首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this study, we found that novokinin (Arg-Pro-Leu-Lys-Pro-Trp), a potent hypotensive peptide acting through the AT(2) receptor, has vasorelaxing activity in the mesenteric artery isolated from spontaneously hypertensive rats. The vasorelaxing activity was significantly blocked by PD123319, indomethacin, and CAY10441, which are an AT(2) receptor antagonist, a cyclooxygenase inhibitor, and an IP receptor antagonist, respectively. N(G)-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthase, did not block the vasorelaxing activity. These results suggest that the vasorelaxing activity of novokinin, which contributes to the hypotensive effect, is mainly mediated by prostaglandin I(2) (prostacyclin) and the IP receptor downstream of the AT(2) receptor.  相似文献   

2.
Abstract

Cholecystokinin (CCK) is one of the most studied neuropeptides in the brain. In this study, we investigated the effects of CCK-8s and LY225910 (CCK2 receptor antagonist) on properties of neuronal response to natural stimuli (whisker deflection) in deep layers of rat barrel cortex. This study was done on 20 male Wistar rats, weighing 230–260?g. CCK-8s (300?nmol/rat) and LY225910 (1?µmol/rat) were administered intracerebroventricularly (ICV). Neuronal responses to deflection of principal (PW) and adjacent (AW) whiskers were recorded in the barrel cortex using tungsten microelectrodes. Computer controlled mechanical displacement was used to deflect whiskers individually or in combination at 30?ms inter-stimulus intervals. ON and OFF responses for PW and AW deflections were measured. A condition-test ratio (CTR) was computed to quantify neuronal responses to whisker interaction. ICV administration of CCK-8s and LY225910 had heterogeneous effects on neuronal spontaneous activity, ON and OFF responses to PW and/or AW deflections, and CTR for both ON and OFF responses. The results of this study demonstrated that CCK-8s can modulate neuronal response properties in deep layers of rat barrel cortex probably via CCK2 receptors.  相似文献   

3.
Novokinin (Arg-Pro-Leu-Lys-Pro-Trp) is a potent hypotensive peptide previously designed based on the structure of ovokinin(2-7) (Arg-Ala-Asp-His-Pro-Phe), a vasorelaxing and hypotensive peptide derived from ovalbumin. Novokinin exhibited an affinity for the angiotensin AT(2) receptor (Ki=7.35 microM). Novokinin significantly lowered systolic blood pressure at a dose of 0.03 and 0.1 mg/kg after intravenous and oral administration, respectively, in spontaneously hypertensive rats (SHRs), and the hypotensive activity was blocked by PD123319, an antagonist of the AT(2) receptor. Novokinin lowered blood pressure in C57BL/6J mice after oral administration at a dose of 50 mg/kg. However, in AT(2) receptor-deficient mice, novokinin did not reduce blood pressure. These results demonstrate that the hypotensive activity of novokinin is mediated by the AT(2) receptor. The hypotensive activity of novokinin in SHRs was completely blocked by indomethacin and CAY10441, an inhibitor of cyclooxygenase and an antagonist of the prostaglandin IP receptor, respectively. These suggest that the hypotensive activity is mediated by prostacyclin and the IP receptor downstream of the AT(2) receptor.  相似文献   

4.
Ginseng, the root of Panax ginseng C.A. Meyer, is used as a general tonic. Recently, we isolated a novel ginsengderived lysophosphatidic acid (LPA) receptor ligand, gintonin. Gintonin activates G protein-coupled LPA receptors with high affinity in cells endogenously expressing LPA receptors, e.g., Xenopus oocytes. P2X receptors are ligandgated ion channels activated by extracellular ATP, and 7 receptor subtypes (P2X1–P2X7) have been identified. Most of the P2X1 receptors are expressed in the smooth muscles of genitourinary organs involved in reproduction. A main characteristic of the P2X1 receptor is rapid desensitization after repeated ATP treatment of cells or tissues expressing P2X1 receptors. In the present study, we examined the effect of gintonin on P2X1 receptor channel activity. P2X1 receptors were heterologously expressed in Xenopus oocytes. ATP treatment of oocytes expressing P2X1 receptors induced large inward currents (I ATP ), but repetitive ATP treatments induced a rapid desensitization of I ATP . Gintonin treatment after P2X1 receptor desensitization potentiated I ATP in a concentration-dependent manner. We further examined the signaling transduction pathways involved in gintonin-mediated potentiation of I ATP . Gintoninmediated I ATP potentiation was blocked by Ki16425, an LPA1/3 receptor antagonist, a PKC inhibitor, a PLC inhibitor, and a PI4-Kinase inhibitor but not by a calcium chelator. In addition, mutations of the phosphoinositide binding site of the P2X1 receptor greatly attenuated the gintonin-mediated I ATP potentiation. These results indicate that G protein-coupled LPA receptor activation by gintonin is coupled to the potentiation of the desensitized P2X1 receptor through a phosphoinositide-dependent pathway.  相似文献   

