HP (100 pmol) strengthened the analgesic effect of SR142801 (3 nmol) + EKA/B (3 nmol). These findings may pave the way for a new strategy on investigating the interaction between tachykinins and opioids on pain modulation.  相似文献   

3.
This study was undertaken to elucidate the effect of the essential oil from Alpinia speciosa (EOAs) on cardiac contractility and the underlying mechanisms. The essential oil was obtained from Alpinia speciosa leaves and flowers and the oil was analyzed by GC-MS method. Chemical analysis revealed the presence of at least 18 components. Terpinen-4-ol and 1,8-cineole corresponded to 38% and 18% of the crude oil, respectively. The experiments were conducted on spontaneously-beating right atria and on electrically stimulated left atria isolated from adult rats. The effect of EOAs on the isometric contractions and cardiac frequency in vitro was examined. EOAs decreased rat left atrial force of contraction with an EC50 of 292.2 ± 75.7 μg/ml. Nifedipine, a well known L-type Ca2+ blocker, inhibited in a concentration-dependent manner left atrial force of contraction with an EC50 of 12.1 ± 3.5 μg/ml. Sinus rhythm was diminished by EOAs with an EC50 of 595.4 ± 56.2 μg/ml. Whole-cell L-type Ca2+ currents were recorded by using the patch-clamp technique. EOAs at 25 μg/ml decreased ICa,L by 32.6 ± 9.2% and at 250 μg/ml it decreased by 89.3 ± 7.4%. Thus, inhibition of L-type Ca2+ channels is involved in the cardiodepressive effect elicited by the essential oil of Alpinia speciosa in rat heart.  相似文献   

4.
Novel in vitro mGlu5 positive allosteric modulators with good potency, solubility, and low lipophilicity are described. Compounds were identified which did not rely on the phenylacetylene and carbonyl functionalities previously observed to be required for in vitro activity. Investigation of the allosteric binding requirements of a series of dihydroquinolinone analogs led to phenylacetylene azachromanone 4 (EC50 11.5 nM). Because of risks associated with potential metabolic and toxicological liabilities of the phenylacetylene, this moiety was successfully replaced with a phenoxymethyl group (27; EC50 156.3 nM). Derivation of a second-generation of mGlu5 PAMs lacking a ketone carbonyl resulted in azaindoline (33), azabenzimidazole (36), and N-methyl 8-azaoxazine (39) phenylacetylenes. By scoping nitrogen substituents and phenylacetylene replacements in 39, we identified phenoxymethyl 8-azaoxazine 47 (EC50 50.1 nM) as a potent and soluble mGlu5 PAM devoid of both undesirable phenylacetylene and carbonyl functionalities.  相似文献   

5.
Antimicrobial defense by neutrophils implicates the production of reactive oxygen species. Neutrophil responses can be modulated by agonists such as bacterial peptides and proinflammatory factors that modulate neutrophil activity and survival. We evaluated the production of superoxide anions (O2?) in response to fMLF by normal human neutrophils after 3 days of preincubation with GM-CSF + IL-4 + TNF-α (survival medium). After 3 days of incubation in survival medium, long-lived neutrophils produced up to six times more O2? relative to control neutrophils in response to fMLF and WKYMVM. This augmented response to fMLF was preferentially linked to formyl peptide receptor (FPR), whereas the response to WKYMVM was dependent on formyl peptide receptor-like 1 (FPRL-1). Real-time RT-PCR revealed a diminution of FPR and FPRL-1 expression in neutrophils incubated in survival medium. fMLF-induced overproduction of O2? by long-lived neutrophils was independent of intracellular calcium mobilization. The protein tyrosine phosphorylation profile of long-lived neutrophils was modified with respect to control cells. Pharmacological inhibitors of intracellular signals indicated that mechanisms of the excessive fMLF-induced production of O2? by long-lived neutrophils implicated the protein kinase C (PKC) pathway, preferentially the PKC-δ isoform, whose protein was augmented in these cells. Thus, long-term cytokine exposure modifies molecular pathways and functional characteristics of the neutrophil.  相似文献   

