首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A set of new muscarinic antagonists, bridged bicyclic derivatives of 2,2-diphenyl-[1,3]-dioxolan-4-ylmethyl-dimethylamine (1), was synthesized and tested to evaluate their affinity and selectivity for M(1), M(2), M(3) and M(4) receptor subtypes. The conformational constraint of 1 in a bicyclic structure, and the variation in distance and stereochemistry of the active functions allowed us to modulate the selectivity of interaction with the M(1)-M(3) receptor subtypes. The most interesting compound was (cis,trans)-2-(2,2-diphenylethyl)-5-methyl-tetrahydro-[1,3]dioxolo[4,5-c]pyrrole oxalate (6), which is equipotent with Pirenzepine on rabbit vas deferens (M(1)-putative) but shows a better selectivity profile.  相似文献   

2.
A series of derivatives of the known M1 selective muscarinic receptor agonist McN-A-343 (1) was designed with the aim of investigating the effects of structural variations on both the butynyl chain and the phenyl ring of 1. The butynyl chain was replaced with an aromatic spacer, and the effects of such a modification on the stereoelectronic properties of the molecules were theoretically studied and considered compatible with muscarinic receptor affinity. Substituents on the phenyl ring of 1 were selected so as to vary their electronic and hydrophobic properties. This design strategy did not produce muscarinic M1 receptor agonists more potent than the prototype 1, even if some analogues displayed functional selectivity for different muscarinic receptor subtypes. Compounds 3 and 7 were selective agonists towards muscarinic M3 receptors, while compounds 14, 16 and 18 were selective muscarinic M2 receptor agonists. The most interesting derivative was 8, a full agonist at muscarinic M3 receptors devoid of activity at both muscarinic M1 and M2 subtypes. The pharmacological profile of the series was further characterized by studying the anticholinesterase and miotic activities of some representative compounds. Compounds 3-8 turned out to be weak acetylcholinesterase inhibitors, while derivatives 4, 6, 8 and 11 were able to significantly reduce the pupillary diameter in rabbit, indicating 8 as an effective miotic agent.  相似文献   

3.
A series of 2-carbonyl analogues of the muscarinic antagonist diphenidol bearing 1-substituents of different lipophilic, electronic, and steric properties was synthesized and their affinity for the M2 and M3 muscarinic receptor subtypes was evaluated by functional tests. Two derivatives (2g and 2d) showed an M2-selective profile which was confirmed by functional tests on the M1 and M4 receptors. A possible relationship between M2 selectivity and lipophilicity of the 1-substituent was suggested by structure-activity analysis. This work showed that appropriate structural modification of diphenidol can lead to M2-selective muscarinic antagonists of possible interest in the field of Alzheimer's disease.  相似文献   

4.
Pirenzepine (2) is one of the most selective muscarinic M(1) versus M(2) receptor antagonists known. A series of 2 analogs, in which the piperazyl moiety was replaced by a cis- and trans-cyclohexane-1,2-diamine (3-6) or a trans- and cis-perhydroquinoxaline rings (7 and 8) were prepared, with the aim to investigate the role of the piperazine ring of 2 in the interaction with the muscarinic receptors. The structural change leading to compounds 3-6 abolished in binding assays the muscarinic M(1)/M(2) selectivity of 2, due to an increased M(2) affinity. Rather, compounds 3-6 displayed a reversed selectivity showing more affinity at the muscarinic M(2) receptor than at all the other subtypes tested.  相似文献   

5.
Several novel methoctramine-related tetraamines were designed, and their biological profiles at muscarinic receptor subtypes were assessed by functional experiments in isolated guinea pig and rat atria (M2) and smooth muscle (ileum and trachea, M3) and by binding assays in rat cortex (M1), heart (M2), and submaxillary gland (M3) homogenates and NG 108-15 cells (M4). Tripitramine, a nonsymmetrical tetraamine, resulted in the most potent and the most selective muscarinic M2 receptor antagonist of the series (pA2 = 9.14-9.85; pKi = 9.54). Spirotramine (FC 15-94), a symmetrical tetraamine, was able to differentiate between muscarinic M1 receptors (pKi = 7.88) and the other subtypes (M2, pKi = 6.20; M3, pKi = 5.81; M4, pKi = 6.27). Thus, tripitramine and spirotramine could be valuable tools for the pharmacological classification and characterization of muscarinic receptor subtypes.  相似文献   

