首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Sequence analysis of the actVA region of the actinorhodin biosynthetic gene cluster of Streptomyces coelicolor revealed a succession of six open reading frames (ORFs), all running in the same direction and extending over 5.32 kb. The protein product of actVA-ORF1 strongly resembles that of another gene, elsewhere in the act cluster (actII-ORF2), which codes for a trans-membrane protein previously implicated in actinorhodin export from the mycelium. This suggests that the two gene products may co-operate in actinorhodin export, perhaps being sufficient for self-protection of the organism against suicide. At least four of the other five ORFs are implicated in the control of the C-6 and C-8 ring-hydroxylation reactions, lacking in actVA mutants, that occur at middle to late stages in the actinorhodin biosynthetic pathway. This conclusion was reached by genetic mapping of actVA mutants to actVA-ORF3 and-ORF5 (and perhaps -ORF4), and by the finding of strong resemblances between the protein products of actVA-ORF2 and -ORF6 and the products of genes of the oxytetracycline or tetracenomycin gene clusters that have been implicated in ring-hydroxylation reactions in the biosynthesis of these other aromatic polyketide antibiotics.  相似文献   

2.
3.
AfsR2, originally identified fromStreptomyces lividans, is a global regulatory protein which stimulates antibiotic biosynthesis. Through its stable chromosomal integration, the high level of gene expression ofafsR2 significantly induced antibiotic production as well as the sporulation ofS. lividans, implying the presence of yet-uncharacterized AfsR2-target proteins. To identify and evaluate the putative AfsR2-target proteins involved in antibiotic regulation, the proteomics-driven approach was applied to the wild-typeS. lividans and theafsR2-integrated actinorhodin overproducing strain. The 2D gel-electrophoresis gave approximately 340 protein spots showing different protein expression patterns between these twoS. lividans strains. Further MALDI-TOF analysis revealed several AfsR2-target proteins, including glyceraldehyde-3-phosphate dehydrogenase, putative phosphate transport system regulator, guanosine pentaphosphate synthetase/polyribonucleotide nucleotidyltransferase, and superoxide dismutase, which suggests that the AfsR2 should be a pleiotropic regulatory protein which controls differential expressions of various kinds of genes inStreptomyces species.  相似文献   

4.
5.
The actI gene, encoding a component of the actinorhodin polyketide synthase of Streptomyces coelicolor, was used to identify and clone a homologous 11.7 kb BamHI DNA fragment from Saccharopolyspora hirsuta 367. The cloned fragment complemented actinorhodin production in a strain of Streptomyces coelicolor bearing a mutant actI gene. The DNA sequence of a 5.1 kb fragment revealed 6 open reading frames (ORF). ORF1 does not resemble any known DNA or deduced protein sequence, while the deduced protein sequence of ORF2 resembles that of biotin carboxyl carrier proteins. Based on the similarity to deduced protein sequences from cloned genes of polyketide producers, ORF3 would code for a ketoreductase, ORF4 and ORF5 for the putative heterodimeric -ketoacyl synthase, and ORF6 for an acyl carrier protein.  相似文献   

6.
7.
The actI gene, encoding a component of the actinorhodin polyketide synthase of Streptomyces coelicolor, was used to identify and clone a homologous 11.7 kb BamHI DNA fragment from Saccharopolyspora hirsuta 367. The cloned fragment complemented actinorhodin production in a strain of Streptomyces coelicolor bearing a mutant actI gene. The DNA sequence of a 5.1 kb fragment revealed 6 open reading frames (ORF). ORF1 does not resemble any known DNA or deduced protein sequence, while the deduced protein sequence of ORF2 resembles that of biotin carboxyl carrier proteins. Based on the similarity to deduced protein sequences from cloned genes of polyketide producers, ORF3 would code for a ketoreductase, ORF4 and ORF5 for the putative heterodimeric β-ketoacyl synthase, and ORF6 for an acyl carrier protein.  相似文献   