6.
N-Formyl peptide receptors (FPRs: FPR1, FPR2, and FPR3) are G protein-coupled receptors that play key roles in modulating immune cells. FPRs represent potentially important therapeutic targets for the development of drugs that could enhance endogenous anti-inflammation systems associated with various pathologies, thereby reducing the progression of inflammatory conditions. Previously, we identified 2-arylacetamide pyridazin-3(2H)-ones as FPR1- or FPR2-selective agonists, as well as a large number of FPR1/FPR2-dual agonists and several mixed-agonists for the three FPR isoforms. Here, we report a new series of 2-arylacetamido-4-aniline pyridazin-3(2H)-ones substituted in position 5 as a further development of these FPR agonists. Chemical manipulation presented in this work resulted in mixed FPR agonists 8a, 13a and 27b, which had EC50 values in nanomolar range. In particular, compound 8a showed a preference for FPR1 (EC50 = 45 nM), while 13a and 27b showed a moderate preference for FPR2 (EC50 = 35 and 61 nM, respectively). Thus, these compounds may represent valuable tools for studying FPR activation and signaling.  相似文献   

7.
Accumulation, activation, and control of neutrophils at inflammation sites is partly driven by N-formyl peptide chemoattractant receptors (FPRs). Occupancy of these G-protein-coupled receptors by formyl peptides has been shown to induce regulatory phosphorylation of cytoplasmic serine/threonine amino acid residues in heterologously expressed recombinant receptors, but the biochemistry of these modifications in primary human neutrophils remains relatively unstudied. FPR1 and FPR2 were partially immunopurified using antibodies that recognize both receptors (NFPRa) or unphosphorylated FPR1 (NFPRb) in dodecylmaltoside extracts of unstimulated and N-formyl-Met-Leu-Phe (fMLF) + cytochalasin B-stimulated neutrophils or their membrane fractions. After deglycosylation and separation by SDS-PAGE, excised Coomassie Blue-staining bands (∼34,000 Mr) were tryptically digested, and FPR1, phospho-FPR1, and FPR2 content was confirmed by peptide mass spectrometry. C-terminal FPR1 peptides (Leu312–Arg322 and Arg323–Lys350) and extracellular FPR1 peptide (Ile191–Arg201) as well as three similarly placed FPR2 peptides were identified in unstimulated and fMLF + cytochalasin B-stimulated samples. LC/MS/MS identified seven isoforms of Ala323–Lys350 only in the fMLF + cytochalasin B-stimulated sample. These were individually phosphorylated at Thr325, Ser328, Thr329, Thr331, Ser332, Thr334, and Thr339. No phospho-FPR2 peptides were detected. Cytochalasin B treatment of neutrophils decreased the sensitivity of fMLF-dependent NFPRb recognition 2-fold, from EC50 = 33 ± 8 to 74 ± 21 nm. Our results suggest that 1) partial immunopurification, deglycosylation, and SDS-PAGE separation of FPRs is sufficient to identify C-terminal FPR1 Ser/Thr phosphorylations by LC/MS/MS; 2) kinases/phosphatases activated in fMLF/cytochalasin B-stimulated neutrophils produce multiple C-terminal tail FPR1 Ser/Thr phosphorylations but have little effect on corresponding FPR2 sites; and 3) the extent of FPR1 phosphorylation can be monitored with C-terminal tail FPR1-phosphospecific antibodies.  相似文献   

8.
Contractile dysfunction and diminished response to β-adrenergic agonists are characteristics for failing hearts. Chemically donated nitroxyl (HNO) improves contractility in failing hearts and thus may have therapeutic potential. Yet, there is a need for pharmacologically suitable donors. In this study we tested whether the pure and long acting HNO donor, 1-nitrosocyclohexyl acetate (NCA), affects contractile force in normal and pathological ventricular myocytes (VMs) as well as in isolated hearts. VMs were isolated from mice either subjected to isoprenaline-infusion (ISO; 30 μg/g per day) or to vehicle (0.9% NaCl) for 5 days. Sarcomere shortening and Ca2+ transients were simultaneously measured using the IonOptix system. Force of contraction of isolated hearts was measured by a Langendorff-perfusion system. NCA increased peak sarcomere shortening by + 40-200% in a concentration-dependent manner (EC50 ∼55 μM). Efficacy and potency did not differ between normal and chronic ISO VMs, despite the fact that the latter displayed a markedly diminished inotropic response to acute β-adrenergic stimulation with ISO (1 μM). NCA (60 μM) increased peak sarcomere shortening and Ca2+ transient amplitude by ∼200% and ∼120%, respectively, suggesting effects on both myofilament Ca2+ sensitivity and sarcoplasmic reticulum (SR) Ca2+ cycling. Importantly, NCA did not affect diastolic Ca2+ or SR Ca2+ content, as assessed by rapid caffeine application. NCA (45 μM) increased force of contraction by 30% in isolated hearts. In conclusion, NCA increased contractile force in normal and β-adrenergically desensitized VMs as well as in isolated mouse hearts. This profile warrants further investigations of this HNO donor in the context of heart failure.  相似文献   

