首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Keresztes A  Tóth G  Fülöp F  Szucs M 《Peptides》2006,27(12):3315-3321
Previously, we have shown that substitution of Pro2 for cis-2-aminocyclopentanecarboxylic acid, ACPC in endomorphin-2 results in an analogue with greatly augmented proteolytic stability, high μ-opioid receptor affinity and selectivity. We now report the synthesis and biochemical characterization of [3H][(1S,2R)ACPC2]endomorphin-2 with a specific activity of 1.41 TBq/mmol (38.17 Ci/mmol). Specific binding of [3H][(1S,2R)ACPC2]endomorphin-2 was saturable and of high affinity with an equilibrium dissociation constant, Kd = 1.80 ± 0.21 nM and receptor density, Bmax = 345 ± 27 fmol × mg protein−1 at 25 °C in rat brain membranes. Similar affinity values were obtained in kinetic and displacement assays. Both Na+ and Gpp(NH)p decreased the affinity proving the agonist character of the radioligand. [3H][(1S,2R)ACPC2]endomorphin-2 retained the μ-specificity of the parent peptide. The new radioligand will be a useful tool to map the topographical requirements of μ-opioid peptide binding due to its high affinity, selectivity and enzymatic stability.  相似文献   

2.
Mn2+ binding to poly(acrylic acid) at different degrees of ionization, alpha, has been studied from the frequency dependence of the water protons' relaxation rates T1(-1) and T2(-1). Site binding is treated as an equilibrium with the concentration of free ions at the immediate vicinity (CIV) of the polyion. The CIV is calculated as the solution of the Poisson-Boltzmann equation at the surface of the cylindrical polyion. A single value of K is shown to fit the results at all values of alpha. The amount of site binding is higher than the total amount of condensed divalent counterions predicted for a finite polyion concentration in the presence of monovalent counterions by Manning's theory.  相似文献   

3.
Summary Gonadotropin-releasing hormone (GnRH) stimulates the release and synthesis of gonadotropin hormones (GtH) and is the key regulator of reproduction. The present study was carried out to design a potent GnRH analogue containing Tyr(OMe) at position 5 and ad-amino acid at position 6. This was based on a previous study in which [Tyr(OMe)5]GnRH was shown to have reduced potency compared to GnRH. A novel GnRH peptide containing Tyr(OMe)5 andd-Glu6 in combination with other substitutions at positions 9 and 10 was synthesized in the present study and tested for binding to the rat pituitary as well as potency in terms of gonadotropin (GtH) release in the goldfish pituitary and ovulation in sea bass. The results demonstrate that the replacement of the glycine residue at position 6 with ad-Glu in combination with the substitution of proline at position 9 with azetidine (Aze) increased the binding and biological activity of [Tyr(OMe)5]GnRH. The observed increased potency is likely to be related to the improved resistance to degradation. The present findings may lead to the development of a more potent GnRH agonist for inducing ovulation in fish.  相似文献   

4.
A new azido derivative of 2,2′-dipicolylamine (Dpa), 2-azido-N,N-bis((pyridin-2-yl)methyl)ethanamine, (Dpa-N3) was readily prepared from the known 2-(bis(pyridin-2-ylmethyl)amino)ethanol (Dpa-OH). It was demonstrated that Dpa-N3 could be efficiently labeled with both [Re(CO)3(H2O)3]Br and [99mTc(H2O)3(CO)3]+ to give [Re(CO)3(Dpa-N3)]Br and [99mTc(CO)3(Dpa-N3)]+, respectively. Furthermore, Dpa-N3 was successfully coupled, on the solid phase, to a Peptide Nucleic Acid (PNA) oligomer (H-4-pentynoic acid-spacer-spacer-tgca-tgca-tgca-Lys-NH2; spacer = -NH-(CH2)2-O-(CH2)2-O-CH2-CO-) using the Cu(I)-catalyzed [2 + 3] azide/alkyne cycloaddition (Cu-AAC, often referred to as the prototypical “click” reaction) to give the Dpa-PNA oligomer. Subsequent labeling of Dpa-PNA with [99mTc(H2O)3(CO)3]+ afforded [99mTc(CO)3(Dpa-PNA)] in radiochemical yields > 90%. Partitioning experiments in a 1-octanol/water system were carried out to get more insight on the lipophilicity of [99mTc(CO)3(Dpa-N3)]+ and [99mTc(CO)3(Dpa-PNA)]. Both compounds were found rather hydrophilic (log Do/w values at pH = 7.4 are −0.50: [99mTc(CO)3(Dpa-N3)]+ and −0.85: [99mTc(CO)3(Dpa-PNA)]. Biodistribution studies of [99mTc(CO)3(Dpa-PNA)] in Wistar rats showed a very fast blood clearance (0.26 ± 0.1 SUV, 1 h p.i.) and modest accumulation in the kidneys (5.45 ± 0.45 SUV, 1 h p.i.). There was no significant activity in the thyroid and the stomach, demonstrating a high in vivo stability of the 99mTc-labeled Dpa-PNA conjugate.  相似文献   