6.
Mucus glycoproteins (MGP) are high-molecular-weight glycoconjugates that are released from submucosal glands and epithelial goblet cells in the respiratory tract. Muscarinic receptors have an important role in the regulation of human nasal glandular secretion and mucus production, but it is not known which of the five muscarinic receptor subtypes are involved. The effect of nonselective and M1-, M2-, and M3-selective muscarinic antagonists on methacholine (MCh)-induced MGP secretion from human nasal mucosal explants was tested in vitro. MGP was assayed by enzyme-linked immunosorbent assay using a specific anti-MGP monoclonal antibody (7F10). MCh (100 microM) induced MGP secretion up to 127% compared with controls. MCh-induced MGP release was significantly inhibited by atropine (100 microM), the M, receptor antagonist pirenzepine (10-100 microM), and the M3 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP; 1-100 microM). 4-DAMP significantly inhibited MCh-induced MGP release at a lower concentration (1 microM) than pirenzepine (10 microM). The M2 receptor antagonists AF-DX 116 and gallamine (both at 100 microM) had no effect. No antagonist alone had a significant effect on MGP release. These results indicate that the M1 and M3 muscarinic receptor subtypes regulate MGP secretion from human nasal mucosa and suggest that the M3 receptor has the predominant effect.  相似文献   

7.
The aim of the present paper was to investigate the role of the octamethylene spacer of methoctramine (1) on the biological profile. Thus, this spacer was incorporated into a dianiline or dipiperidine moiety to determine whether flexibility and the basicity of the inner nitrogen atoms are important determinants of potency with respect to muscarinic receptors. The most potent compound was 4, which displayed, in the functional assays, a comparable potency at muscarinic M(2) receptors with respect to 1, and, in the binding assays, a loss of potency and selectivity toward muscarinic M(1) and M(3) receptor subtypes. Both compounds were endowed with antinociceptive activity. Furthermore, in microdialysis tests in rat parietal cortex, they enhanced acetylcholine release, most likely by antagonizing presynaptic muscarinic receptor subtypes.  相似文献   

8.
In vitro competition binding experiments with the selective muscarinic antagonists AF-DX 116 and pirenzepine (PZ) vs 3H-N-methylscopolamine as radioligand revealed a characteristic distribution of muscarinic receptor subtypes in different regions of rat brain. Based on non linear least squares analysis, the binding data were compatible with the presence of three different subtypes: the M1 receptor (high affinity for PZ), the cardiac M2 receptor (high affinity for AF-DX 116) and the glandular M2 receptor (low affinity for PZ and AF-DX 116). The highest proportion of M1 receptors was found in the hippocampus, whilst the cerebellum and the hypothalamus were the regions with the largest fraction of the cardiac M2 and glandular M2 receptors, respectively. In certain brain areas, depending on the relative proportions of the subtypes, flat binding curves were seen for AF-DX 116 and PZ. Based on these data, an approximate distribution pattern of the subtypes in the various brain regions is presented.  相似文献   