5.
β-Lactotensin (β-LT: His-Ile-Arg-Leu) is an ileum-contracting peptide derived from residues No. 146-149 of bovine β-lactoglobulin. The ileum-contracting activity of β-LT was blocked by the NT1 antagonist SR48692. β-LT was selective for the neurotensin NT2 receptor while neurotensin was selective for the NT1 receptor. β-LT is the first natural ligand showing selectivity for the NT2 receptor. β-LT showed hypertensive activity after intravenous administration at a dose of 30 mg/kg in conscious rats, while neurotensin showed hypotensive activity. The hypertensive activity of β-LT was blocked by levocabastine (1 mg/kg, i.v.), an NT2 antagonist. SR48692, which blocked the hypotensive activity of neurotensin, had no effect on the hypertensive activity of β-LT. These results suggest that the hypertensive activity of β-LT is mediated by the NT2 receptor. It was concluded that the NT1 and NT2 receptors mediate the opposite effect on blood pressure.  相似文献   

6.
7.
The goal of the present study was to assess how genetic loss of microsomal prostaglandin E2 synthase-1 (mPGES-1) affects acute cardiac ischemic damage after coronary occlusion in mice. Wild type (WT), heterozygous (mPGES-1+/−), and homozygous (mPGES-1−/−) knockout mice were subjected to left coronary artery occlusion. At 24 h, myocardial infarct (MI) volume was measured histologically. Post-MI survival, plasma levels of creatine phosphokinase (CPK) and cardiac troponin-I, together with MI size, were similar in WT, mPGES-1+/− and mPGES-1−/− mice. In contrast, post-MI survival was reduced in mPGES-1−/− mice pretreated with I prostanoid receptor (IP) antagonist (12/16) compared with vehicle-treated controls (13/13 mPGES-1−/−) together with increased CPK and cardiac troponin-I release. The deletion of mPGES-1 in mice results in increased prostacyclin I2 (PGI2) formation and marginal effects on the circulatory prostaglandin E2 (PGE2) level. We conclude that loss of mPGES-1 results in increased PGI2 formation, and in contrast to inhibition of PGI2, without worsening acute cardiac ischemic injury.  相似文献   

8.
Prostacyclin (prostaglandin I2 [PGI2]) signaling system not only plays a pivotal role in vascular function in many species but is also important during early pregnancy in rodents and ruminants. Recently, abundant concentrations of PGI2 were found in the endometrium and uterine lumen of gilts at the time of implantation. In the present study, conceptuses collected on Days 10, 12, 14, 16, and 18 of pregnancy were examined for the expression of PGI2 receptors, PTGIR. Moreover, the effect of iloprost (a PGI2 analogue) on attachment, proliferation, and apoptosis in conceptus trophoblast (Tr) cells was investigated in vitro. Increased PTGIR mRNA expression was observed in Day 16 trophoblasts compared with Days 10, 12, and 14 conceptuses (P < 0.001) and Day 18 trophoblast tissue (P < 0.01). Embryos from Day 18 of gestation revealed greater PTGIR mRNA expression compared with Day 16 embryos (P < 0.01). In contrast to mRNA, PTGIR protein level in conceptus and trophoblast tissue was high on Days 12 and 14, followed by a decrease observed on Day 16. On Day 18 of pregnancy, PTGIR protein was detected in both trophoblast and embryonic tissue. Iloprost stimulated attachment and proliferation of Tr cells, but this effect was abolished by the addition of the PTGIR-specific antagonist, CAY10441, into culture medium. Addition of iloprost neither did affect the ratio of BAX/BCL-2 gene expression in cultured Tr cells nor did protect these cells from staurosporine-induced apoptosis. In summary, PTGIR is expressed in porcine conceptuses, and PGI2 acting through this receptor may promote the attachment and proliferation of Tr cells, thereby facilitating conceptus implantation.  相似文献   

