首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An extract from 50 kinds of fruits and vegetables was fermented to produce a new beverage. Natural fermentation of the extract was carried out mainly by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp. and Pichia spp.). Two new saccharides were found in this fermented beverage. The saccharides were isolated using carbon-Celite column chromatography and preparative high performance liquid chromatography. Gas liquid chromatography analysis of methylated derivatives as well as MALDI-TOF MS and NMR measurements were used for structural confirmation. The (1)H and (13)C NMR signals of each saccharide were assigned using 2D-NMR including COSY, HSQC, HSQC-TOCSY, CH(2)-HSQC-TOCSY, and CT-HMBC experiments. The saccharides were identified as beta-D-fructopyranosyl-(2-->6)-beta-D-glucopyranosyl-(1-->3)-D-glucopyranose and beta-D-fructopyranosyl-(2-->6)-[beta-D-glucopyranosyl-(1-->3)]-D-glucopyranose.  相似文献   

2.
Fe-only hydrogenases contain a di-iron active site complex, in which the two Fe atoms have carbon monoxide and cyanide ligands and are linked together by a putative di(thiomethyl)amine molecule. We have cloned, purified and characterized the HydE and HydG proteins, thought to be involved in the biosynthesis of this peculiar metal site, from the thermophilic organism Thermotoga maritima. The HydE protein anaerobically reconstituted with iron and sulfide binds two [4Fe-4S] clusters, as characterized by UV and EPR spectroscopy. The HydG protein binds one [4Fe-4S] cluster, and probably an additional one. Both enzymes are able to reductively cleave S-adenosylmethionine (SAM) when reduced by dithionite, confirming that they are Radical-SAM enzymes.  相似文献   

3.
D-amino acid amidase (DAA) from Ochrobactrum anthropi SV3, which catalyzes the stereospecific hydrolysis of D-amino acid amides to yield the D-amino acid and ammonia, has attracted increasing attention as a catalyst for the stereospecific production of D-amino acids. In order to clarify the structure-function relationships of DAA, the crystal structures of native DAA, and of the D-phenylalanine/DAA complex, were determined at 2.1 and at 2.4 A resolution, respectively. Both crystals contain six subunits (A-F) in the asymmetric unit. The fold of DAA is similar to that of the penicillin-recognizing proteins, especially D-alanyl-D-alanine-carboxypeptidase from Streptomyces R61, and class C beta-lactamase from Enterobacter cloacae strain GC1. The catalytic residues of DAA and the nucleophilic water molecule for deacylation were assigned based on these structures. DAA has a flexible Omega-loop, similar to class C beta-lactamase. DAA forms a pseudo acyl-enzyme intermediate between Ser60 O(gamma) and the carbonyl moiety of d-phenylalanine in subunits A, B, C, D, and E, but not in subunit F. The difference between subunit F and the other subunits (A, B, C, D and E) might be attributed to the order/disorder structure of the Omega-loop: the structure of this loop cannot assigned in subunit F. Deacylation of subunit F may be facilitated by the relative movement of deprotonated His307 toward Tyr149. His307 N(epsilon2) extracts the proton from Tyr149 O(eta), then Tyr149 O(eta) attacks a nucleophilic water molecule as a general base. Gln214 on the Omega-loop is essential for forming a network of water molecules that contains the nucleophilic water needed for deacylation. Although peptidase activity is found in almost all penicillin-recognizing proteins, DAA lacks peptidase activity. The lack of transpeptidase and carboxypeptidase activities may be attributed to steric hindrance of the substrate-binding pocket by a loop comprised of residues 278-290 and the Omega-loop.  相似文献   

