首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
Pupillary reactions have been studied in healthy volunteers before, during, and after transcranial magnetic stimulation (TMS) of the primary visual cortex. During TMS in the projection of the primary visual cortex, a significant increase in pupil size was observed. Three minutes after the end of the TMS, a significant decrease in pupil size was recorded. These data point to a role of the primary visual cortex in the mechanisms of correcting pupillary reactions in humans.  相似文献   

2.
3.
4.
5.
6.
Transcranial magnetic stimulation (TMS) is increasingly being used to demonstrate the causal links between brain and behavior in humans. Further, extensive clinical trials are being conducted to investigate the therapeutic role of TMS in disorders such as depression. Because TMS causes strong peripheral effects such as auditory clicks and muscle twitches, experimental artifacts such as subject bias and placebo effect are clear concerns. Several sham TMS methods have been developed, but none of the techniques allows one to intermix real and sham TMS on a trial-by-trial basis in a double-blind manner. We have developed an attachment that allows fast, automated switching between Standard TMS and two types of control TMS (Sham and Reverse) without movement of the coil or reconfiguration of the setup. We validate the setup by performing mathematical modeling, search-coil and physiological measurements. To see if the stimulus conditions can be blinded, we conduct perceptual discrimination and sensory perception studies. We verify that the physical properties of the stimulus are appropriate, and that successive stimuli do not contaminate each other. We find that the threshold for motor activation is significantly higher for Reversed than for Standard stimulation, and that Sham stimulation entirely fails to activate muscle potentials. Subjects and experimenters perform poorly at discriminating between Sham and Standard TMS with a figure-of-eight coil, and between Reverse and Standard TMS with a circular coil. Our results raise the possibility of utilizing this technique for a wide range of applications.  相似文献   

7.
The calcium dependent plasticity (CaDP) approach to the modeling of synaptic weight change is applied using a neural field approach to realistic repetitive transcranial magnetic stimulation (rTMS) protocols. A spatially-symmetric nonlinear neural field model consisting of populations of excitatory and inhibitory neurons is used. The plasticity between excitatory cell populations is then evaluated using a CaDP approach that incorporates metaplasticity. The direction and size of the plasticity (potentiation or depression) depends on both the amplitude of stimulation and duration of the protocol. The breaks in the inhibitory theta-burst stimulation protocol are crucial to ensuring that the stimulation bursts are potentiating in nature. Tuning the parameters of a spike-timing dependent plasticity (STDP) window with a Monte Carlo approach to maximize agreement between STDP predictions and the CaDP results reproduces a realistically-shaped window with two regions of depression in agreement with the existing literature. Developing understanding of how TMS interacts with cells at a network level may be important for future investigation.  相似文献   

8.
9.
One of the fundamental prerequisites of the successful schizophrenia treatment is represented by an adequately significant impact on the negative symptoms of schizophrenia. Since the present pharmacotherapy has probably reached its limit in this area, there is a logical effort to utilize other, non-pharmacological methods. One of the most promising supplements that has been for a long time verified in the clinical practice is rTMS. Most of the studies have arrived at the conclusion that rTMS is an efficient method in the treatment of negative symptoms of schizophrenia. A valuable contribution to the assessment of the rTMS application in the treatment of negative symptoms is represented by meta-analyses. The meta-analyses indicate that the effect is mild to moderate (d=0.43 to 0.68). To sum it up, there will be higher probability of the rTMS effect on negative symptoms if 10?Hz stimulating frequency and a longer stimulation period in the extent at least three, ideally four to six weeks is used.  相似文献   