9.
Effects of tryptamine on tolbutamide-induced hypoglycemia were investigated in mice. Tryptamine significantly inhibited hypoglycemia elicited by tolbutamide. The inhibitory effects of tryptamine were strongly blocked by the 5-HT1 and 5-HT2 receptor antagonist methysergide and the 5-HT2 receptor antagonist ketanserin, while the 5-HT3 receptor antagonist ICS 205–930 was without effect. Tryptamine induced hyperglucagonemia in tolbutamide-treated mice, and this effect elicited by tryptamine was strongly inhibited by the 5-HT2 receptor antagonist ketanserin. These results suggest that the inhibitory effects of tryptamine on tolbutamide-induced hypoglycemia are mediated by 5-HT2 receptors and that tryptamine is involved in glucagon release.  相似文献   

10.
Compound 21 (AM432) was identified as a potent and selective antagonist of the DP2 receptor (CRTH2). Modification of a bi-aryl core identified a series of tri-aryl antagonists of which compound 21 proved a viable clinical candidate. AM432 shows excellent potency in a human whole blood eosinophil shape change assay with prolonged incubation, a comparatively long off-rate from the DP2 receptor, excellent pharmacokinetics in dog and in vivo activity in two mouse models of inflammatory disease after oral dosing.  相似文献   

11.
We disclose herein our preliminary SAR study on the identification of substituted benzothiophene derivatives as PGE2 subtype 4 receptor antagonists. A potent EP4 antagonist 6a (Ki = 1.4 nM with 10% HSA) was identified. Furthermore, we found that an acidic group was not essential for the EP4 antagonizing activity in the series and neutral replacements were identified. This opens a new direction for future EP4 antagonist design.  相似文献   

12.
It is known that peroxides, which are increased during Se deficiency because of reduced glutathione peroxidase (GSH-Px) activity, can influence the prostacyclin I2/thromboxane A2 (PGI2/TXA2) ratio. In this study we analyzed the PGI2 and TXA2 formation of aortas of long-term Se-deficient rats. Despite low GSH-Px activity in the Se-deficient group, the basal PGI2 and TXA2 formation was not different versus control animals (PGI2: 2295 ± 1134 pg/mg vs 2940 ± 1134 pg/mg; TXA2: 3.83 ± 1.06 pg/mg vs 5.67 ± 2.99 pg/mg). However, we checked the capacity of the aortas of Se-deficient rats to compensate for a suddenly increased peroxide concentration. After peroxide stimulation, the PGI2 release was significantly lower in the Se-deficient group compared to the control group (PGI2: 3507 ± 1829 pg/mg vs 7986 ± 2636 pg/mg). Again, the TXA2 release did not show any differences. The release ratio of PGI2/TXA2 decreased under peroxide stress in Se-deficient animals. Although long-term Se deficiency showed a relatively well-balanced metabolism under resting conditions, sudden stress, accompanied by an excessive radical production, cannot be compensated.  相似文献   

13.
Phylogenetic analysis of transmembrane regions of GPCRs using PHYLIP indicated that the orphan receptor P2Y10 receptor was classified into the cluster consisting nucleotide and lipid receptors. Based on the results, we studied the abilities of nucleotides and lipids to activate the P2Y10 receptors. As a result, sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) evoked intracellular Ca2+ increases in the CHO cells stably expressing the P2Y10 fused with a G16α protein. These Ca2+ responses were inhibited by S1P receptor and LPA receptor antagonists. The introduction of siRNA designed for P2Y10 receptor into the P2Y10-CHO cells effectively blocked both S1P- and LPA-induced Ca2+ increases. RT-PCR analysis showed that the mouse P2Y10 was expressed in reproductive organs, brain, lung and skeletal muscle, suggesting the receptor plays physiological roles throughout the whole body. In conclusion, the P2Y10 receptor is the first receptor identified as a dual lysophospholipid receptor.  相似文献   