9.
This study examined the effect of schisandrin, one of the major lignans isolated from Schisandra chinensis, on spontaneous contraction in rat colon and its possible mechanisms. Schisandrin produced a concentration-dependent inhibition (EC50 = 1.66 μM) on the colonic spontaneous contraction. The relaxant effect of schisandrin could be abolished by the neuronal Na+ channel blocker tetrodotoxin (1 μM) but not affected by propranolol (1 μM), phentolamine (1 μM), atropine (1 μM) or nicotine desensitization, suggesting possible involvement of non-adrenergic non-cholinergic (NANC) transmitters released from enteric nerves. Nω-nitro-l-arginine methyl ester (100-300 μM), a nitric oxide synthase inhibitor, attenuated the schisandrin response. The role of nitric oxide (NO) was confirmed by an increase in colonic NO production after schisandrin incubation, and the inhibition on the schisandrin responses by soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-α]-quinoxalin-1-one (1-30 μM). Non-nitrergic NANC components may also be involved in the action of schisandrin, as suggested by the significant inhibition of apamin on the schisandrin-induced responses. Pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt hydrate (100 μM), a selective P2 purinoceptor antagonist, markedly attenuated the responses to schisandrin. In contrast, neither 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptors, nor chymotrypsin, a serine endopeptidase, affected the responses. All available results have demonstrated that schisandrin produced NANC relaxation on the rat colon, with the involvement of NO and acting via cGMP-dependent pathways. ATP, but not adenosine and VIP, likely plays a role in the non-nitrergic, apamin-sensitive component of the response.  相似文献   

10.
The aim of this study was to verify the presence of presynaptic nicotinic acetylcholine receptors (nAChRs) at the terminals of myenteric motoneurons using a potent and highly selective nicotinic agonist, epibatidine. We examined contraction, and release of [3H]ACh on a guinea-pig longitudinal muscle strip preparation. First, we compared the ability of epibatidine and nicotine to induce isometric contraction and found epibatidine (EC50 = 23.1 nM) to be 300-fold more potent than nicotine (EC50 = 7.09 M). The release and contraction induced by 30 nM epibatidine were inhibited by the nicotinic antagonist mecamylamine (3 M) and the Na1-channel blocker TTX (1 M), indicating that the effects are mediated via nAChRs and are fully dependent on the propagation of action potentials. Atropine (0.1 M) significantly increased the [3H]ACh release but could not block contraction suggesting that a substantial part of the response develops via a noncholinergic mechanism. Epibatidine at a higher concentration (300 nM) induced contraction, which was only partly (45%) inhibited by TTX (1 M). The TTX-resistant contraction, however, was completely blocked by mecamylamine (3 M). Our data provide functional neurochemical evidence for the existence of presynaptic nAChRs at myenteric motoneuron terminals and suggest that these receptors can be activated only/by a higher concentration of agonists.  相似文献   

11.
Microgram concentrations of 5,8,11,14-eicosatetraynoic acid (TYA) inhibited the spontaneous increases in tone which develop in isolated guinea-pig ileum and also inhibited intestinal motility in anesthetized guinea-pigs. TYA failed to block contractions of the ileum induced by various agonists including PGE2. It did, however, inhibit both the spontaneous liberation of spasmogenic substances from isolated ileum and the biosynthesis of PGE2 from arachidonic acid. It is concluded that the inhibitory effects of TYA were exerted through inhibition of PG biosynthesis. Studies with antagonist drugs (atropine, methysergide and pyribenzamine) confirmed that the effects of intestinal PGs are, in the guinea-pig, largely exerted through a cholinergic mechanism.  相似文献   

12.
Statin drugs represent the major improvement in the treatment of hypercholesterolemia that constitutes the main origin of atherosclerosis, leading to coronary heart disease. Besides tremendous beneficial effects of statins, various forms of muscular toxicity (myalgia, cramp, exercise intolerance, and fatigability) occur frequently. We hypothesized that the iatrogenic effects of statins could result from alterations in Ca2+ homeostasis. Acute applications of simvastatin on human skeletal muscle fibers triggered a Ca2+ wave of intra-cellular Ca2+ that mostly originates from sarcoplasmic reticulum (SR) Ca2+-release. In addition, simvastatin increased mitochondrial NADH content and induced mitochondrial membrane depolarization (EC50 = 1.96 μM) suggesting an altered mitochondrial function. Consequently on simvastatin application, a weak mitochondrial Ca2+ efflux (EC50 = 7.8μM) through permeability transient pore and Na+/Ca2+ exchanger was triggered, preceding the large SR-Ca2+ release. Increased SR Ca2+ content after acute application of statin is also suggested by the increased Ca2+ spark amplitude and by the effect of cyclopiazonic acid. We thus conclude that simvastatin induced alterations in mitochondrial function which lead to an increase in cytoplasmic Ca2+, SR-Ca2+ overload, and Ca2+ waves. Taken together, these statin-induced muscle dysregulations may contribute to myotoxicity.  相似文献   