9.
Catecholamine secretion in the bovine adrenal medulla is evoked largely by nicotinic receptor activation. However, bovine adrenal medulla also contain muscarinic receptors that mediate several cell responses. To understand the physiological role of muscarinic receptors in the bovine adrenal medulla it is important to identify the pharmacological subtypes present in this tissue. For this, we analyzed the abilities of differnt selective muscarinic antagonists in displacing the binding of the non-selective antagonist [3H] quinuclidinyl benzylate to an enriched plasma membrane fraction prepared from bovine adrenal medulla. All the selective antagonists bind at least two bindings sites with different affinities. The binding profile of the sites with high proportion is similar to the M2 subtype and those present in low proportion have a M1 profile. However, some variation in the proportion of the sites for the different ligands suggest the presence of the third pharmacological subtype (M3). We conclude that the sites in high proportion (60–80%) correspond to M2 muscarinic subtypes, and the rest is constitute by M1 plus M3 subtypes. The presence of multiplicity of subtypes in the adrenal medulla membranes suggests a diversity of functions of muscarinic receptors in the adrenal gland.Abbreviations [3H]QNB [3H]quinuclidinyl benzylate - HHSiD hexahydro-siladifenidol-hydrochloride - AF-DX 116 11-[[2-(diethylamino)methyl]]-1-piperidinyl]-5,11-dihydro-6H-pyrido[2,3,-b][1,4]benzodiazepin-6-one - 4-DAMP 4-diphenylacetoxy-N-methyl piperidine methobromide  相似文献   

10.
A series of 3-(pyrazol-3-yl)-1-azabicyclo[2.2.2]octane derivatives C (Fig. 1) was synthesized and tested for muscarinic activity in receptor binding assays using [3H]-oxotremorine-M (OXO-M) and [3H]-pirenzepine (PZ) as ligands. Potential muscarinic agonistic or antagonistic properties of the compounds were determined using binding studies measuring their potencies to inhibit the binding of OXO-M and PZ. Preferential inhibition of OXO-M binding was used as an indicator for potential muscarinic agonistic properties; this potential was confirmed in functional studies on isolated organs.  相似文献   

11.
Few muscarinic antagonists differentiate between the M4 and M2 muscarinic receptors. In a structure activity study, aimed at discovering leads for the development of a M4 muscarinic receptor-selective antagonist, we have synthesized and tested at cloned muscarinic receptors the binding of a group of dioxolane- or oxadiazole-dialkyl amines, and compared them to our compound 1, which contains the furan nucleus. Although none of these agents were particularly potent at M4 receptors (Kd values were typically 30-70 nM), furan derivatives (-)1 and (+)1 were significantly more potent at M4 receptors than at M2 receptors (approximately 3- and 4-fold, respectively). The dioxolane derivatives 12b and 12c were more than 10-fold selective for the M4 versus the M2 receptors, while the dioxolane derivative 12e was 15-fold more potent at M4 receptors than for M2 receptors. However, these agents bound to M3 receptors with potencies like that for the M4 receptor, so they are not M4-selective. The M4/M2 relative selectivities of some of our compounds are similar to the better hexahydrosiladifenidol derivatives, and may provide some important structural clues for the development of potent and selective M4 antagonists.  相似文献   

12.
To investigate the pharmacological effect of a novel compound YM796, we performed radioligand binding experiments and correlative biochemical experiments using the transfected murine fibroblast B82 cells which expressed the m1 and m2 muscarinic receptor genes (cloned cell lines designated as LK3-3 and M2LKB2-2, respectively). [3H](-)methyl-3-quinuclidinyl benzilate [( 3H](-)MQNB) binding in these transfected cell lines was inhibited by different optical isomers of YM796 and other muscarinic drugs, atropine, pirenzepine, AF-DX 116, as well as selected agonists. (-)YM796, (+)YM796 and (+/-)YM796 inhibited [3H](-)MQNB binding in LK3-3 cells with Ki values of 16.4 microM, 30.1 microM and 21.8 microM and in M2LKB2-2 cells with Ki values of 52.0 microM, 108 microM and 77.1 microM, respectively. From functional assays we found the two isomers, (-)YM796 and (+)YM796 had different intrinsic activities for the M1 and M2 muscarinic receptors. (-)YM796 revealed agonistic activity: stimulation of [3H]IP1 accumulation in LK3-3 cells with an EC50 value of 26.5 microM, which was less efficacious (the Emax value was 5.6 times basal) than carbachol, a full agonist (the Emax value was 17.2 times basal). Interestingly, (-)YM796 did not show significant inhibition of cAMP formation in M2LKB2-2 cells except at extremely high concentrations (greater than 1mM). (+)YM796 exhibited no significant efficacy for the M1 and M2 muscarinic receptors. These results suggest that (-)YM796 represents a muscarinic partial agonist with functional selectivity for the M1 muscarinic receptors whereas (+)YM796 shows no efficacy for either M1 or M2 muscarinic receptors in these transfected cells.  相似文献   

