首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, a new neuropeptide, named nesfatin-1, was discovered. It has been reported that nesfatin-1 inhibits food intake after injection into the third ventricle as well as intraperitoneal (ip) injection. Cholecystokinin (CCK) is well established to play a role in the regulation of food intake. The aim of the study was to examine whether CCK-8S injected ip modulates neuronal activity in nesfatin-1 immunoreactive (ir) neurons localized in the PVN and in the nucleus of the solitary tract (NTS). Additionally, tyrosine hydroxylase-immunoreactivity (TH-ir) in the PVN was determined to assess the distribution of TH-ir fibers in relation to nesfatin-1-ir. Non-fasted male Sprague-Dawley rats received 6 or 10 µg CCK-8S/kg or vehicle solution (0.15 M NaCl; n = 4 all groups) ip. The number of c-Fos-ir neurons was determined in the PVN, arcuate nucleus (ARC), and NTS. Double staining procedure for nesfatin-1 and c-Fos revealed that CCK-8S increased significantly and in a dose-dependent manner the number of c-Fos positive nesfatin-1-ir neurons in the PVN ( 4-fold and 7-fold) and NTS ( 9-fold and 26-fold). Triple staining in the PVN showed a dose-dependent neuronal activation of nesfatin-1 neurons that were colocalized with CRF and oxytocin. Double labeling against nesfatin-1 and TH revealed that nefatin-1-ir neurons were encircled in a network of TH-ir fibers in the PVN. No effect on the number of c-Fos-ir neurons was observed in the ARC. These results suggest that the effects of CCK on the HPA axis and on food intake may, at least in part, be mediated by nesfatin-1-ir neurons in the PVN.  相似文献   

2.
Many peripheral substances, including ghrelin, induce neuronal activation in the brain. In the present study, we compared the effect of subcutaneously administered ghrelin and its three stable agonists: Dpr3ghr ([Dpr(N-octanoyl)3] ghrelin) (Dpr - diaminopropionic acid), YA GHRP-6 (H-Tyr-Ala-His-DTrp-Ala-Trp-DPhe-Lys-NH2), and JMV1843 (H-Aib-DTrp-D-gTrp-CHO) on the Fos expression in food intake-responsive brain areas such as the hypothalamic paraventricular (PVN) and arcuate (ARC) nuclei, the nucleus of the solitary tract (NTS), and area postrema (AP) in male C57BL/6 mice. Immunohistochemical analysis showed that acute subcutaneous dose of each substance (5 mg/kg b.w.), which induced a significant food intake increase, elevated Fos protein expression in all brain areas studied. Likewise ghrelin, each agonist tested induced distinct Fos expression overall the PVN. In the ARC, ghrelin and its agonists specifically activated similarly distributed neurons. Fos occurrence extended from the anterior (aARC) to middle (mARC) ARC region. In the latter part of the ARC, the Fos profiles were localized bilaterally, especially in the ventromedial portions of the nucleus. In the NTS, all substances tested also significantly increased the number of Fos profiles in neurons, which also revealed specific location, i.e., in the NTS dorsomedial subnucleus (dmNTS) and the area subpostrema (AsP). In addition, cells located nearby the NTS, in the AP, also revealed a significant increase in number of Fos-activated cells. These results demonstrate for the first time that ghrelin agonists, regardless of their different chemical nature, have a significant and similar activating impact on specific groups of neurons that can be a part of the circuits involved in the food intake regulation. Therefore there is a real potency for ghrelin agonists to treat cachexia and food intake disorders. Thus, likewise JMV1843, the other ghrelin agonists represent substances that might be involved in trials for clinical purposes.  相似文献   

