首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Production of the mycotoxin zearalenone (ZEN) was examined in drinking water inoculated with Fusarium graminearum. The strain employed was isolated from a US water distribution system. ZEN was purified with an immunoaffinity column and quantified by high-performance liquid chromatography (HPLC) with fluorescence detection. The extracellular yield of ZEN was 15.0 ng l−1. Visual growth was observed. Ergosterol was also indicative of growth and an average of 6.2 μg l−1 was obtained. Other compounds were also detected although remain unidentified. There is no equivalent information available. More work is required on metabolite expression in water as mycotoxins have consequences for human and animal health. The levels detected in this study were low. Water needs to be accepted as a potential source as it attracts high quality demands in terms of purity. An erratum to this article can be found at  相似文献   

2.
Leaf explants of the second or third node were collected from field-grown elite Jatropha curcas trees and incubated in Murashige and Skoog’s (Physiol Plant 15:473–497, 1962) medium supplemented with growth regulators. Direct shoot organogenesis was induced when explants were incubated in a medium containing 0.5 mg l?1 benzyladenine (BA) and 0.1 mg l?1 indolebutyric acid (IBA). A maximum of seven shoot buds differentiated within 6 weeks of culture incubation. Indirect shoot organogenesis was obtained when explants were incubated in the medium supplemented with 0.5 mg l?1 BA along with 1.0 mg l?1 each of 2,4-dichlorophenoxyacetic acid (2,4-D) and indoleacetic acid (IAA). A pulse treatment of 0.5 mg l?1 thidiazurone (TDZ) and 0.1 mg l?1 IBA for 5 days was necessary for shoot organogenesis in green compact callus before subculture into 0.5 mg l?1 BA and 0.1 mg l?1 IBA containing medium. Leaf explants of J. curcas, collected from the field, contained endophytic bacterial contamination, which expressed itself after 2–3 subcultures. These bacteria were cultured and identified as Enterobacter ludwigii. After staining, these were found as gram-negative bacteria. Their sensitivity against different antibiotics has been tested by culturing them with different antibiotic stabs for 72 h. Finally, Augmentin® was found as the most effective and suitable antibiotic which not only controlled the bacteria within 2–3 subcultures but also supported the regeneration system and growth of the regenerated shoots and such cultures have been grown for a long-term of over 2 years without any contamination.  相似文献   

3.
An in vitro plant regeneration system was established from the spores of Pteris vittata and identification of its tolerance, and accumulation of gametophytes and callous, to arsenic (As) and copper (Cu) was investigated. The highest frequency (100%) of callus formation was achieved from gametophyte explants treated with 0.5 mg l?1 6-benzylaminopurine (6-BA) + 0.5 mg l?1 gibberellin acid (GA). Furthermore, sporophytes were differentiated from the callus tissue derived from gametophyte explants on MS medium supplemented with 0.5 mg l?1 6-BA, 0.5–1.0 mg l?1 GA and additional 300 mg l?1 lactalbumin hydrolysate (LH) for 4 weeks. The optimum combination of ½ MS + 1.0 mg l?1 GA + 0.5 mg l?1 6-BA + 300 mg l?1 LH promoted sporophyte formation on 75 ± 10% of the callus. Every callus derived from gametophyte explants could achieve 3–4 sporophytes. The in vitro growth of gametophyte and callus was accelerated in the medium containing Na3AsO4 lower than 0.5 mM, but this growth was inhibited with 2 mM Na3AsO4. And with the increase of Na3AsO4 in the culture medium from 0 to 2 mM, the As accumulation in gametophytes and callus increased and achieved a level of 763.3 and 315.4 mg kg?1, respectively. Gametophytes and calluses transplanted to culture medium, supplemented with different concentrations of CuSO4, are similar to those in Na3AsO4, and the Cu accumulation in gametophytes could achieve 7,940 mg kg?1 when gametophytes were subcultured in medium containing 3 mM CuSO4. These results suggested that the high efficiency propagation system could be a useful and rapid means to identify other heavy metal tolerance and accumulation. Further, the regeneration ability of callus made it possible for genetic transformation of this fern.  相似文献   