5.
The mitochondrial inner membrane peptidase IMP of Saccharomyces cerevisiae is required for proteolytic processing of certain mitochondrially and nucleus-encoded proteins during their export from the matrix into the inner membrane or the intermembrane space. The membrane-associated signal peptidase complex is composed of the two catalytic subunits, Imp1 and Imp2, and the Som1 protein. The IMP subunits are thought to function in membrane association, interaction and stabilisation of subunits, substrate specificity, and proteolysis. We have analysed inner membrane peptidase mutants and substrates to gain more insight into the functions of various domains and investigate the basis of substrate recognition. The results suggest that certain conserved glycine residues in the second and third conserved regions of Imp1 and Imp2 are important for stabilisation of the Imp complex and for the proteolytic activity of the subunits, respectively. The non-conserved C-terminal parts of the Imp subunits are important for their proteolytic activities. The C-terminal region of Imp2, comprising a predicted second transmembrane segment, is dispensable for the stability of Imp2 and Imp1, and cannot functionally substitute for the C-terminal segment of Imp1. Alteration of the Imp2 cleavage site in cytochrome c 1 (from AM to ND) reveals the specificity of the Imp2 peptidase. In addition, we have identified Gut2, the mitochondrial FAD-dependent glycerol-3-phosphate dehydrogenase, as a new substrate for Imp1. Failure to cleave the Gut2 precursor may contribute to the pet phenotype of certain imp mutants. Gut2 is associated with the inner membrane, and is essential for growth on glycerol-containing medium. Suggested functions of the analysed residues and domains of the IMP subunits, characteristics of the cleavage sites of substrates and implications for the phenotypes of imp mutants are discussed.Communicated by C. P. Hollenberg  相似文献   

6.
Administration of 5-hydroxy[1-14C]-and [4-14C]levulinic acid to Helleborus foetidus led to the isolation of [1-14C]- and [4-14C]protoanemonin, respectively. There was also incorporation of radioactivity into the four glucosides ranunculin, isoranunculin, ranuncoside and ranunculoside. Acid hydrolysis of radioactive ranuncoside gave labelled 5-hydroxylevulinic acid (HKV). A study of the incorporation of various 14C-labelled tracers into protoanemonin suggested that HKV is formed in higher plants by a new reduction of 2-ketoglutarate (2-KG) without free 4,5-dioxovalerate (DOVA) as an intermediate. A scheme for the biosynthesis of the antibiotic protoanemonin and its glucosidic precursors is proposed. It is shown that 5-(β-d-glucopyranosyloxy)levulinic acid could be the genuine precursor of all the compounds studied.  相似文献   

7.
Human gene-2 (H2) relaxin is currently in Phase III clinical trials for the treatment of acute heart failure. It is a 53-amino acid insulin-like peptide comprising two chains and three disulfide bonds. It interacts with two of the relaxin family peptide (RXFP) receptors. Although its cognate receptor is RXFP1, it is also able to cross-react with RXFP2, the native receptor for a related peptide, insulin-like peptide 3. In order to understand the basis of this cross-reactivity, it is important to elucidate both binding and activation mechanisms of this peptide. The primary binding mechanism of this hormone has been extensively studied and well defined. H2 relaxin binds to the leucine-rich repeats of RXFP1 and RXFP2 using B-chain-specific residues. However, little is known about the secondary interaction that involves the A-chain of H2 relaxin and transmembrane exoloops of the receptors. We demonstrate here through extensive mutation of the A-chain that the secondary interaction between H2 relaxin and RXFP1 is not driven by any single amino acid, although residues Tyr-3, Leu-20, and Phe-23 appear to contribute. Interestingly, these same three residues are important drivers of the affinity and activity of H2 relaxin for RXFP2 with additional minor contributions from Lys-9, His-12, Lys-17, Arg-18, and Arg-22. Our results provide new insights into the mechanism of secondary activation interaction of RXFP1 and RXFP2 by H2 relaxin, leading to a potent and RXFP1-selective analog, H2:A(4–24)(F23A), which was tested in vitro and in vivo and found to significantly inhibit collagen deposition similar to native H2 relaxin.  相似文献   

