首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
烟曲霉(Aspergillus fumigatus)是一种分布于世界各地的腐生真菌,属于人类临床常见的三大机会性致病真菌之一,是侵袭性曲霉菌病的主要病原菌。烟曲霉可以产生DHN-黑色素(dihydroxynaphthalene melanin)和脓黑素(pyomelanin)这2种类型黑色素。本综述介绍烟曲霉黑色素产生的遗传代谢途径、功能以及与宿主免疫系统相互作用的最新认识,有助于更好地理解烟曲霉的病理生理特征,为烟曲霉感染快速诊断技术和新型抗真菌药物的研发提供理论依据。  相似文献   

2.
Intratracheal inoculation of goats withAspergillus fumigatus spores resulted in the development of characteristic gross and microscopic lesions. The lesions were restricted to lungs and there was no dissemination of infection to other tissues of the body except liver in one goat 16 days after infection. The experiment was continued for 37 days. Gross changes in lungs were observed up to the 24th day post-infection. The lesions, in general, included congestion and oedema in the first 6 days followed by the development of varying greyish-white nodules in the lungs. Microscopic changes consisted of granulomatous reaction with well developed granulomas in lungs. Hyphae and conidiophores with fruiting bodies ofAspergillus fumigatus could be demonstrated in sections up to 24 days of infection. Reisolation of the fungus consistently was achieved up to 24 days. It is concluded that intratracheal inoculation ofAspergillus fumigatus spores in goats leads to pulmonary aspergillosis up to 24 days.  相似文献   

3.
Aspergillus fumigatus is an environmental fungus that causes invasive aspergillosis (IA) in immunocompromised patients. Although -CC-chemokine receptor-2 (CCR2) and Ly6C-expressing inflammatory monocytes (CCR2+Mo) and their derivatives initiate adaptive pulmonary immune responses, their role in coordinating innate immune responses in the lung remain poorly defined. Using conditional and antibody-mediated cell ablation strategies, we found that CCR2+Mo and monocyte-derived dendritic cells (Mo-DCs) are essential for innate defense against inhaled conidia. By harnessing fluorescent Aspergillus reporter (FLARE) conidia that report fungal cell association and viability in vivo, we identify two mechanisms by which CCR2+Mo and Mo-DCs exert innate antifungal activity. First, CCR2+Mo and Mo-DCs condition the lung inflammatory milieu to augment neutrophil conidiacidal activity. Second, conidial uptake by CCR2+Mo temporally coincided with their differentiation into Mo-DCs, a process that resulted in direct conidial killing. Our findings illustrate both indirect and direct functions for CCR2+Mo and their derivatives in innate antifungal immunity in the lung.  相似文献   

4.
Aspergillus fumigatus is a human fungal pathogen that can cause devastating pulmonary infections, termed “aspergilloses,” in individuals suffering immune imbalances or underlying lung conditions. As rapid adaptation to stress is crucial for the outcome of the host–pathogen interplay, here we investigated the role of the versatile posttranslational modification (PTM) persulfidation for both fungal virulence and antifungal host defense. We show that an A. fumigatus mutant with low persulfidation levels is more susceptible to host-mediated killing and displays reduced virulence in murine models of infection. Additionally, we found that a single nucleotide polymorphism (SNP) in the human gene encoding cystathionine γ-lyase (CTH) causes a reduction in cellular persulfidation and correlates with a predisposition of hematopoietic stem cell transplant recipients to invasive pulmonary aspergillosis (IPA), as correct levels of persulfidation are required for optimal antifungal activity of recipients’ lung resident host cells. Importantly, the levels of host persulfidation determine the levels of fungal persulfidation, ultimately reflecting a host–pathogen functional correlation and highlighting a potential new therapeutic target for the treatment of aspergillosis.