4.
Effects of post harvest spray application of plant growth regulators, gibberellic acid (GA) and benzyl adenine (BA), alar (Daminozide) and chemicals like bovine serum albumin (BSA) and potassium permagnate (KMnO4) on post harvest quality of heliconia inflorescence were investigated. Post harvest spray treatments significantly influenced post harvest quality and life of heliconia inflorescence as compared to control. Spray treatments of GA (100 mg l?1) and BSA (50 mg l?1) effectively increased water uptake and retained fresh weight of cut inflorescence. The same treatments also reduce the levels of catalase (CAT) and peroxidase (POD) enzymatic activity and decreased the lipid peroxidation (measured as TBARS) in the bract tissue. Percent absolute integrity of bract cell membrane (PAI) was also high in GA (100 mg l?1) and BSA (50 mg l?1) spray treated cut inflorescence on 8th, 10th and 12th day of vase life. Post-harvest spray treatment of GA (100 mg l?1) showed significant increase (by almost twofold) in the vase life of heliconia inflorescence as compared to control. These results suggest that post-harvest spray of GA (100 mg l?1) or BSA (50 mg l?1) maintains higher inflorescence fresh weight, improve water uptake and reactive oxygen species (ROS) scavenging capacity, stabilizes absolute integrity of cell membrane leading to a delay in bract cell death in heliconia inflorescence cv. Golden Torch.  相似文献   

5.
Morphogenesis was induced in Eucalyptus globulus seeds, cotyledons, hypocotyls and leaves from in vitro clonal plantlets. Globular structures were observed after 2 weeks induction on B5 culture medium supplemented with 10% coconut water, 0.05–0.5 mg l?1 6-benzylaminopurine (BAP) and 0.5 mg l?1 indole-3-butyric acid (IBA). These continued to proliferate under dark conditions until the 2nd to 3rd subculture. Following transfer to a photoperiod of 16 h light, shoots evolved from these globular structures and developed further to plantlets. The influence of several factors, including culture medium composition, sucrose concentration, the type, concentration and combination of growth regulators and the presence of coconut water was studied. The percentage of explants showing globular structure formation and the number of globular structures per explant were evaluated. Macroscopic, histological and scanning electron microscopic studies revealed that the morphogenic process involved mainly organogenic nodules with fewer globular somatic embryos. The nodules gave rise to shoots and subsequently complete plants following incubation on B5 Gamborg medium containing 0.5 mg l?1 IBA and 30 g l?1 sucrose, which promoted root formation.  相似文献   

6.
Benzo[a]pyrene (BaP) accumulates in marine organisms and contaminated coastal areas. The biotreatment of waste water using saline-alkaline-tolerant white rot fungi (WRF) represents a promising method for removing BaP under saline-alkaline conditions based on WRF’s ability to produce ligninolytic enzymes. In a pre-screening for degradation of polycyclic aromatic hydrocarbons of 82 fungal strains using Remazol brilliant blue R, Bjerkandera adusta SM46 exhibited the highest tolerance to saline-alkaline stress. Moreover, a B. adusta culture grown in BaP-containing liquid medium exhibited resistance to salinities up to 20 g l?1. These conditions did not inhibit fungal growth or the expression of manganese peroxidase (MnP) or lignin peroxidase (LiP). The degradation rate also became higher as salinity increased to 20 g l?1. Fungal growth and enzyme expression were inhibited at a salinity of 35 g l?1. These inhibitory effects directly decreased the degradation rate (>24 %). The presence of MnSO4 as an inducer improved the degradation rate and enzyme expression. MnP and LiP activity also increased by seven- and fivefold, respectively. SM46 degraded BaP (38–89 % over 30 days) in an acidic environment (pH 4.5) and under saline-alkaline stress conditions (pH 8.2). Investigating the metabolites produced revealed BaP-1,6-dione as the main product, indicating the important role of ligninolytic enzymes in initializing BaP cleavage. The other metabolites detected, naphthalene acetic acid, hydroxybenzoic acid, benzoic acid, and catechol, may have been ring fission products. The wide range of activities observed suggests that B. adusta SM46 is a potential agent for biodegrading BaP under saline conditions.  相似文献   