3.
Ghrelin, the endogenous growth hormone secretagogue, has an important role in metabolic homeostasis. It exists in two major molecular forms: acylated (AG) and unacylated (UAG). Many studies suggest different roles for these two forms of ghrelin in energy balance regulation. In the present study, we compared the effects of acute intracerebroventricular administration of AG, UAG and their combination (AG+UAG) to young adult Wistar rats on food intake and central melanocortin system modulation. Although UAG did not affect food intake it significantly increased the number of c-Fos positive neurons in the arcuate (ARC), paraventricular (PVN) and solitary tract (NTS) nuclei. In contrast, UAG suppressed AG-induced neuronal activity in PVN and NTS. Central UAG also modulated hypothalamic expression of Mc4r and Bmp8b, which were increased and Mc3r, Pomc, Agrp and Ucp2, which were decreased. Finally, UAG, AG and combination treatments caused activation of c-Fos in POMC expressing neurons in the arcuate, substantiating a physiologic effect of these peptides on the central melanocortin system. Together, these results demonstrate that UAG can act directly to increase neuronal activity in the hypothalamus and is able to counteract AG-induced neuronal activity in the PVN and NTS. UAG also modulates expression of members of the melanocortin signaling system in the hypothalamus. In the absence of an effect on energy intake, these findings indicate that UAG could affect energy homeostasis by modulation of the central melanocortin system.  相似文献   

4.
《FEBS letters》2014,588(23):4404-4412
Intracerebroventricular injection of oxytocin (Oxt), a neuropeptide produced in hypothalamic paraventricular (PVN) and supraoptic nuclei (SON), melanocortin-dependently suppresses feeding. However, the underlying neuronal pathway is unclear. This study aimed to determine whether Oxt regulates propiomelanocortin (POMC) neurons in the arcuate nucleus (ARC) of the hypothalamus. Intra-ARC injection of Oxt decreased food intake. Oxt increased cytosolic Ca2+ in POMC neurons isolated from ARC. ARC POMC neurons expressed Oxt receptors and were contacted by Oxt terminals. Retrograde tracer study revealed the projection of PVN and SON Oxt neurons to ARC. These results demonstrate the novel oxytocinergic signaling from PVN/SON to ARC POMC, possibly regulating feeding.  相似文献   

5.
Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetic patients and shown to reduce food intake and body weight. The anorexigenic effects of GLP-1 and GLP-1 receptor agonists are thought to be mediated primarily via the hypothalamic paraventricular nucleus (PVN). GLP-1, an intestinal hormone, is also localized in the nucleus tractus solitarius (NTS) of the brain stem. However, the role of endogenous GLP-1, particularly that in the NTS neurons, in feeding regulation remains to be established. The present study examined whether the NTS GLP-1 neurons project to PVN and whether the endogenous GLP-1 acts on PVN to restrict feeding. Intra-PVN injection of GLP-1 receptor antagonist exendin (9–39) increased food intake. Injection of retrograde tracer into PVN combined with immunohistochemistry for GLP-1 in NTS revealed direct projection of NTS GLP-1 neurons to PVN. Moreover, GLP-1 evoked Ca2+ signaling in single neurons isolated from PVN. The majority of GLP-1-responsive neurons were immunoreactive predominantly to corticotropin-releasing hormone (CRH) and nesfatin-1, and less frequently to oxytocin. These results indicate that endogenous GLP-1 targets PVN to restrict feeding behavior, in which the projection from NTS GLP-1 neurons and activation of CRH and nesfatin-1 neurons might be implicated. This study reveals a neuronal basis for the anorexigenic effect of endogenous GLP-1 in the brain.  相似文献   

6.
Oxytocin (OT) is essentially associated with uterine contraction during parturition and milk ejection reflex. Although several studies implicate the role of OT in anti-inflammatory, anti-oxidative and anti-apoptotic pathways, there is a lack of data with regard to the protective effects of oxytocin in neurodegenerative models such as Parkinson's disease (PD). The present study was undertaken to investigate the neuroprotective effects of oxytocin (OT) on rotenone-induced PD in rats. Twenty adult Sprague-Dawley rats were injected with rotenone (3 μg/μl in DMSO) or vehicle (1 μl DMSO) into the left substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) under stereotaxic surgery, and PD model was assessed by rotational test ten days after drug infusion. The valid PD rats were randomly divided into two groups; Group 1 (n = 7) and Group 2 (n = 7) were administered saline (1 ml/kg/day, i.p.) and oxytocin (160 μg/kg/day, i.p.) through 20 days, respectively. The effects of OT treatment were evaluated by behavioral, histological and immunohistochemical parameters. Apomorphine-induced stereotypic rotations in PD rats were significantly inhibited by OT treatment (p < 0.05). In addition, immunohistochemical studies clearly demonstrated the suppression of Bax, caspase-3, caspase-8 and elevation of Bcl-2 and tyrosine hydroxylase immunoexpression in OT-treated rats compared to saline group. Our findings suggest that oxytocin may have cytoprotective and restorative effects on dopaminergic neurons against rotenone-induced injury. The underlying mechanism may be associated with the inhibition of apoptotic pathways.  相似文献   