10.
Transcranial magnetic stimulation (TMS) noninvasively interferes with human cortical function, and is widely used as an effective technique for probing causal links between neural activity and cognitive function. However, the physiological mechanisms underlying TMS-induced effects on neural activity remain unclear. We examined the mechanism by which TMS disrupts neural activity in a local circuit in early visual cortex using a computational model consisting of conductance-based spiking neurons with excitatory and inhibitory synaptic connections. We found that single-pulse TMS suppressed spiking activity in a local circuit model, disrupting the population response. Spike suppression was observed when TMS was applied to the local circuit within a limited time window after the local circuit received sensory afferent input, as observed in experiments investigating suppression of visual perception with TMS targeting early visual cortex. Quantitative analyses revealed that the magnitude of suppression was significantly larger for synaptically-connected neurons than for isolated individual neurons, suggesting that intracortical inhibitory synaptic coupling also plays an important role in TMS-induced suppression. A conventional local circuit model of early visual cortex explained only the early period of visual suppression observed in experiments. However, models either involving strong recurrent excitatory synaptic connections or sustained excitatory input were able to reproduce the late period of visual suppression. These results suggest that TMS targeting early visual cortex disrupts functionally distinct neural signals, possibly corresponding to feedforward and recurrent information processing, by imposing inhibitory effects through intracortical inhibitory synaptic connections.  相似文献   

11.
Repetitive transcranial magnetic stimulation of the motor cortex (rTMS) can be used to modify motor cortical excitability in human subjects. At stimulus intensities near to or above resting motor threshold, low-frequency rTMS (approximately 1 Hz) decreases motor cortical excitability, whereas high-frequency rTMS (5-20 Hz) can increase excitability. We investigated the effect of 10 min of intermittent rTMS on motor cortical excitability in normal subjects at two frequencies (2 or 6 Hz). Three low intensities of stimulation (70, 80, and 90% of active motor threshold) and sham stimulation were used. The number of stimuli were matched between conditions. Motor cortical excitability was investigated by measurement of the motor-evoked potential (MEP) evoked by single magnetic stimuli in the relaxed first dorsal interosseus muscle. The intensity of the single stimuli was set to evoke baseline MEPs of approximately 1 mV in amplitude. Both 2- and 6-Hz stimulation, at 80% of active motor threshold, reduced the magnitude of MEPs for approximately 30 min (P < 0.05). MEPs returned to baseline values after a weak voluntary contraction. Stimulation at 70 and 90% of active motor threshold and sham stimulation did not induce a significant group effect on MEP magnitude. However, the intersubject response to rTMS at 90% of active motor threshold was highly variable, with some subjects showing significant MEP facilitation and others inhibition. These results suggest that, at low stimulus intensities, the intensity of stimulation may be as important as frequency in determining the effect of rTMS on motor cortical excitability.  相似文献   

12.
Reorganisation of cerebral representations has been hypothesised to underlie the recovery from ischaemic brain infarction. The mechanisms can be investigated non-invasively in the human brain using functional neuroimaging and transcranial magnetic stimulation (TMS). Functional neuroimaging showed that reorganisation is a dynamic process beginning after stroke manifestation. In the acute stage, the mismatch between a large perfusion deficit and a smaller area with impaired water diffusion signifies the brain tissue that potentially enables recovery subsequent to early reperfusion as in thrombolysis. Single-pulse TMS showed that the integrity of the cortico-spinal tract system was critical for motor recovery within the first four weeks, irrespective of a concomitant affection of the somatosensory system. Follow-up studies over several months revealed that ischaemia results in atrophy of brain tissue adjacent to and of brain areas remote from the infarct lesion. In patients with hemiparetic stroke activation of premotor cortical areas in both cerebral hemispheres was found to underlie recovery of finger movements with the affected hand. Paired-pulse TMS showed regression of perilesional inhibition as well as intracortical disinhibition of the motor cortex contralateral to the infarction as mechanisms related to recovery. Training strategies can employ post-lesional brain plasticity resulting in enhanced perilesional activations and modulation of large-scale bihemispheric circuits.  相似文献   

13.
Partial sleep deprivation (PSD) has a profound and rapid effect on depressed mood. However, the transient antidepressant effect of PSD - most patients relapse after one night of recovery sleep - is limiting the clinical use of this method. Using a controlled, balanced parallel design we studied, whether repetitive transcranial magnetic stimulation (rTMS) applied in the morning after PSD is able to prevent this relapse. 20 PSD responders were randomly assigned to receive either active or sham stimulation during the following 4 days after PSD. Active stimulation prolonged significantly (p < 0.001) the antidepressant effect of PSD up to 4 days. This finding indicates that rTMS is an efficacious method to prevent relapse after PSD.  相似文献   