7.
The present study concentrated on introducing a micropropagation protocol for a drought resistant genotype from Pyrus boissieriana, which is the second most naturally widespread pear species in Iran with proper physiological and medicinal properties. Proliferating microshoot cultures were obtained by placing nodal segments on MS medium supplemented with BAP and IBA or NAA. The highest number of shoots (27 shoots per explant) were obtained with 1.5 mg l?1 BAP and 0.05 mg l?1 IBA, but this combination did not produce shoots of desirable length (>1.7 cm). Combination of 1.75 mg l?1 BAP and 0.07 mg l?1 IBA was the best for the shoot multiplication in P. boissieriana with a sufficient number of shoot production (22.33 shoots per explant) and relatively more appropriate shoot length. The larger and greenish leaves were obtained when PG was added to the best multiplication treatment. Microshoot elongation was carried out in 1/2 and 1/4 MS medium containing 50–100 mg l?1 PG with different concentrations of IBA or NAA at intervals of 30–60 days. Significant increase in shoot length was detected after 45–60 days of culture in the presence of PG. The highest shoot length (8 cm) was recorded on 1/2 MS medium supplemented with 0.5 mg l?1 IBA and 100 mg l?1 PG. GA3 negatively affected number and length of shoots and generally caused generation of red leaves. The highest percentage of root induction (100%) and root length (9 cm) were obtained on 1/6 strength MS medium supplemented with 0.005 mg l?1 IBA. All plantlets were hardened when transferred to ex vitro conditions through a period of 25–30 days. The results suggest axillary shoot proliferation of P. boissieriana could successfully be employed for propagation of candidate drought resistant seedling.  相似文献   

8.
Micropropagation methods were developed for the three French varieties of olive (Olea europaea L.), Aglandau and Tanche, that have the Appelation d’Origine Contrôlée (AOC) status and one ecotype (05300, Laragne, France). Explants consisting of partially lignified nodal segments were collected from rejuvenated glasshouse-grown plant material. Nodal explants with axillary buds were cultured on different media. For AOC varieties, olive medium modified (OM mod) to contain half the concentration of macroelements was the most efficient in inducing bud break and growth when supplemented with 30 g l?1sucrose and 4 mg l?1 zeatin. The resulting shoot buds were further multiplied and maintained on OM mod medium. Rooting was best achieved on OM supplemented with 4 mg l?1 indole-3-butyric acid (IBA). For the Laragne ecotype, maximal shoot proliferation occurred when explants were cultured on woody plant medium supplemented with 15 g l?1 sucrose and 0.1 mg l?1 zeatin. Efficient rooting was achieved with 1 mg l?1 IBA combined with 0.75 mg l?1 naphthaleneacetic acid. After acclimatization in the glasshouse, survival rates ranged from 57 to 92%, depending on the genotype. Inoculation of Laragne ecotype microplantlets with the arbuscular mycorrhizal fungus Glomus mosseae significantly improved plant survival and subsequent plant development and growth.  相似文献   