13.
A series of muscarinic agonists, straight chained, branched, cyclic alkyl and aromatic derivatives of the oxime 1 (demox) was designed with the aim of investigating their activity on muscarinic receptor subtypes. Effects on M1 receptor were assessed functionally by a microphysiometer apparatus, while M2, M3, and M4 receptor potency and affinity were studied on isolated preparations of guinea pig heart, ileum, and lung, respectively. The results suggest that the substitution of a hydrogen with a long side-chain or bulky group generally induces a decrease in potency at M1 and M3 subtypes, while a general increase in this parameter is obtained at M2 subtype. Among the agonists 2-18, compound 4 behaves as a full agonist with a preference for M3 subtype. Moreover, compound 12 is inactive at M1 and M4 receptors while it displays a full agonist activity at M2 and M3 subtypes. Since demox displays a variable response on cardiac M2 receptors regulating heart force, an in-depth inquiry of the functional behaviour of this compound was carried out at M2 receptors. In presence of 10(-11) and 10(-10) M demox, the binding of [3H]-NMS was increased by approximately 30% as a consequence of an increase of the association of [3H]-NMS to membranes; this effect was not observed in presence of a higher concentration of [3H]-NMS. Higher concentrations of demox decreased the binding of [3H]-NMS to heart atrial membranes but significantly retarded the dissociation of this radioligand. Our results suggest that demox may interact with orthosteric and allosteric sites of atrial M2 muscarinic receptor.  相似文献   

14.
Acetylcholine (ACh), a major neurotransmitter from the autonomic nervous system, regulates the cholinergic stimulation of insulin secretion, through interactions with muscarinic receptors. The present study has characterised the individual involvement of muscarinic receptor subtypes in ACh-induced insulin secretion, using clonal beta cells and selective muscarinic receptor antagonists. BRIN BD11 cells clearly expressed mRNA encoding m1--m4 whereas m5 was not detected by RT-PCR. Insulin release was measured from BRIN BD11 cells treated with ACh in the presence of muscarinic receptor antagonists at concentrations ranging from 3 nM to 1 microM. 300 nM of muscarinic toxin-3 (M4 antagonist) and 1 microM of methoctramine (M2 antagonist) increased ACh (100 microM) stimulated insulin secretion by 168% and 50% respectively (ANOVA, P<0.05). The antagonists alone had no effect on insulin secretion. In contrast, 300 nM of pirenzepine (M1 antagonist) and 30 nM of hexahydro-sila-difenidol p-fluorohydrochloride (M3 antagonist) inhibited ACh stimulation by 91% and 84% respectively (ANOVA, P<0.01). It is concluded that ACh acts on different receptor subtypes producing both a stimulatory and an inhibitory action on insulin release.  相似文献   

15.
A family of five subtypes of muscarinic acetylcholine receptors (mAChR) has been identified based on their molecular structures and second signal transduction pathways. In the present study, we examined the antagonist binding profiles of 9 muscarinic antagonists (atropine, 4-DAMP, pirenzepine, oxybutynin, tiquizium, timepidium, propiverine, darifenacin and zamifenacin) for human muscarinic acetylcholine receptor subtypes (m1, m2, m3, m4 and m5) produced by using a baculovirus infection system in Sf9 insect cells, and rat tissue membrane preparations (heart and submandibular gland). In a scopolamine methyl chloride [N-methyl-3H]- ([3H]NMS) binding assay, pirenzepine and timepidium displayed the highest affinities for the m1 and m2 subtypes, respectively, and both zamifenacin and darifenacin had the highest affinities for the m3 subtype, although the selectivities among the five subtypes were less than 10-fold. Propiverine showed a slightly higher affinity for the m5 subtype, whereas none of the drugs used in this study was uniquely selective for the m4 subtype. The binding affinities of muscarinic antagonists for rat heart and submandibular gland strong correlated with those for human cloned m2 and m3 subtypes, respectively. These data suggest that [3H]NMS binding studies using rat heart and submandibular gland might be useful methods which predict the affinities of test drugs for human muscarinic M2 and M3 receptor subtypes.  相似文献   