8.
The P2X7 receptor is widely recognized to mediate the proinflammatory effects of extracellular ATP. However this receptor in the absence of ATP may have a function unrelated to inflammation. Our data show that P2X7 expressed on the surface of monocyte/macrophages or on epithelial HEK-293 cells greatly augments the engulfment of latex beads and live and heat-killed bacteria by effector phagocyte in the absence of ATP and serum. The expression of P2X7 on the effector also confers the ability to phagocytose apoptotic target cells and an accumulation of P2X7 can be seen at the attachment point to the target. Activation of the P2X7 receptor by ATP causes a slow dissociation (over 10–15 min) of nonmuscle myosin from the P2X7 membrane complex and abolishes further P2X7-mediated phagocytosis of these targets. The recent crystal structure of the homologous zebrafish P2X4 receptor shows an exposed “nose” of the ectodomain (residues 115–162) which contains three of the five disulfide bonds conserved in all P2X receptors. Three short biotin-labeled peptides mimicking sequence of this exposed region bound to apoptotic target cells but not to either viable cells or to other target particles. All three peptides contained one or two cysteine residues and their replacement by alanine abolished peptide binding. These data implicate thiol-disulfide exchange reactions in the initial tethering of apoptotic cells to macrophage and establish P2X7 as one of the scavenger receptors involved in the recognition and removal of apoptotic cells in the absence of extracellular ATP and serum.  相似文献   

9.
Agonist-induced internalization of G protein-coupled receptors plays an important role in signal regulation. The underlying mechanisms of the internalization of the human neuropeptide Y(2) receptor (hY(2)R), as well as its desensitization, endocytosis, and resensitization are mainly unknown. In the present study we have investigated the role of carboxyl-terminal (C-terminal) Ser/Thr residues and acidic amino acids in regulating receptor internalization, arrestin interaction, and recycling by fluorescence microscopy, cell surface enzyme-linked immunosorbent assay, and bioluminescence resonance energy transfer in several cell lines. Strikingly, C-terminal truncation mutants revealed two different internalization motifs. Whereas a distal motif (373)DSXTEXT(379) was found to be the primary regulatory internalization sequence acting in concert with arrestin-3, the proximal motif (347)DXXXSEXSXT(356) promoted ligand-induced internalization in an arrestin-3-independent manner. Moreover, we identified a regulatory sequence located between these internalization motifs ((357)FKAKKNLEVRKN(368)), which serves as an inhibitory element. We found that hY(2)R recycling is also governed by structural determinants within the proximal internalization motif. In conclusion, these results indicate that the hY(2)R C terminus is involved in multiple molecular events that regulate internalization, interaction with arrestin-3, and receptor resensitization. Our findings provide novel insights into complex mechanisms of controlled internalization of hY(2)R, which is likely applicable to other GPCRs.  相似文献   

10.
This work describes a new gene coding for a fatty acid binding protein (FABP) in the parasite Echinococcus granulosus, named EgFABP2. The complete gene structure, including the promoter sequence, is reported. The genomic coding domain organisation of the previously reported E. granulosus FABP gene (EgFABP1) has been also determined. The corresponding polypeptide chains share 76% of identical residues and an overall 96% of similarity. The two EgFABPs present the highest amino acid homologies with the mammalian FABP subfamily containing heart-FABPs (H-FABPs). The coding sequences of both genes are interrupted by a single intron located in the position of the third intron reported for vertebrate FABP genes. Both genes are expressed in the protoscolex stage of the parasite. The promoter region of EgFABP2 presents several consensus putative cis-acting elements found in other members of the family, suggesting interesting possible mechanisms involved in the host–parasite adaptation.  相似文献   