This study reveals that the post-translational modification persulfidation is important for both fungal virulence and the host antifungal response. The level of persulfidation in the host, which correlates with its antifungal potency, impacts the level required in the fungus to counteract host attack, reflecting a functional correlation. Thus modulating persulfidation may be a promising strategy to target both pathogens and immune responses.  相似文献   

5.
6.
Aspergillus fumigatus is the most common filamentous fungal pathogen of immunocompromised hosts, resulting in invasive aspergillosis (IA) and high mortality rates. Innate immunity is known to be the predominant host defense against A. fumigatus; however, innate phagocyte responses to A. fumigatus in an intact host and their contributions to host survival remain unclear. Here, we describe a larval zebrafish A. fumigatus infection model amenable to real-time imaging of host-fungal interactions in live animals. Following infection with A. fumigatus, innate phagocyte populations exhibit clear preferences for different fungal morphologies: macrophages rapidly phagocytose conidia and form aggregates around hyphae, while the neutrophil response is dependent upon the presence of hyphae. Depletion of macrophages rendered host larvae susceptible to invasive disease. Moreover, a zebrafish model of human leukocyte adhesion deficiency with impaired neutrophil function also resulted in invasive disease and impaired host survival. In contrast, macrophage-deficient but not neutrophil-deficient larvae exhibited attenuated disease following challenge with a less virulent (ΔlaeA) strain of A. fumigatus, which has defects in secondary metabolite production. Taking these results together, we have established a new vertebrate model for studying innate immune responses to A. fumigatus that reveals distinct roles for neutrophils and macrophages in mediating host defense against IA.  相似文献   

7.
The large, outdoor Islip Yard Waste Composting Facility on Long Island, New York was investigated as a source of airborne fungus spores. The Burkard-Hirst volumetric spore trap was used for the first extensive sampling of small mold spores for this application. Samplers were operated continuously from 21 August to 30 November 1992 in the facility and in a suburban community about 540 m from the facility. A control site approximately 10 000 m from the facility was also sampled to establish background levels of fungus spores. The facility site had higher average readings ofAspergillus fumigatus spores than did the community and both were higher than the control.A. fumigatus was the only fungus among 30 categories tracked that differed significantly between the facility and control sites. It was also isolated repeatedly from the compost. Higher average levels ofA. fumigatus were measured in the community when winds blew from the facility, and also during times when the compost was moved or mixed at the facility. No correlation was found between wind direction or work times andA. fumigatus conidia at the control site. The study shows that this compost facility can produce a measurable increase in the number of airborneA. fumigatus conidia both at the edge of the facility and at 540 m downwind. It also demonstrates that the Burkard spore trap can be used for monitoring small, airborne mold spores, but it is a difficult and labor intensive task.  相似文献   

8.
Phagocytes restrict the germination of Aspergillus fumigatus conidia and prevent the establishment of invasive pulmonary aspergillosis in immunecompetent mice. Here we report that immunecompetent mice recovering from a primary A. fumigatus challenge are protected against a secondary lethal challenge. Using RAGγc knock-out mice we show that this protection is independent of T, B and NK cells. In protected mice, lung phagocytes are recruited more rapidly and are more efficient in conidial phagocytosis and killing. Protection was also associated with an enhanced expression of CXCR2 and Dectin-1 on bone marrow phagocytes. We also show that protective lung cytokine and chemokine responses are induced more rapidly and with enhanced dynamics in protected mice. Our findings support the hypothesis that following a first encounter with a non-lethal dose of A. fumigatus conidia, the innate immune system is primed and can mediate protection against a secondary lethal infection.  相似文献   