8.
9.
Summary Cloned DNA encoding polyketide synthase (PKS) genes from one Streptomyces species was previously shown to serve as a useful hybridisation probe for the isolation of other PKS gene clusters from the same or different species. In this work, the actI and actIII genes, encoding components of the actinorhodin PKS of Streptomyces coelicolor, were used to identify and clone a region of homologous DNA from the monensin-producing organism S. cinnamonensis. A 4799 by fragment containing the S. cinnamonensis act-homologous DNA was sequenced. Five open reading frames (ORFs 1–5) were identified on one strand of this DNA. The five ORFs show high sequence similarities to ORFs that were previously identified in the granaticin, actinorhodin, tetracenomycin and whiE PKS gene clusters. This allowed the assignment of the following putative functions to these five ORFS : a heterodimeric -ketoacyl synthase (ORF1 and ORF2), an acyl carrier protein (ORF3), a -ketoacyl reductase (ORF5), and a bifunctional cyclase/dehydrase (ORF4). The ORFs are encoded in the order ORFl-ORF2-ORF3-ORF5-ORF4, and ORFs-1 and -2 show evidence for translational coupling. This act-homologous region therefore appears to encode a PKS gene cluster. A gene disruption experiment using the vector pGM 160, and other evidence, suggests that this cluster is not essential for monensin biosynthesis but rather is involved in the biosynthesis of a cryptic aromatic polyketide in S. cinnamonensis. An efficient plasmid transformation system for S. cinnamonensis has been established, using the multicopy plasmids pWOR120 and pWOR125.  相似文献   

10.
The AfsR protein is essential for the biosynthesis at the wild-type level of A-factor, actinorhodin, and undecylprodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. Because overexpression of the afsR gene caused some deleterious effect on these strains, a multicopy plasmid carrying the whole afsR gene was introduced into Streptomyces griseus, from which a crude cell lysate was prepared as a protein source. The AfsR protein was purified to homogeneity from the cytoplasmic fraction through several steps of chromatography, including affinity column chromatography with ATP-agarose and use of anti-AfsR antibody for its detection. The molecular weight of AfsR was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by gel filtration to be 105,300, which is in good agreement with that deduced from the nucleotide sequence of afsR. The purified AfsR protein was found to be phosphorylated through the transfer of the gamma-phosphate group of ATP in the presence of the cell extracts of S. coelicolor A3(2) and S. lividans. This phosphorylation proceeded very rapidly, and no competition was observed with CTP, GTP, UTP, or cyclic AMP. In the cell extract of S. griseus, no activity phosphorylating the AfsR protein was detected, suggesting that this activity is not generally present in Streptomyces spp. but is specific to certain species. It is conceivable that the extent of phosphorylation of the AfsR protein modulates its regulatory activity which, in turn, regulates expression of some target gene(s) involved in the secondary-metabolite formation in S. coelicolor A3(2).  相似文献   

11.
Streptomyces arenae produces at least four different isochromanequinone antibiotics, the naphthocyclinones, of which the - and -form are active against Gram-positive bacteria. The naphthocyclinone biosynthesis gene cluster was isolated from Streptomyces arenae DSM 40737 and by sequence analysis the minimal polyketide synthase genes and several genes encoding tailoring enzymes were identified. Southern blot analysis of the naphthocyclinone gene cluster indicated that a 3.5 kb BamHI fragment located approximately 9 kb downstream of the minimal PKS genes hybridizes to the schC hydroxylase DNA probe isolated from S. halstedii. Two complete and one incomplete open reading frames were identified on this fragment. Sequence analysis revealed strong homology to the genes of the actVA region of S. coelicolor, to several (suggested) hydroxylases and a putative FMN-dependent monooxygenase. The proposed hydroxylase, encoded by ncnH, could hydroxylate aloesaponarin II, a molecule that is produced by the actinorhodin minimal polyketide synthase in combination with the actinorhodin ketoreductase, aromatase and cyclase. Furthermore, this enzyme is capable of accepting additional polyketide core structures that contain a 5-hydroxy-1,4-naphthoquinone moiety as substrates which makes it an interesting tailoring enzyme for the modification of polyketide structures.  相似文献   

12.
Streptomyces lividans 1326 usually does not produce the red/blue colored polyketide actinorhodin in liquid culture even though it carries the entire actinorhodin biosynthesis gene cluster. The bacterium can be forced to produce this secondary metabolite by introducing actII-ORF4, the actinorhodin pathway-specific activator gene from Streptomyces coelicolor, on a multicopy plasmid. The production of actinorhodin by such a strain has been optimized by medium and process manipulations in fed-batch cultures. With high-yield cultivation conditions, 5 g actinorhodin/l are produced during 7 days of cultivation; or approximately 0.1 g actinorhodin/g dry weight (DW)/day in the production phase. The yield in this phase is 0.15 Cmol actinorhodin/Cmol glucose, which is in the range of 25% to 40% of the maximum theoretical yield. This high-level production mineral medium is phosphate limited. In contrast, nitrogen limitation resulted in low-level production of actinorhodin and high production of α-ketoglutaric acid. Ammonium as nitrogen source was superior to nitrate supporting an almost three times higher actinorhodin yield as well as a two times higher specific production rate. The wild-type strain lacking the multicopy plasmid did not produce actinorhodin when cultivated under any of these conditions. This work examines the actinorhodin-producing potential of the strain, as well as the necessity to improve the culture conditions to fully utilize this potential. The overexpression of biosynthetic pathway-specific activator genes seems to be a rational first step in the design of secondary metabolite overproducing strains prior to alteration of primary metabolic pathways for redirection of metabolic fluxes. Journal of Industrial Microbiology & Biotechnology (2002) 28, 103–111 DOI: 10.1038/sj/jim/7000219 Received 04 April 2001/ Accepted in revised form 30 October 2001  相似文献   