7.
Controls of the independent ingestion of food in the preweanling rat emerge in the second postnatal week. We investigated the effects of CCK-8 (0, 1, 5, or 10 microg/kg IP) on intake and c-Fos-like immunoreactive (CFLI) cells in hindbrain and forebrain on postnatal days 10 and 11. Five micrograms per kilogram decreased intake and increased the number of CFLI cells in four subnuclei of the nucleus tractus solitarius (NTS), in arcuate nucleus (ARC), and in central nucleus of the amygdala (CeA). Ten micrograms per kilogram decreased intake and increased CFLI in three NTS subnuclei as much as 5 microg/kg did, but was more potent than 5 microg/kg in the medial NTS subnucleus. Ten micrograms per kilogram increased CFLI in paraventricular (PVN) and supraoptic (SON) nuclei, but 5 microg/kg did not. Thus, reduction of intake by CCK-8 on days 10 and 11 is associated with increased hindbrain and forebrain CFLI.  相似文献   

8.
Tracking of transplanted cells has become an important procedure in cell therapy. We studied the in vitro dye retention, survival and in vivo tracking of stem cells with PKH26 dye. Sheep BMSCs and ADSCs were labeled with 2, 4 and 8 μmol of PKH26 and monitored for six passages. Labeled BMSCs and ADSCs acquired mean cumulative population doubling of 12.7 ± 0.4 and 14.6 ± 0.5; unlabeled samples had 13.8 ± 0.5 and 15.4 ± 0.6 respectively. Upon staining with 2, 4 and 8 μmol PKH26, BMSCs had retentions of 40.0 ± 5.8, 60.0 ± 2.9 and 95.0 ± 2.9%, while ADSCs had 92.0 ± 1.2, 95.0 ± 1.2 and 98.0 ± 1.2%. ADSCs retentions were significantly higher at 2 and 4 μmol. On dye retention comparison at 8 μmol and 4 μmol for BMSCs and ADSCs; ADSCs were significantly higher at passages 2 and 3. The viability of BMSCs reduced from 94.0 ± 1.2% to 90.0 ± 0.6% and ADSCs from 94.0 ± 1.2% to 52.0 ± 1.2% (p < 0.05) after 24 h. BMSCs had significant up regulation of the cartilage genes for both the labeled and the unlabeled samples compared to ADSCs (p < 0.05). PKH26 fluorescence was detected on the resected portions of the regenerated neo-cartilage. The recommended concentration of PKH26 for ADSCs is 2 μmol and BMSCs is 8 μmol, and they can be tracked up to 49 days.  相似文献   

9.
Parkinson’s disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (−)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1 μM (64.0 ± 3.1%) than both (−)-epicatechin (46.0 ± 4.1%, p < 0.05) and (+)-catechin (13.1 ± 3.0%, p < 0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.  相似文献   

10.
Zhao DQ  Ai HB 《PloS one》2011,6(8):e23362

Aims

Vasopressin (AVP) and oxytocin (OT) are considered to be related to gastric functions and the regulation of stress response. The present study was to study the role of vasopressinergic and oxytocinergic neurons during the restraint water-immersion stress.

Methods

Ten male Wistar rats were divided into two groups, control and RWIS for 1h. The brain sections were treated with a dual immunohistochemistry of Fos and oxytocin (OT) or vasopressin (AVP) or OT receptor or AVP 1b receptor (V1bR).