9.
Previous studies have established that phagocytes are key cells of the pulmonary innate immune defense against A. fumigatus, an opportunistic fungus responsible of invasive pulmonary aspergillosis. Macrophages detect A. fumigatus via Toll-like receptors 2 and 4 (TLR2 and -4) and respond by the MyD88-NF-kappaB-dependent synthesis of inflammatory mediators. In the present study, we demonstrate that respiratory epithelial cells also sense A. fumigatus and participate in the host defense. Thus, the interaction of respiratory epithelial cells with germinating but not resting conidia of A. fumigatus results in interleukin (IL)-8 synthesis that is controlled by phosphatidylinositol 3-kinase, p38 MAPK, and ERK1/2. Using MyD88-dominant negative transfected cells, we also show that IL-8 production is not dependent on the TLR-MyD88 pathway, although the MyD88 pathway is activated by A. fumigatus and leads to NF-kappaB activation. Thus, our results provide evidence for the existence of two independent signaling pathways activated in respiratory epithelial cells by A. fumigatus, one that is MyD88-dependent and another that is My88-independent and involved in IL-8 synthesis.  相似文献   

10.
Aspergillus fumigatus is currently the major air‐borne fungal pathogen. It is able to cause several forms of disease in humans of which invasive aspergillosis is the most severe. The high mortality rate of this disease prompts increased efforts to disclose the basic principles of A. fumigatus pathogenicity. According to our current knowledge, A. fumigatus lacks sophisticated virulence traits; it is nevertheless able to establish infection due to its robustness and ability to adapt to a wide range of environmental conditions. This review focuses on two crucial aspects of invasive aspergillosis: (i) properties of A. fumigatus that are relevant during infection and may distinguish it from non‐pathogenic Aspergillus species and (ii) interactions of the pathogen with the innate and adaptive immune systems.  相似文献   

11.

Background  

The role of Aspergillus fumigatus mycotoxins in the colonization of the respiratory tract by conidia has not been studied extensively, even though patients at risk from invasive aspergillosis frequently exhibit respiratory epithelium damage. In a previous study, we found that filtrates of A. fumigatus cultures can specifically alter the electrophysiological properties of human nasal epithelial cells (HNEC) compared to those of non pathogenic moulds.  相似文献   

12.
The filamentous fungus Beauveria bassiana is a natural pathogen of the greater wax moth Galleria mellonella. Infection with this fungus triggered systemic immune response in G. mellonella; nevertheless, the infection was lethal if spores entered the insect hemocel. We observed melanin deposition in the insect cuticle and walls of air bags, while the invading fungus interrupted tissue continuity. We have shown colonization of muscles, air bags, and finally colonization and complete destruction of the fat body—the main organ responsible for the synthesis of defense molecules in response to infection. This destruction was probably not caused by simple fungal growth, because the fat body was not destroyed during colonization with a human opportunistic pathogen Candida albicans. This may mean that the infecting fungus is able to destroy actively the insect's fat body as part of its virulence mechanism. Finally, we were unable to reduce the extremely high virulence of B. bassiana against G. mellonella by priming of larvae with thermally inactivated fungal spores.  相似文献   

13.
Aspergillus fumigatus is an opportunistic fungal pathogen that causes invasive aspergillosis, a usually fatal infection. The disease has risen in prominence in recent years due to the increasing numbers of severely immunocompromised patients becoming infected. The fungus is ubiquitous in the environment, producing large numbers of conidia that are dispersed in the air. Humans inhale numerous conidia everyday, but infections are not seen in healthy individuals. As inhalation of conidia is the main route of infection, considerable efforts are required to prevent infection in susceptible patients. This review summarises the current knowledge on airborne concentrations of A. fumigatus conidia, their background levels in outdoor air and seasonal distribution patterns. New and established methods of air sampling for airborne A. fumigatus conidia are discussed. Common environmental sources of the fungus are reviewed, including its presence in compost heaps. Finally, the lack of stringent guidelines on the monitoring and control of airborne A. fumigatus concentrations in hospitals is discussed.  相似文献   