11.
《Biomarkers》2013,18(1):89-96
Acrylonitrile is an IARC class 2B carcinogen present in cigarette smoke. Urinary 2-cyanoethylmercapturic acid (CEMA) is an acrylonitrile metabolite and a potential biomarker for acrylonitrile exposure. The objective of this work was to study the dose response of CEMA in urine of non-smokers and smokers of different ISO tar yield cigarettes. We observed that smokers excreted >100-fold higher amounts of urinary CEMA than non-smokers. The CEMA levels in smokers were significantly correlated with ISO tar yield, daily cigarette consumption, and urinary biomarkers of smoke exposure. In conclusion, urinary CEMA is a suitable biomarker for assessing smoking-related exposure to acrylonitrile.  相似文献   

12.
A gas chromatographic–mass spectrometric method was developed for the quantitative analysis of the three Di(2-ethylhexyl)phthalate (DEHP) metabolites, 2-ethylhexanoic acid, 2-ethyl-3-hydroxyhexanoic acid and 2-ethyl-3-oxohexanoic acid in urine. After oximation with O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine hydrochloride and sample clean-up with Chromosorb P filled glass tubes, all three organic acids were converted to their tert.-butyldimethylsilyl derivatives. Quantitation was done with trans-cinnamic acid as internal standard and GC–MS analysis in the selected ion monitoring mode (SIM). Calibration curves for all three acids in the range from 20 to 1000 μg/l showed correlation coefficients from 0.9972 to 0.9986. The relative standard deviation (RSD) values determined in the observed concentration range were between 1.3 and 8.9% for all three acids. Here we report for the first time the identification of 2-ethyl-3-hydroxyhexanoic acid and 2-ethyl-3-oxohexanoic acid in human urine next to the known DEHP metabolite 2-ethylhexanoic acid. In 28 urine samples from healthy persons we found all three acids with mean concentrations of 56.1±13.5 μg/l for 2-ethylhexanoic acid, 104.8± 80.6 μg/l for 2-ethyl-3-hydroxyhexanoic acid and 482.2± 389.5 μg/l for 2-ethyl-3-oxohexanoic acid.  相似文献   

13.
Appert C  Zoń J  Amrhein N 《Phytochemistry》2003,62(3):415-422
The conformationally restricted phenylalanine analogue 2-aminoindan-2-phosphonic acid (AIP) inhibits phenylalanine ammonia-lyase (PAL) competitively in a time-dependent manner. This phenomenon was investigated in more detail with the heterologously expressed, highly purified homotetrameric PAL-1 isozyme from parsley. The kinetic analysis revealed that the enzyme-inhibitor complex is formed in a single "slow" step with an association rate of k(2)=2.6+/-0.04 10(4) M(-1) s(-1). The inhibition is reversible with a dissociation rate of k(-2)=1.8+/-0.04 10(-4) s(-1) and an equilibrium constant of K(i)=7+/-2 nM. The previously described PAL inhibitor (S)-2-aminooxy-3-phenylpropanoic acid [(S)-AOPP] was also found to be a slow-binding inhibitor of PAL-1. The carboxyl analogue of AIP, 2-aminoindan-2-carboxylic acid, served as a substrate of PAL-1 and was converted to indene-2-carboxylic acid.  相似文献   

14.
15.
Nociceptin, a 17-amino acid peptide (FGGFTGARKSARKLANQ, N/OFQ), is the endogenous ligand of the nociceptin/orphanin FQ (NOP) receptor. This receptor-ligand system is involved in various physiological as well as pathophysiological mechanisms, but owing to the peptidic structure, it is rapidly degraded by enzymes. The enzymatic digestion of nociceptin involves mainly aminopeptidases and yields Noc(2-17)-OH and other smaller fragments. We aimed at increasing the enzymatic stability against aminopeptidases in the case of peptide Noc(1-13)-NH(2), which possesses the minimum sequence capable of interacting with the NOP receptor. Therefore we developed a new procedure for the synthesis of peptides with the carbamic acid residue [...-NH-CH(R)-CO-NH-CO-NH-CH(Q)-CO-.]. A set of four carbamic acid-nociceptin derivatives were produced. The carbamic acid residue was incorporated into the inner part of the peptides, building on solid phase, by using a suitable dipeptide fragment with carbamic acid residue produced by a simple and efficient three-step solution phase procedure. Enzymatic stability of carbamic acid peptides was studied in the presence of aminopeptidase M (AP-M) and in rat brain membrane homogenate. The receptor-binding properties were also studied by radioligand binding assay on crude rat brain membranes and the activity of the ligands were analyzed on isolated mouse vas deferens (MVD) tissues. We found that incorporation of the carbamic acid residue into the N-terminal part of nociceptin significantly increases the resistance against AP-M. We observed the decrease of binding affinities to the NOP receptor in case of the peptides modified in the N-terminal portion. Consequently, the incorporation of the carbamic acid residue into peptides can be proposed as a promising and reasonable tool for increasing enzymatic stability, where the native molecule is less sensitive for carbamic acid residue-related structural change.  相似文献   