4.
ABSTRACT

An N-lauroyl-l-phenylalanine-producing bacterium, identified as Burkholderia sp. strain LP5_18B, was isolated from a soil sample. The enzyme was purified from the cell-free extract of the strain and shown to catalyze degradation and synthesis activities toward various N-acyl-amino acids. N-lauroyl-l-phenylalanine and N-lauroyl-l-arginine were obtained with especially high yields (51% and 89%, respectively) from lauric acid and l-phenylalanine or l-arginine by the purified enzyme in an aqueous system. The gene encoding the novel aminoacylase was cloned from Burkholderia sp. strain LP5_18B and expressed in Escherichia coli. The gene contains an open reading frame of 1,323 nucleotides. The deduced protein sequence encoded by the gene has approximately 80% amino acid identity to several hydratase of Burkholderia. The addition of zinc sulfate increased the aminoacylase activity of the recombinant E. coli strain.  相似文献   

5.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

6.
Liew HC  Khoo HE  Moore PK  Bhatia M  Lu J  Moochhala SM 《Life sciences》2007,80(18):1664-1668
Stonustoxin (SNTX) is a 148 kDa, dimeric, hypotensive and lethal protein factor isolated from the venom of the stonefish Synanceja horrida. SNTX (10-320 ng/ml) progressively causes relaxation of endothelium-intact, phenylephrine (PE)-precontracted rat thoracic aortic rings. The SNTX-induced vasorelaxation was inhibited by L-N(G)-nitro arginine methyl ester (L-NAME), suggesting that nitric oxide (NO) contributes to the SNTX-induced response. Interestingly, D, L-proparglyglycine (PAG) and beta-cyano-L-alanine (BCA), irreversible and competitive inhibitors of cystathionine-gamma-lyase (CSE) respectively, also inhibited SNTX-induced vasorelaxation, indicating that H(2)S may also play a part in the effect of SNTX. The combined use of L-NAME with PAG or BCA showed that H(2)S and NO act synergistically in effecting SNTX-induced vasorelaxation.  相似文献   

7.
Fermented beverage of plant extract was prepared from about 50 kinds of vegetables and fruits. Natural fermentation was carried out mainly by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp. and Pichia spp.). Three kinds of saccharides have been found in this beverage and produced by fermentation. The saccharides isolated from the beverage using carbon-Celite column chromatography and preparative HPLC, were identified as a new saccharide, beta-d-fructopyranosyl-(2-->6)-d-glucopyranose, laminaribiose and maltose by examination of constituted sugars, GLC and GC-MS analyses of methyl derivatives and MALDI-TOF-MS and NMR measurements of the saccharides.  相似文献   

8.
A full-length cDNA encoding D-amino acid oxidase (DAO, EC 1.4.3.3) was cloned and sequenced from the hepatopancreas of carp fed a diet supplemented with D-alanine. This clone contained an open reading frame encoding 347 amino acid residues. The deduced amino acid sequence exhibited about 60 and 19-29% identity to mammalian and microbial DAOs, respectively. The expression of full-length carp DAO cDNA in Escherichia coli resulted in a significant level of protein with DAO activity. In carp fed the diet with D-alanine for 14 days, DAO mRNA was strongly expressed in intestine followed by hepatopancreas and kidney, but not in muscle. During D-alanine administration, DAO gene was expressed quickly in hepatopancreas with the increase of DAO activity. The inducible nature of carp DAO indicates that it plays an important physiological role in metabolizing exogenous D-alanine that is abundant in their prey invertebrates, crustaceans, and mollusks.  相似文献   

9.
In the last few decades, enzymatic production of 3,4-dihydroxyphenyl-L-alanine (L-dopa) using tyrosine phenol-lyase (Tpl) has been industrialized. This method has an intrinsic problem of tyrosine contamination because Tpl is synthesized under tyrosine-induced conditions. Herein, we constructed a hyper-L-dopa-producing strain by exploiting a mutant TyrR, an activator of tpl. The highest productivity was obtained for the strain grown under non-induced conditions. It was 30-fold higher than that obtained for tyrosine-induced wild-type cells.  相似文献   