9.
Embryogenic avocado cultures derived from ‘Hass’ protoplasts were genetically transformed with the plant defensin gene (pdf1.2) driven by the CaMV 35S promoter in pGPTV with uidA as a reporter gene and bar, the gene for resistance to phosphinothricin, the active ingredient of the herbicide Finale® (Basta) (Bayer Environmental Science, Research Triangle Park, Durham, NC ). Transformation was mediated by Agrobacterium tumefaciens strain EHA105. Transformed cultures were selected in the presence of 3.0 mg l?1 phosphinothricin in liquid maintenance medium for 3–4 mo. Liquid maintenance medium consisted of modified MS medium containing (per liter) 12 mg NH4NO3 and 30.3 mg KNO3 and supplemented with 0.1 mg l?1 thiamine HCl, 100 mg l?1 myo-inositol, 30 g l?1 sucrose, 3.0 mg l?1 phosphinothricin, and 0.41 μM picloram. Somatic embryo development from transformed cultures was initiated on MS medium supplemented with 45 g l?1 sucrose, 4 mg l?1 thiamine HCl, 100 mg l?1 myo-inositol, 10% (v/v) filter-sterilized coconut water, 3.0 mg l?1 phosphinothricin, and 6.0 g l?1 gellan gum. Limited plant recovery occurred from somatic embryos on semi-solid MS medium supplemented with 3.0 mg l?1 phosphinothricin, 4.44 μM 6-benzylaminopurine (BA), and 2.89 μM GA3; transformed shoots were micrografted on in vitro-grown seedling rootstocks. Approximately 1 yr after acclimatization in the greenhouse, transformed shoots were air-layered to recover transformed roots. Genetic transformation of embryogenic cultures, somatic embryos, and regenerated plants was confirmed by polymerase chain reaction (PCR), Southern blot hybridization, the XGLUC reaction for uidA, and application of the herbicide Finale® to regenerated plants.  相似文献   

10.
Drinking water contaminated with arsenic poses serious threat to the human health. The present study was aimed for quality assessment of the groundwater of Khairpur Mir's in respect with arsenic and other elemental contamination like Fe, Cu, Co, and Ni. The presence of the trace elements in groundwater from different sources in the study area was measured by using atomic absorption spectroscopy. For arsenic analysis hydride generation technique (MHS-15) was used with detection limit of 0.02 µg l?1. Elevated level of arsenic was observed in most of the samples as compared to recommended value of World Health Organization (WHO) guidelines (10 µg l?1). However, levels of Fe, Cu, Co, and Ni in hand pump (HP) water samples was found in the range of 4–1610 µg l?1, 0–556 µg l?1, 0–230 µg l?1, and 0–700 µg l?1, respectively. Whereas in tube well (TW) water samples the observed values are 5–1620 µg l?1, 0–50 µg l?1, 4–110 µg l?1, and 0–360 µg l?1 for Fe, Cu, Co, and Ni, respectively. Significant difference was observed between TW and HP water samples. It was concluded that the level of arsenic found was very high up to 13 fold more than the WHO recommended limit in study area. While the levels of other elements was noted within the safe limit.  相似文献   

11.
Two efficient regeneration systems were developed in Cunninghamia lanceolata, the most important conifer for industrial wood production in China. Cotyledons and hypocotyls derived from greenhouse-grown seedlings were used as initial explants in our research. A high frequency (95.1?±?1.84%) of adventitious buds were initiated directly from cotyledons cultured on Douglas-fir cotyledon revised (DCR) medium supplemented with 1 mg l?1 benzyladenine (BA), 0.1 mg l?1 α-naphthaleneacetic acid (NAA), and 0.004 mg l?1 thidiazuron (TDZ) with a maximum mean number of adventitious buds per cotyledon explant of 3.76?±?0.08. In contrast, a high percentage (93.73?±?0.55%) of adventitious buds regenerated via callus produced from hypocotyls cultured on DCR medium supplemented with plant growth regulators with a maximum number of adventitious buds per explant (16.71?±?0.34). Adventitious buds elongated on DCR medium supplemented with 0.2 mg l?1 BA and 0.02 mg l?1 NAA. After liquid pretreatment with 50 mg l?1 indole-3-butyric acid (IBA), over 95% of the shoots successfully rooted on ½ DCR medium supplemented with 0.3 mg l?1 IBA. The innovated systems reported in this study will be useful tools for future genetic manipulation of C. lanceolata and may be adapted for large-scale propagation in other conifers.  相似文献   