13.
In this part 2, new indole 5-carboxamide Thumb Pocket 1 inhibitors of HCV NS5B polymerase are described. Structure-activity relationships (SAR) were explored at the central amino acid linker position and the right-hand-side of the molecule in an attempt to identify molecules with a balanced overall profile of potency (EC50 <100 nM), physicochemical properties and ADME characteristics.  相似文献   

14.
Formylated peptides are chemotactic agents generated by pathogens. The most relevant peptide is fMLF (formyl-Met-Leu-Phe) which participates in several immune functions, such as chemotaxis, phagocytosis, cytokine release and generation of reactive oxygen species. In macrophages fMLF-dependent responses are dependent on both, an increase in intracellular calcium concentration and on a hyperpolarization of the membrane potential. However, the molecular entity underlying this hyperpolarization remains unknown and it is not clear whether changes in membrane potential are linked to the increase in intracellular Ca2+. In this study, differentiated U937 cells, as a macrophage-like cell model, was used to characterize the fMLF response using electrophysiological and Ca2+ imaging techniques. We demonstrate by means of pharmacological and molecular biology tools that fMLF induces a Ca2+-dependent hyperpolarization via activation of the K+ channel KCa3.1 and thus, enhancing fMLF-induced intracellular Ca2+ increase through an amplification of the driving force for Ca2+ entry. Consequently, enhanced Ca2+ influx would in turn lengthen the hyperpolarization, operating as a positive feedback mechanism for fMLF-induced Ca2+ signaling.  相似文献   

15.
Microgram concentrations of 5,8,11,14-eicosatetraynoic acid (TYA) inhibited the spontaneous increases in tone which develop in isolated guinea-pig ileum and also inhibited intestinal motility in anesthetized guinea-pigs. TYA failed to block contractions of the ileum induced by various agonists including PGE2. It did, however, inhibit both the spontaneous liberation of spasmogenic substances from isolated ileum and the biosynthesis of PGE2 from arachidonic acid. It is concluded that the inhibitory effects of TYA were exerted through inhibition of PG biosynthesis. Studies with antagonist drugs (atropine, methysergide and pyribenzamine) confirmed that the effects of intestinal PGs are, in the guinea-pig, largely exerted through a cholinergic mechanism.  相似文献   

16.
The identification of a potent, selective, and orally available MK2 inhibitor series is described. The initial absence of oral bioavailability was successfully tackled by moving the basic nitrogen of the spiro-4-piperidyl moiety towards the electron-deficient pyrrolepyridinedione core, thereby reducing the pKa and improving Caco-2 permeability. The resulting racemic spiro-3-piperidyl analogues were separated by chiral preparative HPLC, and the activity towards MK2 inhibition was shown to reside mostly in the first eluting stereoisomer. This led to the identification of new MK2 inhibitors, such as (S)-23, with low nanomolar biochemical inhibition (EC50 7.4 nM) and submicromolar cellular target engagement activity (EC50 0.5 μM).  相似文献   

17.
DuP 753 is a potent, selective angiotensin II type 1 (AT1) receptor antagonist. The possibility was investigated that DuP 753 may crossreact with thromboxane A2/prostaglandin H2 (TP) receptors. DuP 753 inhibited the specific binding of the TP receptor antagonist [3H]SQ 29,548 (5 nM) in human platelets with kd/slope factor values of 9.6±1.4 μM/1.1±0.02. The AT2-selective angiotensin receptor ligand, PD 123,177 was a very weak inhibitor of specific [3H]SQ 29,548 binding in platelets (Kd/slope factor:200 μM/0.86). [3H]SQ 29,548 saturation binding in the absence and presence of DuP 753 resulted in an increase in equilibrium affinity constant (Kd: 9.3, 22, 33 nM, respectively) without a concentration-dependent reduction in binding site maxima (Bmax: 3597, 4597, 3109 fmol/mg protein, respectively). Platelet aggregation induced by the TP receptor agonist U 46,619 was concentration-dependently inhibited by DuP 753 (IC50=46 μM). These data indicate for the first time that DuP 753 is a weak but competitive antagonist at human platelet TP receptors.  相似文献   