10.
The enzymatic characterization of GDP-d-mannose 3',5'-epimerase (GME), a key enzyme in the biosynthesis of vitamin C in plants is described. The GME gene (Genbank Accession No. AB193582) in rice was cloned, and expressed as a fusion protein in Escherichia coli. Reaction products from GDP-d-mannose, as produced by GME catalysis, were separated by recycling HPLC on an ODS column, and were determined to be GDP-l-galactose and GDP-l-gulose, based on their NMR spectra and sugar analysis. The reaction catalyzed by GME was inhibited by GDP, and was strongly accelerated by NAD(+) in contrast to the case of GME from Arabidopsis thaliana. This difference in the effect of NAD(+) on GME activity can be attributed to the NAD binding domain which is conserved in the rice gene, but not in the Arabidopsis thaliana gene. The apparent K(m) and k(cat) were determined to be 1.20x10(-5)M and 0.127s(-1), respectively, in the presence of 20microM NAD(+). The fractions of GDP-d-mannose, GDP-l-galactose and GDP-l-gulose, at equilibrium, were approximately 0.75, 0.20 and 0.05, respectively.  相似文献   

11.
A Glu141Asn mutant Paracoccus sp. 12-A formate dehydrogenase catalyzes marked glyoxylate reduction. Additional replacement of the His332-Gln313 pair with His-Glu, which is a consensus acid/base catalyst in D-hydroxyacid dehydrogenases, further improved the catalytic activity of the enzyme as to glyoxylate reduction through enhancement of the hydrogen transfer step in the catalytic process, slightly shifting the optimal pH for the reaction. On the other hand, the replacement induced no marked activity toward other 2-ketoacid substrates, and diminished the enzyme activity as to formate oxidation. Consequently, the formate dehydrogenase was converted to a highly specific and active glyoxylate reductase through only the two amino acid replacements.  相似文献   

12.
During the final stages of cell-wall synthesis in bacteria, penicillin-binding proteins (PBPs) catalyse the cross-linking of peptide chains from adjacent glycan strands of nascent peptidoglycan. We have recently shown that this step can be bypassed by an L,D-transpeptidase, which confers high-level beta-lactam-resistance in Enterococcus faecium. The resistance bypass leads to replacement of D-Ala4-->D-Asx-L-Lys3 cross-links generated by the PBPs by L-Lys3-->D-Asx-L-Lys3 cross-links generated by the L,D-transpeptidase. As the first structure of a member of this new transpeptidase family, we have determined the crystal structure of a fragment of the L,D-transpeptidase from E.faecium (Ldt(fm217)) at 2.4A resolution. Ldt(fm217) consists of two domains, the N-terminal domain, a new mixed alpha-beta fold, and the ErfK_YbiS_YhnG C-terminal domain, a representative of the mainly beta class of protein structures. Residue Cys442 of the C-terminal domain has been proposed to be the catalytic residue implicated in the cleavage of the L-Lys-D-Ala peptide bond. Surface analysis of Ldt(fm217) reveals that residue Cys442 is localized in a buried pocket and is accessible by two paths on different sides of the protein. We propose that the two paths to the catalytic residue Cys442 are the binding sites for the acceptor and donor substrates of the L,D-transpeptidase.  相似文献   

13.
Here, we report the first investigation of a novel member of the LZT (LIV-1 subfamily of ZIP zinc Transporters) subfamily of zinc influx transporters. LZT subfamily sequences all contain a unique and highly conserved metalloprotease motif (HEXPHEXGD) in transmembrane domain V with both histidine residues essential for zinc transport by ZIP (Zrt-, Irt-like Proteins) transporters. We investigate here whether ZIP14 (SLC39A14), lacking the initial histidine in this motif, is still able to transport zinc. We demonstrate that this plasma membrane located glycosylated protein functions as a zinc influx transporter in a temperature-dependant manner.  相似文献   

14.
Base-catalysed isomerisation of aldoses of the arabino and lyxo series in aluminate solution has been investigated. L-Arabinose and D-galactose give L-erythro-2-pentulose (L-ribulose) and D-lyxo-2-hexulose (D-tagatose), respectively, in good yields, whereas lower reactivity is observed for 6-deoxy-D-galactose (D-fucose). From D-lyxose, D-mannose and 6-deoxy-L-mannose (L-rhamnose) are obtained mixtures of ketoses and C-2 epimeric aldoses. Small amounts of the 3-epimers of the ketoses were also formed. 6-Deoxy-L-arabino-2-hexulose (6-deoxy-L-fructose) and 6-deoxy-L-glucose (L-quinovose) were formed in low yields from 6-deoxy-L-mannose and isolated as their O-isopropylidene derivatives. Explanations of the differences in reactivity and course of the reaction have been suggested on the basis of steric effects.  相似文献   