16.
Acetylcholine (ACh), a major neurotransmitter from the autonomic nervous system, regulates the cholinergic stimulation of insulin secretion, through interactions with muscarinic receptors. The present study has characterised the individual involvement of muscarinic receptor subtypes in ACh-induced insulin secretion, using clonal β cells and selective muscarinic receptor antagonists. BRIN BD11 cells clearly expressed mRNA encoding m1–m4 whereas m5 was not detected by RT-PCR. Insulin release was measured from BRIN BD11 cells treated with ACh in the presence of muscarinic receptor antagonists at concentrations ranging from 3 nM to 1 μM. 300 nM of muscarinic toxin-3 (M4 antagonist) and 1 μM of methoctramine (M2 antagonist) increased ACh (100 μM) stimulated insulin secretion by 168% and 50% respectively (ANOVA, P<0.05). The antagonists alone had no effect on insulin secretion. In contrast, 300 nM of pirenzepine (M1 antagonist) and 30 nM of hexahydro-sila-difenidol p-fluorohydrochloride (M3 antagonist) inhibited ACh stimulation by 91% and 84% respectively (ANOVA, P<0.01). It is concluded that ACh acts on different receptor subtypes producing both a stimulatory and an inhibitory action on insulin release.  相似文献   

17.
18.
Two subseries of nonquaternized (5a-10a) and quaternized derivatives (5b-10b) related to oxotremorine and oxotremorine-M were synthesized and tested. The agonist potency at the muscarinic receptor subtypes of the new compounds was estimated in three classical in vitro functional assays: M1 rabbit vas deferens, M2 guinea pig left atrium and M3 guinea pig ileum. In addition, the occurrence of central muscarinic effects was evaluated as tremorigenic activity after intraperitoneal administration in mice. In in vitro tests a nonselective muscarinic activity was exhibited by all the derivatives with potencies values that, in some instances, surpassed those of the reference compounds (i.e. 8b). Functional selectivity was evidenced only for the oxotremorine-like derivative 9a, which behaved as a mixed M3-agonist/M1-antagonist (pD2 = 5.85; pA2 = 4.76, respectively). In in vivo tests non-quaternary compounds were able to evoke central muscarinic effects, with a potency order parallel to that observed in vitro.  相似文献   

19.
In our search for M2-selective muscarinic receptor antagonists, we synthesized 1,3-disubstituted indenes. The effects of different basic moieties with regard to binding and selectivity towards the five distinct muscarinic receptor subtypes were investigated. The results show that the quinuclidine series afforded the most promising compounds in terms of both receptor affinity and M2-subtype selectivity.  相似文献   

20.
The bioassay-guided purification of ether extracts of Alpinia officinarum led to the isolation of two new compounds 6-hydroxy-1,7-diphenyl-4-en-3-heptanone (1) and 6-(2-hydroxy-phenyl)-4-methoxy-2-pyrone (4) as well as three known compounds 1,7-diphenyl-4-en-3-heptanone (2), 1,7-diphenyl-5-methoxy-3-heptanone (3), and apigenin (5). Their structures were established on the basis of spectral methods. All three diarylheptanoids 1, 2, and 3 exhibited potent PAF receptor binding inhibitory activities with an IC50 of 1.3, 5.0, and 1.6 μM, respectively. These studies have identified diarylheptanoids as a novel class of potent PAF antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号