Results

(1) Fos-immunoreactive (Fos-IR) neurons dramatically increased in the hypothalamic paraventricular nucleus (PVN), the supraoptic nucleus (SON), the neucleus of solitary tract (NTS) and motor nucleus of the vagus (DMV) in the RWIS rats; (2) OT-immunoreactive (OT-IR) neurons were mainly observed in the medial magnocellular part of the PVN and the dorsal portion of the SON, while AVP-immunoreactive (AVP-IR) neurons mainly distributed in the magnocellular part of the PVN and the ventral portion of the SON. In the RWIS rats, Fos-IR neurons were indentified in 31% of OT-IR neurons and 40% of AVP-IR neurons in the PVN, while in the SON it represented 28%, 53% respectively; (3) V1bR-IR and OTR-IR neurons occupied all portions of the NTS and DMV. In the RWIS rats, more than 10% of OTR-IR and V1bR-IR neurons were activated in the DMV, while lower ratio in the NTS.

Conclusion

RWIS activates both oxytocinergic and vasopressinergic neurons in the PVN and SON, which may project to the NTS or DMV mediating the activity of the neurons by OTR and V1bR.  相似文献   

11.
A new Steinernema species was isolated from three different sandy soil samples along the Platamona Beach, in the north-west coast of Sardinia Island (Italy). This new species is characterized by the following morphological characters: infective third-stage juvenile with a body length of 866 ± 61 (767-969) μm, distance from head to excretory pore of 63 ± 2.7 (59-68) μm, tail length of 81 ± 3.2 (76-89) μm, ratio E (%) 77 ± 3.4 (68-83); male tail with a mucron only in the second generation, spicule length of 66 ± 1.4 (64-67) μm and gubernaculum length of 44 ± 1.4 (43-46) μm in the first generation male; female of first generation with a slight vulval protrusion and ratio D (%) of 53 ± 4.0 (47-63). The new species differs distinctly from the related species (S. feltiae, S. kraussei, S. litorale, S. oregonense and S. cholashanense) in some morphometric values such as percentage of hyaline portion, ratios of gubernaculum/spicule length, spicule head length/width. The DNA analyses of the internal transcribed spacers and D2D3 regions show that the studied nematode isolates are a new species. Cross hybridisation tests with S. feltiae, S. kraussei, S. litorale, S. weiseri and S. oregonense showed that these species were reproductively isolated.  相似文献   

12.
Hindbrain projections of oxytocin neurons in the parvocellular paraventricular nucleus (pPVN) are hypothesized to transmit leptin signaling from the hypothalamus to the nucleus of the solitary tract (NTS), where satiety signals from the gastrointestinal tract are received. Using immunocytochemistry, we found that an anorectic dose of leptin administered into the third ventricle (3V) increased twofold the number of pPVN oxytocin neurons that expressed Fos. Injections of fluorescent cholera toxin B into the NTS labeled a subset of pPVN oxytocin neurons that expressed Fos in response to 3V leptin. Moreover, 3V administration of an oxytocin receptor antagonist, [d-(CH2)5,Tyr(Me)2,Orn8]-vasotocin (OVT), attenuated the effect of leptin on food intake over a 0.5- to 4-h period (P < 0.05). Furthermore, to determine whether oxytocin contributes to leptin's potentiation of Fos activation within NTS neurons in response to CCK, we counted the number of Fos-positive neurons in the medial NTS (mNTS) after 3V administration of OVT before 3V leptin and intraperitoneal CCK-8 administration. OVT resulted in a significant 37% decrease (P < 0.05) in the potentiating effect of leptin on CCK activation of mNTS neuronal Fos expression. Furthermore, 4V OVT stimulated 2-h food intake by 43% (P < 0.01), whereas 3V OVT at the same dose was ineffective. These findings suggest that release of oxytocin from a descending pPVN-to-NTS pathway contributes to leptin's attenuation of food intake by a mechanism that involves the activation of pPVN oxytocin neurons by leptin, resulting in increased sensitivity of NTS neurons to satiety signals.  相似文献   