15.
Melting behaviour of D-sucrose, D-glucose and D-fructose   总被引:1,自引:0,他引:1  
The melting behaviour of d-sucrose, d-glucose and d-fructose was studied. The melting peaks were determined with DSC and the start of decomposition was studied with TG at different rates of heating. In addition, melting points were determined with a melting point apparatus. The samples were identified as d-sucrose, alpha-d-glucopyranose and beta-d-fructopyranose by powder diffraction measurements. There were differences in melting between the different samples of the same sugar and the rate of heating had a remarkable effect on the melting behaviour. For example, T(o), DeltaH(f) and T(i) (initial temperature of decomposition) at a 1 degrees Cmin(-1) rate of heating were 184.5 degrees C, 126.6Jg(-1) and 171.3 degrees C for d-sucrose, 146.5 degrees C, 185.4Jg(-1) and 152.0 degrees C for d-glucose and 112.7 degrees C, 154.1Jg(-1) and 113.9 degrees C for d-fructose. The same parameters at 10 degrees Cmin(-1) rate of heating were 188.9 degrees C, 134.4Jg(-1) and 189.2 degrees C for d-sucrose, 155.2 degrees C, 194.3Jg(-1) and 170.3 degrees C for d-glucose and 125.7 degrees C, 176.7Jg(-1) and 136.8 degrees C d-fructose. At slow rates of heating, there were substantial differences between the different samples of the same sugar. The melting point determination is a sensitive method for the characterization of crystal quality but it cannot be used alone for the identification of sugar samples in all cases. Therefore, the melting point method should be validated for different sugars.  相似文献   

16.
A lectin was isolated from the saline extract of Erythrina speciosa seeds by affinity chromatography on lactose-Sepharose. The lectin content was about 265 mg/100g dry flour. E. speciosa seed lectin (EspecL) agglutinated all human RBC types, showing no human blood group specificity; however a slight preference toward the O blood group was evident. The lectin also agglutinated rabbit, sheep, and mouse blood cells and showed no effect on horse erythrocytes. Lactose was the most potent inhibitor of EspecL hemagglutinating activity (minimal inhibitory concentration (MIC)=0.25 mM) followed by N-acetyllactosamine, MIC=0.5mM, and then p-nitrophenyl alpha-galactopyranoside, MIC=2 mM. The lectin was a glycoprotein with a neutral carbohydrate content of 5.5% and had two pI values of 5.8 and 6.1 and E(1%)(1 cm) of 14.5. The native molecular mass of the lectin detected by hydrodynamic light scattering was 58 kDa and when examined by mass spectroscopy and SDS-PAGE it was found to be composed of two identical subunits of molecular mass of 27.6 kDa. The amino acid composition of the lectin revealed that it was rich in acidic and hydroxyl amino acids, contained a lesser amount of methionine, and totally lacked cysteine. The N-terminal of the lectin shared major similarities with other reported Erythrina lectins. The lectin was a metaloprotein that needed both Ca(2+) and Mn(2+) ions for its activity. Removal of these metals by EDTA rendered the lectin inactive whereas their addition restored the activity. EspecL was acidic pH sensitive and totally lost its activity when incubated with all pH values between pH 3 and pH 6. Above pH 6 and to pH 9.6 there was no effect on the lectin activity. At 65 degrees C for more than 90 min the lectin was fairly stable; however, when heated at 70 degrees C for 10 min it lost more than 80% of its original activity and was totally inactivated at 80 degrees C for less than 10 min. Fluorescence studies of EspecL indicated that tryptophan residues were present in a highly hydrophobic environment, and binding of lactose to EspecL neither quenched tryptophan fluorescence nor altered lambda(max) position. Treating purified EspecL with NBS an affinity-modifying reagent specific for tryptophan totally inactivated the lectin with total modification of three tryptophan residues. Of these residues only the third modified residue seemed to play a crucial role in the lectin activity. Addition of lactose to the assay medium did not provide protection against NBS modification which indicated that tryptophan might not be directly involved in the binding of haptenic sugar D-galactose. Modification of tyrosine with N-acetylimidazole led to a 50% drop in EspecL activity with concomitant acetylation of six tyrosine residues. The secondary structure of EspecL as studied by circular dichroism was found to be a typical beta-pleated-sheet structure which is comparable to the CD structure of Erythrina corallodendron lectin. Binding of lactose did not alter the EspecL secondary structure as revealed by CD examination.  相似文献   