14.
Recent studies on aspergillosis in turkey poults   总被引:3,自引:0,他引:3  
A review of the studies on aspergillosis in turkey poults at the National Animal Disease Center include limited field studies, pathogenicity studies, and vaccine development. Natural ventilation in turkey rearing houses was effective in reducing airborne propagules of four major fungal genera, but the effectiveness of ventilation appeared to be limited by the width of the building. Aspergillus fumigatus was more effective than A. flavus in producing mortalities in aerosol exposed poults. Toxigenicity of A. flavus did not enhance its pathogenicity, and no apparent aflatoxin production occurred during pathogenesis in infected turkey poults. Spores of A. fumigatus were disseminated quite rapidly in poults exposed to aerosols, and alveolar macrophages from respiratory lavages taken immediately after exposure contained spores of A. fumigatus. Vaccines produced from germlings of A. fumigatus and administered to turkey poults were the most efficacious of five vaccines tested against challenge exposure to aerosols of A. fumigatus spores.  相似文献   

15.
Immunocompromised patients who develop invasive filamentous mycotic infections can be efficiently treated if rapid identification of the causative fungus is obtained. We report a case of fatal necrotic pneumonia caused by combined pulmonary invasive mucormycosis and aspergillosis in a 66 year-old renal transplant recipient. Aspergillus was first identified during the course of the disease by cytological examination and culture (A. fumigatus) of bronchoalveolar fluid. Hyphae of Mucorales (Rhizopus microsporus) were subsequently identified by culture of a tissue specimen taken from the left inferior pulmonary lobe, which was surgically resected two days before the patient died. Histological analysis of the lung parenchyma showed the association of two different filamentous mycoses for which the morphological features were evocative of aspergillosis and mucormycosis. However, the definitive identification of the associative infection was made by polymerase chain reaction (PCR) performed on deparaffinized tissue sections using specific primers for aspergillosis and mucormycosis. This case demonstrates that discrepancies between histological, cytological and mycological analyses can occur in cases of combined mycotic infection. In this regard, it shows that PCR on selected paraffin blocks is a very powerful method for making or confirming the association of different filamentous mycoses and that this method should be made available to pathology laboratories.  相似文献   

16.
Mucormycosis is an emergent, fatal fungal infection of humans and warm-blooded animals caused by species of the order Mucorales. Immune cells of the innate immune system serve as the first line of defence against inhaled spores. Alveolar macrophages were challenged with the mucoralean fungus Lichtheimia corymbifera and subjected to biotinylation and streptavidin enrichment procedures followed by LC–MS/MS analyses. A total of 28 host proteins enriched for binding to macrophage–L. corymbifera interaction. Among those, the HSP70-family protein Hspa8 was found to be predominantly responsive to living and heat-killed spores of a virulent and an attenuated strain of L. corymbifera. Confocal scanning laser microscopy of infected macrophages revealed colocalization of Hspa8 with phagocytosed spores of L. corymbifera. The amount of detectable Hspa8 was dependent on the multiplicity of infection. Incubation of alveolar macrophages with an anti-Hspa8 antibody prior to infection reduced their capability to phagocytose spores of L. corymbifera. In contrast, anti-Hspa8 antibodies did not abrogate the phagocytosis of Aspergillus fumigatus conidia by macrophages. These results suggest an important contribution of the heat-shock family protein Hspa8 in the recognition of spores of the mucoralean fungus L. corymbifera by host alveolar macrophages and define a potential immunomodulatory therapeutic target.  相似文献   