12.
Shoot tip explants of Phyllanthus amarus were cocultivated with Agrobacterium tumefaciens strain LBA 4404 carrying plasmid pCAMBIA 2301 harbouring genes coding for betaglucuronidase (gus), kanamycin (kan), and neomycin phosphotransferase II (nptII) along with a gene coding for Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (Lu-PLR). Transformed shoot tip explants were maintained in a Murashige and Skoog (MS) medium containing TDZ 1.54 mg l?1, kan 50 mg l?1 and cephotaxime 62.5 mg l?1. The optimum medium for regeneration of multiple shoots was MS supplemented with TDZ 1.54 mg l?1, kan 50 mg l?1. Efficient and effective rooting of plantlets was achieved by culturing the in vitro regenerated shoots on liquid ½ MS medium containing 0.7 mg l?1 indole 3-butyric acid (IBA) and 5 mg l?1 kan. Rooted plants were acclimatized in the mixtures of vermiculite and soil. The transformation of kan-resistant plantlets regenerated from shoot-tip explants was confirmed by GUS and polymerase chain reaction (PCR) analysis. Southern blot and reverse transcribed PCR (RT-PCR) analysis confirmed successful integration and expression of Lu-PLR gene. Quantitative analysis of phyllanthin performed on transgenic and wild plants using high-performance liquid chromatography (HPLC) revealed that transgenic lines contained higher phyllanthin content (0.3–0.81% w/w) than wild plants (0.09% w/w). The highest yield of phyllanthin was detected in transgenic lines was up to 1.16, 1.22 and 1.23 folds higher than that of wild plant. This report highlights the transgenic approach to enhance the contents of phyllanthin and hypophyllanthin.  相似文献   

13.
Caralluma tuberculata (C. tuberculata) is a very important medicinal plant with a range of anti-diabetic and weight reduction properties. This high-valued medicinal plant is nowadays considered as endangered due to its unsustainable elimination from wild habitats. There is lack of research efforts on its propagation to overcome escalating demand. In this research study, an effort has been made to optimize protocol for large-scale mass propagation and production of natural antioxidants. Highest callogenic response (87.2 %) was observed from shoot tip explants on Murashige and Skoog (MS) medium containing 30 g l?1 sucrose and combination of 2, 4-D (2.0 mg l?1) and BA (1.0 mg l?1). During shoot morphogenesis, 50 g l?1 sucrose along with BA (2.0 mg l?1) and GA3 (1.0 mg l?1) enhanced shoot regeneration (91.3 %), mean shoot length (2.6 cm) and shoots per explant (24.5) as compared to control. The combination of IBA and IAA (2.0 mg l?1) was found optimum for root induction (74.98 %), mean root length (4.1 cm) and roots per shoot (6.9) as compared to control. The plantlets were successfully acclimatized in plastic cups and various tissues were investigated for accumulation of antioxidant secondary metabolites including phenolics, flavonoids, stress enzymes and antioxidant activities. The superoxide dismutase enzyme was higher in shoots; protein content was higher in callus cultures; phenolics, DPPH and protease activity were higher in plantlets, while flavonoids, peroxidase, reducing power and total antioxidant activities were higher in wild plants. This simple protocol is very useful for commercial production of consistent plantlets and metabolites of interest.  相似文献   