17.
The lectin from Pseudomonas aeruginosa (PA-IIL) is involved in host recognition and biofilm formation. Lectin not only displays an unusually high affinity for fucose but also binds to L-fucose, L-galactose and D-arabinose that differ only by the group at position 5 of the sugar ring. Isothermal calorimetry experiments provided precise determination of affinity for the three methyl-glycosides and revealed a large enthalpy contribution. The crystal structures of the complexes of PA-IIL with L-galactose and Met-beta-D-arabinoside have been determined and compared with the PA-IIL/fucose complex described previously. A combination of the structures and thermodynamics provided clues for the role of the hydrophobic group in affinity.  相似文献   

18.
Biosynthesis of lysine and meso-diaminopimelic acid in bacteria provides essential components for protein synthesis and construction of the bacterial peptidoglycan cell wall. The dapE operon enzymes synthesize both meso-diaminopimelic acid and lysine and, therefore, represent potential targets for novel antibacterials. The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase functions in a late step of the pathway and converts N-succinyl-l,l-diaminopimelic acid to l,l-diaminopimelic acid and succinate. Deletion of the dapE gene is lethal to Helicobacter pylori and Mycobacterium smegmatis, indicating that DapE's are essential for cell growth and proliferation. Since there are no similar pathways in humans, inhibitors that target DapE may have selective toxicity against only bacteria. A major limitation in developing antimicrobial agents that target DapE has been the lack of structural information. Herein, we report the high-resolution X-ray crystal structures of the DapE from Haemophilus influenzae with one and two zinc ions bound in the active site, respectively. These two forms show different activity. Based on these newly determined structures, we propose a revised catalytic mechanism of peptide bond cleavage by DapE enzymes. These structures provide important insight into catalytic mechanism of DapE enzymes as well as a structural foundation that is critical for the rational design of DapE inhibitors.  相似文献   

19.
5-Thio-D-arabinopyranose (5) and 5-thio-D-xylopyranose (10) were synthesized from the corresponding D-pentono-1,4-lactones. After regioselective bromination at C-5, transformation into 5-S-acetyl-5-thio derivatives, reduction into lactols and deprotection afforded the title compounds in 49 and 42% overall yield, respectively.  相似文献   

20.
The Helicobacter pylori NCTC 11637 alanine racemase gene, alr1, was cloned based on a putative alanine racemase gene, alr, of H. pylori 26695. The protein, Alr1, was purified to homogeneity from Escherichia coli MB2795 cells harboring the alr1 gene. The protein exclusively catalyzes the conversion of l-alanine to the d-isomer with K(m) and V(max) values of 100 mM and 909 mumol min(-1) mg(-1), respectively. The values are 16-fold higher than those for the reaction in the reverse direction. The molecular weight of Alr1 is 42,000 by SDS-PAGE, and 68,000 by gel-filtration analysis. The optimal pH and temperature are pH 8.3 and 37 degrees C, respectively, in good accordance with the characteristics shown by the alanine racemase purified from H. pylori NCTC 11637 cells. Pyridoxal 5'-phosphate was suggested to be the cofactor. The physiological function of Alr1 is discussed regarding energy production in the microbial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号