14.
15.
We assessed recruitment curves of the surface diaphragm motor-evoked potential (MEP) after transcranial magnetic stimulation during relaxation and at three different levels of facilitation (20, 40, and 60% of maximal inspiratory esophageal pressure) in 10 healthy subjects (six young and four elderly). MEP amplitude recruitment curves varied between individuals during relaxation and at each level of facilitation. Amplitude recruitment curves during relaxation were reproducible in individual subjects. Inspiratory maneuvers caused a decrease in motor threshold and latency and an increase in MEP amplitude, positively correlated to the intensity of facilitation. These changes were similar in young and elderly subjects. The best fit for MEP amplitude recruitment curves for each condition was obtained with a Boltzmann model. The performance of repeated submaximal inspiratory maneuvers did not affect the amplitude recruitment curves of the relaxed diaphragm. We conclude that the recruitment curve of the diaphragm with transcranial magnetic stimulation is repeatable and changes consistently with facilitation and will, therefore, be a robust experimental tool for the investigation of supraspinal pathways to the diaphragm.  相似文献   

16.
In acute experiment in rats, the chronic epileptogenesis was reproduced in the form of pharmacological kindling induced via repeated picrotoxin administrations (1.0-1.2 mg/kg, intraperitoneally). A reduction of exploratory behavior was shown in the early period of kindling (24 h as of the moment of the last epileptogen administration). The marked alleviation of these disturbances was registered in two weeks from the moment of cessation of kindled irritations. L-DOPA (100 mg/kg, intraperitoneally) and transcranial magnetic stimulation (20 impulses with an induction at the height of their development of 1.5 TI) was followed by the net increasing exploratory, sexual and eating behavior. This is in favour of regarding the activation of dopaminergic system as a mechanism of action of transcranial magnetic stimulation upon kindling-induced behavioral deterioration.  相似文献   

17.
18.
19.
Sir: For women diagnosed with Recurrent depressive disorder, pregnancy poses a major treatment challenge. Apart from antidepressants, the most commonly used biological therapeutical method is ECT (electroconvulsive therapy). We believe that similar efficacy can be achieved using rTMS as a safer option with substantially less side effects. So far, only a few case-reports reporting the use of rTMS for treatment of pregnant patients with depression were published.  相似文献   

20.

Background

Gamma (γ) oscillations (30–50 Hz) have been shown to be excessive in patients with schizophrenia (SCZ) during working memory (WM). WM is a cognitive process that involves the online maintenance and manipulation of information that is mediated largely by the dorsolateral prefrontal cortex (DLPFC). Repetitive transcranial magnetic stimulation (rTMS) represents a non-invasive method to stimulate the cortex that has been shown to enhance cognition and γ oscillatory activity during WM.

Methodology and Principal Findings

We examined the effect of 20 Hz rTMS over the DLPFC on γ oscillatory activity elicited during the N-back task in 24 patients with SCZ compared to 22 healthy subjects. Prior to rTMS, patients with SCZ elicited excessive γ oscillatory activity compared to healthy subjects across WM load. Active rTMS resulted in the reduction of frontal γ oscillatory activity in patients with SCZ, while potentiating activity in healthy subjects in the 3-back, the most difficult condition. Further, these effects on γ oscillatory activity were found to be specific to the frontal brain region and were absent in the parieto-occipital brain region.

Conclusions and Significance

We suggest that this opposing effect of rTMS on γ oscillatory activity in patients with SCZ versus healthy subjects may be related to homeostatic plasticity leading to differential effects of rTMS on γ oscillatory activity depending on baseline differences. These findings provide important insights into the neurophysiological mechanisms underlying WM deficits in SCZ and demonstrated that rTMS can modulate γ oscillatory activity that may be a possible avenue for cognitive potentiation in this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号