18.
Formylated peptides specifically activate many of the neutrophil functions; their action is mediated via formyl peptide receptors (FPRs). FPRs belong to the family of receptors having seven transmembrane-spanning domains and coupled with G-proteins (GPCR). About a dozen of highly homologous genes of FPRs were found to be localized in mouse chromosome 17. By binding with labeled N-formyl-Met-Leu-Phe (fMLF), FPRs are classified as receptors with high (FPR1) and low (FPR2 and FPR3/FPRL1) affinity to formyl peptide. Binding of formyl peptide with FPRs triggers the complex signaling events, the most studied are: activation of phospholipase C (PLC) with subsequent calcium signaling; launching of mitogen activated protein kinases (MAPKs) cascade pathway, and activation of phosphoinositol-3-kinase (PI3K) cascades. As we have shown previously, the priming of the respiratory burst of mice neutrophils occurs under the cell activation by fMLF in high doses only, i.e., it is necessary to activate low affinity FPRs. Besides, the usage of the specific MEK and p38MAPK inhibitors induced significant suppression of the response to 1 μM fMLM, while the response to 50 μM fMLF increased in the presence of the inhibitors. We suggest that there is a signal divergence upon activation of high and low affinity fMLF receptors, and small G protein dependent signaling pathways could be alternative to activate NADPH oxidase. Here we demonstrate that Ras-proteins participate in the respiratory burst activation, especially in activation via the high affinity fMLF receptors. Activation of the Rho- and Rac-proteins induced the down-regulation of the respiratory burst under the stimulation of high affinity FPRs. The inhibition of the Rho-proteins almost completely suppressed the respiratory burst activated via the high and low affinity receptors, probably due to inability to assemble of the cytoskeleton proteins and NADPH oxidase components.  相似文献   

19.
The tryptophan photooxidation product 6-formylindolo[3,2-b]carbazole (FICZ) has been proposed as a physiological ligand for the mammalian aryl hydrocarbon receptor (AHR), which it binds with high-affinity, inducing expression of cytochrome P450 1A1 (CYP1A1). We investigated whether the response to FICZ is evolutionarily conserved in vertebrates by measuring FICZ binding to two zebrafish AHRs (AHR1B and AHR2) and its ability to induce zebrafish CYP1 genes (CYP1A, CYP1B1, CYP1C1, CYP1C2, and CYP1D1) in vivo. Exposure of zebrafish embryos (48 h-post-fertilization; hpf) to 10 nM FICZ for 6 h caused strong induction of CYP1A mRNA and a statistically significant but modest induction of CYP1B1 and CYP1C1. Neither CYP1C2 nor CYP1D1 expression was induced by FICZ under the conditions of dose, time or developmental stage examined here. CYP1A induction was significantly greater after 6 h than after 12 h of exposure to FICZ, suggesting a rapid degradation of inducer. The 6-h EC50 values for induction of CYP1A and CYP1B1 by FICZ were 0.6 and 0.5 nM compared to 72-h EC50 values of 2.3 and 2.7 nM for PCB126, indicating that in zebrafish embryos FICZ is a more potent inducer than PCB126. FICZ at 10 nM was able to completely displace binding of 2,3,7,8-tetrachloro-1,6[3H]-dibenzo-p-dioxin to in vitro-expressed zebrafish AHR2 and AHR1B. Inhibition of AHR2 translation in zebrafish embryos by an AHR2-specific morpholino antisense oligonucleotide decreased the induction of CYP1A and CYP1B1 by FICZ and by PCB126. Together, these results demonstrate that FICZ is a potent AHR agonist in zebrafish, inducing expression of multiple CYP1 genes largely through AHR2. Evolutionary conservation of the response to FICZ is consistent with a possible role as an endogenous signaling molecule acting through the AHR.  相似文献   

20.
Replacement of the benzimidazole core of allosteric Thumb Pocket 1 HCV NS5B finger loop inhibitors by more lipophilic indole derivatives provided up to 30-fold potency improvements in cell-based subgenomic replicon assays. Optimization of C-2 substitution on the indole core led to the identification of analogs with EC50 <100 nM and modulated the pharmacokinetic properties of the inhibitors based on preliminary data from in vitro ADME profiles and in vivo rat PK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号