13.
Asparagus racemosus Linn. (Fam. Liliaceae) is an ethno-pharmacologically acclaimed Ayurvedic medicinal plant. In the present study, aqueous extract of A. racemosus (ARC) was fractionated and screened for the polysaccharide fraction (ARP). The characterization was done by enzymatic, Size Exclusion, gas chromatography with flame ionization detector (GC-FID), high pressure anion exchange chromatography (HPAEC) and thin layer chromatographic analyses. Phyto-chemical evaluation confirmed the presence of 26.7% of 2 → 1 linked fructo-oligosaccharides (FOS). They have a degree of polymerization (DP) of nearly 7-8. Cytotoxicity evaluation on P388 cell lines was consistent with low cytotoxicity of the extracts. In vitro Natural Killer (NK) cell activity was evaluated using human peripheral blood mononuclear cells (PBMC) isolated from whole blood on a ficoll-hypaque density gradient. K562 a myeloid leukemia cell line, were used as target cells. ARC, tested over the range 0.2-50 μg/ml, showed a dose-related stimulation of NK cell activity with a peak increase of 16.9 ± 4.4% at 5.6 μg/ml. However, ARP demonstrated a higher stimulatory activity of 51.8 ± 1.2% at 25 μg/ml. The results indicate that the FOS from A. racemosus potentiates the NK cell activity and this could be an important mechanism underpinning the ‘Rasayana’ properties of this plant.  相似文献   

14.
We previously demonstrated that morphine withdrawal induced hyperactivity of the hypothalamus-pituitary-adrenocortical axis by activation of noradrenergic pathways innervating the hypothalamic paraventricular nucleus (PVN), as evaluated by Fos expression and corticosterone release. The present study was designed to investigate the role of protein kinase C (PKC) in this process by estimating changes in PKCalpha and PKCgamma immunoreactivity, and whether pharmacological inhibition of PKC would attenuate morphine withdrawal-induced c-Fos expression and changes in tyrosine hydroxylase (TH) immunoreactivity levels in the PVN and nucleus tractus solitarius/ ventrolateral medulla (NTS/VLM). Dependence on morphine was induced in rats by 7 day s.c. implantation of morphine pellets. Morphine withdrawal was induced on day 8 by an injection of naloxone. The protein levels of PKCalpha and gamma were significantly down-regulated in the PVN and NTS/VLM from the morphine-withdrawn rats. Morphine withdrawal induced c-Fos expression in the PVN and NTS/VLM, indicating an activation of neurons in those nuclei. TH immunoreactivity was increased in the NTS/VLM after induction of morphine withdrawal, whereas there was a decrease in TH levels in the PVN. Infusion of calphostin C, a selective protein kinase C inhibitor, produced a reduction in the morphine withdrawal-induced c-Fos expression. Additionally, the changes in TH levels in the PVN and NTS/VLM were significantly modified by calphostin C. The present results suggest that activated PKC in the PVN and catecholaminergic brainstem cell groups may be critical for the activation of the hypothalamic-pituitary adrenocortical axis in response to morphine withdrawal.  相似文献   

15.
Aversive properties of lithium chloride (LiCl) are mediated via pathways comprising neurons of the nucleus of the solitary tract (NTS) and oxytocin (OT) and vasopressin (VP) cells in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Because opioids act on brain regions that mediate effects of LiCl, we evaluated whether administration of opioids shortly before LiCl in rats influences 1) development of conditioned taste aversion (CTA) and 2) activation of NTS neurons and OT/VP cells. Neuronal activation was assessed by applying c-Fos immunohistochemical staining. Three opioids were used: morphine (MOR), a mu-agonist, butorphanol tartrate (BT), a mixed mu/kappa-agonist, and nociceptin/orphanin FQ (N/OFQ), which binds to an ORL1 receptor. BT and N/OFQ completely blocked acquisition of CTA. MOR alleviated but did not eliminate the aversive effects. Each of the opioids decreased LiCl-induced activation of NTS neurons as well as OT and VP cells in the PVN and SON. We conclude that opioids antagonize aversive properties of LiCl, presumably by suppressing activation of pathways that encompass OT and VP cells and NTS neurons.  相似文献   