14.
Bioassays experiments were conducted to determine the metabolic and community composition response of bacteria to transplants between relatively pristine coastal seawater and sewage-impacted seawater. There were four treatments: (1) pristine seawater bacteria?+?pristine seawater (Pb?+?Pw), (2) sewage-impacted bacteria?+?sewage-impacted water (Sb?+?Sw), (3) pristine seawater bacteria?+?sewage-impacted water (Pb?+?Sw), and (4) sewage-impacted bacteria?+?pristine seawater (Sb?+?Pw). Sewage-derived DOC was more labile and readily utilized by bacteria, which favored the growth of high nucleic acid (HNA) bacteria, resulting in high bacterial production (BP, 113?±?4.92 to 130?±?15.8 μg C l?1?day?1) and low respiration rate (BR, <67?±?11.3 μg C l?1?day?1), as well as high bacterial growth efficiency (BGE, 0.68?±?0.09 to 0.71?±?0.05). In contrast, at the relatively pristine site, bacteria utilized natural marine-derived dissolved organic matter (DOM) at the expense of lowering their growth efficiency (BGE, <0.32?±?0.02) with low BP (<62?±?6.3 μg C l?1?day?1) and high BR 133?±?14.2 μg C l?1?day?1). Sewage DOM input appeared to alter the partitioning of carbon between respiration and production of bacteria, resulting in a shift toward higher BGE, which would not enhance oxygen consumption. Taxonomic classification based on 454 pyrosequencing reads of the 16S rRNA gene amplicons revealed that changes in bacterial community structure occurred when seawater bacteria were transferred to the eutrophic sewage-impacted water. Sewage DOM fueled the growth of Gammma-proteobacteria and Epsilson-proteobacteria and reduced the bacterial richness, but the changes in the community were not apparent when sewage-impacted bacteria were transferred to pristine seawater.  相似文献   

15.
Carbon distribution and kinetics of Candida shehatae were studied in fed-batch fermentation with xylose or glucose (separately) as the carbon source in mineral medium. The fermentations were carried out in two phases, an aerobic phase dedicated to growth followed by an oxygen limitation phase dedicated to ethanol production. Oxygen limitation was quantified with an average specific oxygen uptake rate (OUR) varying between 0.30 and 2.48 mmolO2 g dry cell weight (DCW)?1 h?1, the maximum value before the aerobic shift. The relations among respiration, growth, ethanol production and polyol production were investigated. It appeared that ethanol was produced to provide energy, and polyols (arabitol, ribitol, glycerol and xylitol) were produced to reoxidize NADH from assimilatory reactions and from the co-factor imbalance of the two-first enzymatic steps of xylose uptake. Hence, to manage carbon flux to ethanol production, oxygen limitation was a major controlled parameter; an oxygen limitation corresponding to an average specific OUR of 1.19 mmolO2 g DCW?1 h?1 allowed maximization of the ethanol yield over xylose (0.327 g g?1), the average productivity (2.2 g l?1 h?1) and the ethanol final titer (48.81 g l?1). For glucose fermentation, the ethanol yield over glucose was the highest (0.411 g g?1) when the specific OUR was low, corresponding to an average specific OUR of 0.30 mmolO2 g DCW?1 h?1, whereas the average ethanol productivity and ethanol final titer reached the maximum values of 1.81 g l?1 h?1 and 54.19 g l?1 when the specific OUR was the highest.  相似文献   

16.
A protocol for regenerating and subsequent in vitro flowering of an economical important and endangered medicinal orchid, Dendrobium huoshanense, was established mainly via indirect protocorm-like body (PLB) formation. A four-step method was developed to induce successful plant regeneration on 1/2 MS medium supplemented with suitable plant growth regulators (PGRs). Step 1 (callus induction): the root tip explants (1 cm long) were cultured at 1 mg l?1 2,4-D + 1 mg l?1 TDZ for 3 months. Step 2 (callus proliferation): the calli were subcultured with a 1-month interval at 1 mg l?1 2,4-D + 1 mg l?1 TDZ. Step 3 (PLB induction): the calli were cultured at 2 mg l?1 NAA + 1 mg l?1 BA for 2 months. Step 4 (plantlet conversion): the 2-month-old PLBs were cultured at 0.1 mg l?1 IBA for 4 months. It took at least 6 months to produce well-rooted regenerated plantlets with an average of 3.2 roots and 3.6 leaves from the initial callus. The 6-month-old rooted plantlets were transferred onto PGR-free 1/2 MS medium for 6 months, and then potted with Sphagnum moss for acclimatization. After 2 month of culture, the survival rate was 100 %. The in vitro flowers were obtained on the 8-month-old plantlets at 1 mg l?1 IBA, 5 mg l?1 IBA and 0.1 mg l?1 NAA, but the flowers showed a lack of the gynandrium. The abnormity was overcome by the aid of 5 mg l?1 TDZ, and subsequently, the capsules formed without artificial pollination. This protocol provides the basis for further investigation on cell suspension, micropropagation, in vitro flowering and breeding programs in Dendrobium huoshanense.  相似文献   