16.
The adenosine A2A receptor is a prototypical rhodopsin-like G protein-coupled receptor but has several unique structural features, in particular a long C terminus (of >120 residues) devoid of a palmitoylation site. It is known to interact with several accessory proteins other than those canonically involved in signaling. However, it is evident that many more proteins must interact with the A2A receptor, if the trafficking trajectory of the receptor is taken into account from its site of synthesis in the endoplasmic reticulum (ER) to its disposal by the lysosome. Affinity-tagged versions of the A2A receptor were expressed in HEK293 cells to identify interacting partners residing in the ER by a proteomics approach based on tandem affinity purification. The receptor-protein complexes were purified in quantities sufficient for analysis by mass spectrometry. We identified molecular chaperones (heat-shock proteins HSP90α and HSP70-1A) that interact with and retain partially folded A2A receptor prior to ER exit. Complex formation between the A2A receptor and HSP90α (but not HSP90β) and HSP70-1A was confirmed by co-affinity precipitation. HSP90 inhibitors also enhanced surface expression of the receptor in PC12 cells, which endogenously express the A2A receptor. Finally, proteins of the HSP relay machinery (e.g. HOP/HSC70-HSP90 organizing protein and P23/HSP90 co-chaperone) were recovered in complexes with the A2A receptor. These observations are consistent with the proposed chaperone/coat protein complex II exchange model. This posits that cytosolic HSP proteins are sequentially recruited to folding intermediates of the A2A receptor. Release of HSP90 is required prior to recruitment of coat protein complex II components. This prevents premature ER export of partially folded receptors.  相似文献   

17.
A new class of isoxazole-tethered diarylheptanoids having characteristic 1,3-syn-diol and 1,3-anti-diol chemophoric moieties, e.g. 4ad and 5ac respectively, have been designed and synthesized starting from d-glucose following a stereo-conserved general synthetic strategy. The isoxazole heterocycle was installed using our recently elaborated methodology deploying Magtrieve? as a selective oxidizing agent. Two of these new analogs 4a and 5a exhibited significantly improved in vitro drug-like properties including solubility, metabolic stability, cell permeability and lack of nonspecific cytotoxicity when compared with curcumin-I. In a HEK293 cell-based intracellular calcium [Ca2+]i release assay, 4a and 5a, when tested at 30?μM, inhibited the trypsin agonist induced protease-activated receptor-2 (PAR2) activity by 80% and 70% respectively. IC50 of 4a (SB70) has been determined as 6?μM which is in the same range of current benchmarks for PAR2 antagonists.  相似文献   

18.
19.
The synthesis of a bicyclic analogue of the naturally occurring alpha-L-iduronic acid locked in a biologically active (2)S0 skewboat conformation is disclosed. The desired (2)S0 conformation has been obtained by tethering the C-2 and C-5 carbon atoms of the sugar ring with a dimethyloxy bridge and confirmed by NMR and molecular modeling. The new mimic displays the exact hydroxyl pattern of alpha-L-iduronic acid, a major monosaccharide component of glycosaminoglycans and thus represents a closer mimic of the latter, compared to previously reported bicyclic analogs.  相似文献   

20.
根据人白细胞介素-2(IL-2)a螺旋B中氨基酸残基的空间分布选择性地突变了一些氨基酸残基,结果发现.57Gln→Gln,62Gln→Leu,62Gln→Arg和65Pro→Arg这些替换均使IL-2活性显著降低或丧失,而63Leu→Ser或64Lys→Ala对IL-2活性影响不大。从受体竞争抑制结合实验结果可知,上述不表现活性的突变体也同时丧失了与高亲和力受体的结合能力,这说明α螺旋B中这些位点对IL-2与受体结合有贡献,事实上,那些直接与受体β、γ亚基结合的残基所在螺旋为A、D螺旋而非α螺旋B,由此我们认为α螺旋B虽不直接参与与受体β、γ亚基结合,但它在空间结构上对IL-2与受体β、γ亚基的结合产生了有利的影响,而57Gln、62Gln、65Pro等残基则在此过程中发挥重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号