17.
Aspergilli are respiratory pathogens and pulmonary infections are usually acquired through the inhalation of conidia, able to reach small airways and the alveolar space where the impaired host defense mechanisms allow hyphal germination and subsequent tissue invasion. The invasive pulmonary aspergillosis is the most common manifestation of Aspergillus fumigatus infection in immunocompromised patients and is characterized by hyphal invasion and destruction of pulmonary tissue. A Th1/Th2 dysregulation and a switch to a Th2 immune response may contribute to the development and unfavorable outcome of invasive pulmonary aspergillosis. Dendritic cells (DC) have a primary role in surveillance for pathogens at the mucosal surfaces and are recognized as the initiators of immune responses to them. In the present study, we assessed the functional activity of pulmonary DC in response to A. fumigatus conidia and hyphae, both in vitro and in vivo. We analyzed mechanisms and receptors for phagocytosis by DC as well as DC migration, maturation, and Th priming in vivo upon exposure to either form of the fungus. We found a remarkable functional plasticity of DC in response to the different forms of the fungus, as pulmonary DC were able to: 1) internalize conidia and hyphae of A. fumigatus through distinct phagocytic mechanisms and recognition receptors; 2) discriminate between the different forms in terms of cytokine production; 3) undergo functional maturation upon migration to the draining lymph nodes and spleens; and 4) instruct local and peripheral Th cell reactivity to the fungus.  相似文献   

18.
Size and diverse morphologies pose a primary challenge for phagocytes such as innate immune cells and predatory amoebae when encountering fungal prey. Although filamentous fungi can escape phagocytic killing by pure physical constraints, unicellular spores and yeasts can mask molecular surface patterns or arrest phagocytic processing. Here, we show that the fungivorous amoeba Protostelium aurantium was able to adjust its killing and feeding mechanisms to these different cell shapes. Yeast-like fungi from the major fungal groups of basidiomycetes and ascomycetes were readily internalized by phagocytosis, except for the human pathogen Candida albicans whose mannoprotein coat was essential to escape recognition by the amoeba. Dormant spores of the filamentous fungus Aspergillus fumigatus also remained unrecognized, but swelling and the onset of germination induced internalization and intracellular killing by the amoeba. Mature hyphae of A. fumigatus were mostly attacked from the hyphal tip and killed by an actin-mediated invasion of fungal filaments. Our results demonstrate that predatory pressure imposed by amoebae in natural environments selects for distinct survival strategies in yeast and filamentous fungi but commonly targets the fungal cell wall as a crucial molecular pattern associated to prey and pathogens.  相似文献   

19.
Infection by the human fungal pathogen Aspergillus fumigatus induces hypoxic microenvironments within the lung that can alter the course of fungal pathogenesis. How hypoxic microenvironments shape the composition and immune activating potential of the fungal cell wall remains undefined. Herein we demonstrate that hypoxic conditions increase the hyphal cell wall thickness and alter its composition particularly by augmenting total and surface-exposed β-glucan content. In addition, hypoxia-induced cell wall alterations increase macrophage and neutrophil responsiveness and antifungal activity as judged by inflammatory cytokine production and ability to induce hyphal damage. We observe that these effects are largely dependent on the mammalian β-glucan receptor dectin-1. In a corticosteroid model of invasive pulmonary aspergillosis, A. fumigatus β-glucan exposure correlates with the presence of hypoxia in situ. Our data suggest that hypoxia-induced fungal cell wall changes influence the activation of innate effector cells at sites of hyphal tissue invasion, which has potential implications for therapeutic outcomes of invasive pulmonary aspergillosis.  相似文献   

20.
Aspergillus fumigatus is one of the ubiquitous fungi with airborne conidia, which accounts for most aspergillosis cases. In immunocompetent hosts, the inhaled conidia are rapidly eliminated. However, immunocompromised or immunodeficient hosts are particularly vulnerable to most Aspergillus infections and invasive aspergillosis (IA), with mortality from 50% to 95%. Despite the improvement of antifungal drugs over the last few decades, the therapeutic effect for IA patients is still limited and does not provide significant survival benefits. The drawbacks of antifungal drugs such as side effects, antifungal drug resistance, and the high cost of antifungal drugs highlight the importance of finding novel therapeutic and preventive approaches to fight against IA. In this article, we systemically addressed the pathogenic mechanisms, defense mechanisms against A. fumigatus, the immune response, molecular aspects of host evasion, and vaccines’ current development against aspergillosis, particularly those based on AFMP4 protein, which might be a promising antigen for the development of anti-A. fumigatus vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号