17.
In vitro propagation methods using seeds and nodal segments of a 21-year old Couroupita guianensis - a medicinally important but threatened tree have been developed. Hundred percent of the seeds germinated on half strength Murashige and Skoog (MS) medium with 2.0 mg l?1 indole-3 butyric acid (IBA). Nodal segments were found most suitable for the establishment of cultures. About 90 % explants responded and 4.1 ± 0.23 shoots per node were induced after five weeks of inoculation on MS medium +4.0 mg l?1 6-benzylaminopurine (BAP). Further shoot multiplication was achieved by repeated transfer of mother explants and subculturing of in vitro produced shoots on fresh medium. Maximum number (8.2 ± 0.17) of shoots were regenerated on MS medium with 1.0 mg l?1 each of BAP and Kinetin (Kin) + 0.5 mg l?1 α-naphthalene acetic acid (NAA) with additives (50 mg l?1 of ascorbic acid and 25 mg l?1 each of adenine sulphate, L-arginine and citric acid). The multiplied shoots rooted (4.3 ± 0.26 roots/shoot) on half strength MS medium with 2.5 mg l?1 IBA. All the shoots were rooted ex vitro when pulse treated with 400 mg l?1 of IBA for five min with an average of 7.3 ± 0.23 roots per shoot. Nearly 86 % of these plantlets were acclimatized within 7–8 weeks and successfully transferred in the field. Biologically significant developmental changes were observed during acclimation particularly in leaf micromorphology in terms of changes in stomata, veins and vein-islets, and trichomes. This study helps in understanding the response by the plants towards outer environmental conditions during acclimatization. This is the first report on micropropagation of C. guianensis, which could be used for the large-scale multiplication, restoration and conservation of germplasm of this threatened and medicinally important tree.  相似文献   

18.
The present study reports, for the first time, an efficient in vitro plant regeneration protocol for Digitalis ferruginea subsp. ferruginea L. (rusty foxglove). We have used different concentrations of gibberellic acid (GA3) on Murashige and Skoog (MS) medium to assess the germination frequency of seeds. High frequency of germination was achieved on MS medium with 1.0 mg l?1 GA3. 6-Benzylaminopurine (BAP) combined with α-naphtaleneacetic acid (NAA) or 2, 4-dichlorophenoxy acetic acid (2, 4-D) in the induction MS medium induced both somatic embryogensis and shoot organogenesis. The highest percentage of callus growth (85 %) was obtained when hypocotyl explants were cultured on MS medium containing 0.5 mg l?1 2, 4-D plus 1.0 mg l?1 BAP. The maximum mean number of somatic embryos (7.3 ± 1.3 embryos) or shoots (12.0 ± 1.1 shoots) per callus was obtained when medium contained 0.25 mg l?1 NAA plus 1.0 mg l?1 BAP or 0.5 mg l?1 NAA plus 2.0 mg l?1 BAP. The regenerated shoots easily rooted on MS medium. Higher amounts of lanatoside C [13.2 ± 0.5 mg 100 g?1 dry weight (dw)] and digoxin (2.93 ± 0.31 mg 100 g?1 dw) accumulation were obtained when shoots were obtained by indirect regeneration. We also investigated derivatives of cardenolides, i.e., digitoxigenin (730 ± 180 mg 100 g?1 dw), gitoxigenin (50 ± 20 mg 100 g?1 dw) and digoxigenin (490 ± 170 mg 100 g?1 dw) from natural samples.  相似文献   