13.
14.
15.
An important attribute of proteome analysis carried out with the aid of two-dimensional gel electrophoresis is that post-translational modifications of proteins can often be revealed. Large-scale proteomic analysis of Streptomyces coelicolor A3(2) has been made possible with the availability of its genome sequence. Here, we bring together observations on the proteins specifically associated with biosynthesis of the isochromanequinone polyketide antibiotic actinorhodin. The predicted products of 14 of the genes annotated as belonging to the act gene cluster were detected. They were generally present only in stationary phase cultures. Plausible explanations are presented for the absence of the other nine. For six of the gene products detected, there was evidence of either specific processing or covalent modification; in the case of the pyran ring closure enzyme ActVI-ORF3, the cleavage of the N-terminal 31 or 34 amino acids was previously shown to be associated with an extracytoplasmic location for the mature gene product [Hesketh A, et al. (2002) Mol Microbiol 46:917–932]. These observations may have implications for the regulation of actinorhodin biosynthesis, and for biochemical studies of artificially expressed Act proteins.  相似文献   

16.
Antibiotics have either bactericidal or bacteriostatic activity. However, they also induce considerable gene expression in bacteria when used at subinhibitory concentrations (below the MIC). We found that lincomycin, which inhibits protein synthesis by binding to the ribosomes of Gram-positive bacteria, was effective for inducing the expression of genes involved in secondary metabolism in Streptomyces strains when added to medium at subinhibitory concentrations. In Streptomyces coelicolor A3(2), lincomycin at 1/10 of its MIC markedly increased the expression of the pathway-specific regulatory gene actII-ORF4 in the blue-pigmented antibiotic actinorhodin (ACT) biosynthetic gene cluster, which resulted in ACT overproduction. Intriguingly, S. lividans 1326 grown in the presence of lincomycin at a subinhibitory concentration (1/12 or 1/3 of its MIC) produced abundant antibacterial compounds that were not detected in cells grown in lincomycin-free medium. Bioassay and mass spectrometry analysis revealed that some antibacterial compounds were novel congeners of calcium-dependent antibiotics. Our results indicate that lincomycin at subinhibitory concentrations potentiates the production of secondary metabolites in Streptomyces strains and suggest that activating these strains by utilizing the dose-response effects of lincomycin could be used to effectively induce the production of cryptic secondary metabolites. In addition to these findings, we also report that lincomycin used at concentrations for markedly increased ACT production resulted in alteration of the cytoplasmic protein (FoF1 ATP synthase α and β subunits, etc.) profile and increased intracellular ATP levels. A fundamental mechanism for these unique phenomena is also discussed.  相似文献   

17.
The availability of zinc was shown to have a marked influence on the biosynthesis of actinorhodin in Streptomyces coelicolor A3(2). Production of actinorhodin and undecylprodigiosin was abolished when a novel pleiotropic regulatory gene, absC, was deleted, but only when zinc concentrations were low. AbsC was shown to control expression of the gene cluster encoding production of coelibactin, an uncharacterized non‐ribosomally synthesized peptide with predicted siderophore‐like activity, and the observed defect in antibiotic production was found to result from elevated expression of this gene cluster. Promoter regions in the coelibactin cluster contain predicted binding motifs for the zinc‐responsive regulator Zur, and dual regulation of coelibactin expression by zur and absC was demonstrated using strains engineered to contain deletions in either or both of these genes. An AbsC binding site was identified in a divergent promoter region within the coelibactin biosynthetic gene cluster, adjacent to a putative Zur binding site. Repression of the coelibactin gene cluster by both AbsC and Zur appears to be required to maintain appropriate intracellular levels of zinc in S. coelicolor.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号