16.
The PPARγ agonist Rosiglitazone exerts anti-hyperglycaemic effects by regulating the long-term expression of genes involved in metabolism, differentiation and inflammation. In the present study, Rosiglitazone treatment rapidly inhibited (5-30 min) the ER Ca2+ ATPase SERCA2b in monocytic cells (IC50 = 1.88 μM; p < 0.05), thereby disrupting short-term Ca2+ homeostasis (resting [Ca2+]cyto = 121.2 ± 2.9% basal within 1 h; p < 0.05). However, extended Rosiglitazone treatment (72 h) induced dose-dependent SERCA2b up-regulation, and restored calcium homeostasis, in monocytic cells (SERCA2b mRNA: 138.7 ± 5.7% basal (1 μM)/215.0 ± 30.9% basal (10 μM); resting [Ca2+]cyto = 97.3 ± 8.3% basal (10 μM)). As unfavourable cardiovascular outcomes, possibly related to disrupted cellular Ca2+ homeostasis, have been linked to Rosiglitazone, this effect may be of clinical interest. In contrast, in PPRE-luciferase reporter-gene assays, Rosiglitazone induced non-dose-dependent PPARγ-dependent effects (1 μM: 152.5 ± 4.9% basal; 10 μM: 136.1 ± 5.1% basal (p < 0.05 for 1 μM vs. 10 μM)). Thus, we conclude that Rosiglitazone can exert PPARγ-independent non-genomic effects, such as the SERCA2b inhibition seen here, but that long-term Rosiglitazone treatment did not perturb resting [Ca]cyto in this study.  相似文献   

17.
Layer 10 neurons of the chick tectum were morphologically investigated. The layer 10 neurons displayed heterogeneous immunoreactivities to calcium-binding proteins (CaBPs). Calbindin (CB)-immunoreactive (ir) neurons had pyramidal or round somata, primarily found in layers 5, 9, and 13. Parvalbumin (PV)-ir neurons were of various shapes with small to large somata (109.7 ± 48.6 μm2) that were located mainly in layers 4 and 10. Calretinin (CR)-ir neurons had small to middle-sized somata (79.3 ± 9.7 μm2) located primarily in layers 10 and 13, and most of them were similar to typical radial cells in size and shape. Two distinct types of neurons that projected to the nucleus geniculatus lateralis, pars ventralis (GLv) and ventral thalamus were demonstrated in layer 10. Type 1 cells had small to middle-sized somata (74.3 ± 33 μm2), and each cell had a single apical dendrite that ramified into bush-like branches in layer 7. These cells corresponded to CR-ir neurons and radial cells in size and shape. Type 2 cells had larger somata (124.7 ± 52.6 μm2), and their shapes were pyramidal, polygonal, or oval. They had multiple obliquely ascending dendrites that ramified into bush-like branches in layer 7. These cells often appeared similar to PV-ir neurons.  相似文献   

18.
19.
20.
The 11β-hydroxysteroid dehydrogenase isoenzymes (11β-HSD) catalyse the interconversion of cortisol (F) and cortisone (E). Earlier studies demonstrated that growth hormone (GH) and insulin resistance may exert opposite effects on the conversion of E to F by 11β-HSD type 1. Therefore, in the present study we determined F and E concentrations in 562 plasma samples obtained from acromegalic patients during an active phase (76 patients) and after cure of the disease (68 patients). In addition, we examined whether type 2 diabetes mellitus or impaired glucose tolerance, which are frequently associated with active acromegaly could influence plasma F and E levels in these patients. We found that plasma F concentrations were similar in patients with active acromegaly and in those who were cured with pituitary surgery, irradiation and/or medical therapy (mean ± S.E., 12.4 ± 0.3 and 12.7 ± 0.4 μg/dl, respectively). However, plasma E levels were significantly higher in patients with active compared to those with cured acromegaly (2.8 ± 0.1 and 2.2 ± 0.1 μg/dl, respectively; p < 0.001), resulting in a lower F/E ratio in patients with active disease (4.6 ± 0.1 vs. 5.9 ± 0.2 in the cured group of patients; p < 0.001). When the effect of altered carbohydrate homeostasis on plasma F and E was analysed, the results indicated significantly lower plasma E levels and higher F/E ratios in active acromegalic patients with type 2 diabetes mellitus or impaired glucose tolerance compared to those with normal carbohydrate metabolism (E, 2.5 ± 0.1 and 3.0 ± 0.1 μg/dl, respectively; F/E, 5.1 ± 0.2 and 4.4 ± 0.1; p < 0.001), whereas plasma F concentrations were similar in these two groups (12.1 ± 0.4 and 12.6 ± 0.3 μg/dl, respectively). These findings indicate that disease activity exerts a significant impact on 11β-HSD in acromegalic patients, which is further modified with altered carbohydrate homeostasis, frequently present in patients with active disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号