19.
Acrylonitrile (ACN), a volatile component of the waste generated during the production of acrylamide, also is often associated with aromatic contaminants such as toluene and styrene. Biofiltration, considered an effective technique for the treatment of volatile hydrocarbons, has not been used to treat volatile nitriles. An experimental laboratory-scale trickling bed bioreactor using cells of Rhodococcus rhodochrous DAP 96622 supported on granular activated carbon (GAC) was developed and evaluated to assess the ability of biofiltration to treat ACN. In addition to following the course of treatability of ACN, kinetics of ACN biodegradation during both recycle batch and open modes of operation by immobilized and free cells were evaluated. For fed-batch mode bioreactor with immobilized cells, almost complete ACN removal (>95%) was achieved at a flow rate of 0.1 μl/min ACN and 0.8 μl/min toluene (TOL) (for comparative purposes this is equivalent to 6.9 mg l?1 h?1 ACN and 83.52 mg l?1 h?1 TOL). In a single-pass mode bioreactor with immobilized cells, at ACN inlet loads of 100–200 mg l?1 h?1 and TOL inlet load of ~400 mg l?1 h?1, with empty bed retention time (EBRT) of 8 min, ACN removal efficiency was ~90%. The three-dimensional structure and characteristics of the biofilm were investigated using confocal scanning laser microscopy (CSLM). CLSM images revealed a robust and heterogeneous biofilm, with microcolonies interspersed with voids and channels. Analysis of the precise measurement of biofilm characteristics using COMSTAT® agreed with the assumption that both biomass and biofilm thickness increased along the carbon column depth.  相似文献   

20.
The filamentous Cyanobacterium Arthrospira is commercially produced and is a functional, high-value, health food. We identified 5 low temperature and low light intensity tolerant strains of Arthrospira sp. (GMPA1, GMPA7, GMPB1, GMPC1, and GMPC3) using ethyl methanesulfonate mutagenesis and low temperature screening. The 5 Arthrospira strains grew rapidly below 14?°C, 43.75 μmol photons m?2 s?1 and performed breed conservation at 2.5?°C, 8.75 μmol photons m?2 s?1. We used morphological identification and molecular genetic analysis to identify GMPA1, GMPA7, GMPB1 and GMPC1 as Arthrospira platensis, while GMPC3 was identified as Arthrospira maxima. Growth at different culture temperatures was determined at regular intervals using dry biomass. At 16?°C and 43.75 μmol photons m?2 s?1, the maximum dry biomass production and the mean dry biomass productivity of GMPA1, GMPB1, and GMPC1 were 2057?±?80 mg l?1, 68.7?±?2.5 mg l?1 day?1, 1839?±?44 mg l?1, 60.6?±?1.8 mg l?1 day?1, and 2113?±?64 mg l?1, 77.7?±?2.5 mg l?1 day?1 respectively. GMPB1 was chosen for additional low temperature tolerance studies and growth temperature preference. In winter, GMPB1 grew well at mean temperatures <10?°C, achieving 3258 mg dry biomass from a starting 68 mg. In summer, GMPB1 grew rapidly at mean temperatures more than 28?°C, achieving 1140 mg l?1 dry biomass from a starting 240 mg. Phytonutrient analysis of GMPB1 showed high levels of C-phycocyanin and carotenoids. Arthrospira metabolism relates to terpenoids, and the methyl-d-erythritol 4-phosphate pathway is the only terpenoid biosynthetic pathway in Cyanobacteria. The 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) gene from GMPB1 was cloned and phylogenetic analysis showed that GMPB1 is closest to the Cyanobacterium Oscillatoria nigro-viridis PCC711. Low temperature tolerant Arthrospira strains could broaden the areas suitable for cultivation, extend the seasonal cultivation time, and lower production costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号