14.
Although CpG containing DNA is an important regulator of innate immune responses via toll-like receptor 9 (TLR9), excessive activation of this receptor is detrimental to the host. Here, we show that cytosolic phospholipase A2 (cPLA2) activation is important for TLR9-mediated inducible nitric oxide synthase (iNOS) expression. Activation of TLR9 signaling by CpG induces iNOS expression and NO production. Inhibition of TLR9 blocked the iNOS expression and NO production. The CpG also stimulates cPLA2-hydrolyzed arachidonic acid (AA) release. Inhibition of cPLA2 activity by inhibitor attenuated the iNOS expression by CpG response. Additionally, knockdown of cPLA2 protein by miRNA also suppressed the CpG-induced iNOS expression. Furthermore, the CpG rapidly phosphorylates three MAPKs and Akt. A potent inhibitor for p38 MAPK or Akt blocked the CpG-induced AA release and iNOS expression. These results suggest that TLR9 activation stimulates cPLA2 activity via p38 or Akt pathways and mediates iNOS expression.  相似文献   

15.
Selective S1P4 receptor antagonists could be novel therapeutic agents for the treatment of influenza infection in addition to serving as a useful tool for understanding S1P4 receptor biological functions. 5-(2,5-Dichlorophenyl)-N-(2,6-dimethylphenyl)furan-2-carboxamide was identified from screening the Molecular Libraries-Small Molecule Repository (MLSMR) collection and selected as a promising S1P4 antagonist hit with moderate in vitro potency and high selectivity against the other family receptor subtypes (S1P1-3,5). Rational chemical modifications of the hit allowed the disclosure of the first reported highly selective S1P4 antagonists with low nanomolar activity and adequate physicochemical properties suitable for further lead-optimization studies.  相似文献   

16.
In the ischemic brain, leukotrienes (LTs) are increased and their receptor antagonists protect neurons. However, it has not yet been sufficiently clarified how antagonists for LT receptors exhibit neuroprotective effects. In the present study, we evaluated protective effects of receptor antagonists for LTB4 (LY293111) and cysteinyl LTs (ONO-1078) in the primary culture of rat cortical neurons. The group IB secretory phospholipase A2 (sPLA2-IB)-induced neuronal cell death had been established as the in vitro model for cerebral ischemia. sPLA2-IB triggered the influx of Ca2+ into neurons via L-type voltage-dependent calcium channel (L-VDCC). Subsequently, the enzyme produced eicosanoids including LTB4 before neuronal cell death. Neither administration of LTB4 nor cysteinyl LTs such as LTC4, LTD4 and LTE4 killed neurons. However, both LY293111 and ONO-1078 significantly prevented neurons from the neurotoxicity of sPLA2-IB, suggesting that the two LT receptor blockers protected neurons through alternative pathways beside LT receptors. An L-VDCC blocker does not only inhibit the influx of Ca2+ into neurons but also rescues neurons from the sPLA2-IB-induced neuronal cell death. The two LT receptor antagonists also blocked the sPLA2-IB-induced Ca2+ influx significantly. Thus, LTs exhibited no neurotoxicity, but their receptor antagonists protected neurons directly in the in vitro ischemic model. Furthermore, the suppression of L-VDCC appeared to be involved in the neuroprotective effects of LY293111 and ONO-1078 independent of blocking their receptors.  相似文献   

17.
A panel of 18 protein tyrosine kinase antagonists were tested for their inhibitory effect on human P2X7 receptor-mediated 86Rb+ (K+) efflux. The most potent compound (compound P), a phthalazinamine derivative and an inhibitor of vascular endothelial growth factor receptor kinase, blocked ATP-induced 86Rb+-efflux in human B-lymphocytes and erythrocytes by 76% and 66%, respectively. This inhibition was dose-dependent in both cell types with an IC50 of ∼5 μM. Kinetic analysis showed compound P was a non-competitive inhibitor of P2X7. This compound also inhibited ATP-induced ethidium+ influx into B-lymphocytes and P2X7-transfected-HEK-293 cells, as well as ATP-induced 86Rb+-efflux from canine erythrocytes. Externally, but not internally, applied compound P impaired ATP-induced inward currents in P2X7-transfected-HEK-293 cells. This study demonstrates that a novel protein tyrosine kinase antagonist directly impairs native and recombinant human P2X7 receptors. The data suggests that antagonists which target ATP-binding sites of kinases may potentially block the P2X7 receptor.  相似文献   

18.
Prostacyclin alternatively called prostaglandin (PG) I2 is an unstable metabolite synthesized by the arachidonate cyclooxygenase pathway. Earlier studies have suggested that prostacyclin analogues can act as a potent effector of adipose differentiation. However, biosynthesis of PGI2 has not been determined comprehensively at different life stages of adipocytes. PGI2 is rapidly hydrolyzed to the stable product, 6-keto-PGF, in biological fluids. Therefore, the generation of PGI2 can be quantified as the amount of 6-keto-PGF. In this study, we attempted to develop a solid-phase enzyme-linked immunosorbent assay (ELISA) using a mouse antiserum specific for 6-keto-PGF. According to the typical calibration curve of our ELISA, 6-keto-PGF can be quantified from 0.8 pg to 7.7 ng in an assay. The evaluation of our ELISA revealed the higher specificity of our antiserum without the cross-reaction with other related prostanoids while it exhibited only the cross-reaction of 1.5 % with PGF. The resulting ELISA was applied to the quantification of 6-keto-PGF generated endogenously by cultured 3T3-L1 cells at different stages. The cultured cells showed the highest capability to generate 6-keto-PGF during the maturation phase of 4–6 days, which was consistent with the coordinated changes in the gene expression of PGI synthase and the IP receptor for PGI2. Following these events, the accumulation of fats was continuously promoted up to 14 days. Thus, our immunological assay specific for 6-keto-PGF is useful for monitoring the endogenous levels of the unstable parent PGI2 at different life stages of adipogenesis and for further studies on the potential association with the up-regulation of adipogenesis in cultured adipocytes.  相似文献   

19.
SCH 58261 is a reported adenosine A2A receptor antagonist which is active in rat in vivo models of Parkinson’s Disease upon ip administration. However, it has poor selectivity versus the A1 receptor and does not demonstrate oral activity. Quinoline analogs have improved upon the selectivity and pharmacokinetics of SCH 58261, but were difficult to handle due to poor aqueous solubility. We report the design and synthesis of fused heterocyclic analogs of SCH 58261 with aqueous solubility as well as improved A2A receptor binding selectivity and pharmacokinetic properties. In particular, the tetrahydronaphthyridine 4s has excellent A2A receptor in vitro binding affinity and selectivity, is active orally in a rat in vivo model of Parkinson’s Disease, and has aqueous solubility of 100 μM at physiological pH.  相似文献   

20.
The P2X7 receptor is a trimeric ATP-gated cation channel important in health and disease. We have observed that the specific phospholipase D (PLD)1 antagonist, CAY10593 impairs P2X7-induced shedding of the ‘low affinity’ IgE receptor, CD23. The current study investigated the mode of action of this compound on P2X7 activation. Measurements of ATP-induced ethidium+ uptake revealed that CAY10593 impaired P2X7-induced pore formation in human RPMI 8226 B cells, P2X7-transfected HEK-293 cells and peripheral blood mononuclear cells. Concentration response curves demonstrated that CAY10593 impaired P2X7-induced pore formation in RPMI 8226 cells more potently than the PLD2 antagonist CAY10594 and the non-specific PLD antagonist halopemide. Electrophysiology measurements demonstrated that CAY10593 also inhibited P2X7-induced inward currents. Notably, RT-PCR demonstrated that PLD1 was absent in RPMI 8226 cells, while choline-Cl medium or 1-butanol, which block PLD stimulation and signalling respectively did not impair P2X7 activation in these cells. This data indicates that CAY10593 impairs human P2X7 independently of PLD1 stimulation and highlights the importance of ensuring that compounds used in signalling studies downstream of P2X7 activation do not affect the receptor itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号