共查询到20条相似文献,搜索用时 0 毫秒
1.
Differentiation potential of primary myogenic cells derived from skeletal muscle of dystonia musculorum mice 总被引:2,自引:0,他引:2
Boudreau-Larivière C Kothary R 《Differentiation; research in biological diversity》2002,70(6):247-256
The dystonia musculorum (dt) mouse has a mutation in the gene encoding the cytoskeletal crosslinker protein bullous pemphigoid antigen 1 (Bpag1). These mice have perturbations in the cytoarchitecture of skeletal muscle. Bpag1 has been hypothesized to be involved in the maintenance rather than the establishment of the muscle cell architecture given that cytoskeletal disruptions are observed in the muscle tissue of post-natal dt mice. Not known is whether Bpag1-deficiency affects the proliferative and differentiation potential of myogenic cells. In the present investigation, we show that the growth rate of cultured primary myogenic cells derived from dt mice, as assessed by BrdU incorporation, is similar to that of myogenic cells derived from wild-type littermates. The myogenic differentiation potential of dt versus wild-type cells was monitored by examining the expression of myosin heavy chain by immunofluorescence, and by analyzing the expression profiles of myogenic regulatory factors and myogenic differentiation markers by RT-PCR. In all instances, both dt and wild-type myogenic cells displayed a similar differentiation profile. Furthermore, the absence of any observable differences in the proliferation and differentiation rates of dt and wild-type cells was not due to an overexpression of plectin, another crosslinker protein, in dt cells. Together, these findings demonstrate that the early phases of myogenic differentiation occur independently of Bpag1. 相似文献
2.
Growth and differentiation potential of main- and side-population cells derived from murine skeletal muscle 总被引:9,自引:0,他引:9
Tamaki T Akatsuka A Okada Y Matsuzaki Y Okano H Kimura M 《Experimental cell research》2003,291(1):83-90
Skeletal muscle-derived CD34+/45- (Sk-34) cells were identified as a new candidate for stem cells. However, the relationship between Sk-34 cells and side-population (SP) cells is unknown. Here, we demonstrate that Sk-34 cells prepared from murine skeletal muscles consist wholly of main-population (MP) cells. The Sk-34 cells included only a few SP cells (1:1000, SP:MP). Colony-forming units of Sk-34 cells of both SP and MP possessed the same potential to differentiate into adipocytes, endothelial, and myogenic cells and showed the same colony-forming activity (1.6%). In addition, the colony-forming units of the CD34-/45- (double negative: DN) population were found to begin CD34 expression and to possess the potential to differentiate into myogenic and endothelial cells. We also found that expression of CD34 antigen precedes MyoD expression during the myogenic process of DN cells. Furthermore, both Sk-34 and DN cell populations were mostly negative for CD73 (93-95%), whereas the CD45+ cell population was >25% positive for CD73, and this trend was also seen in bone marrow-derived CD45+ cells. These results indicate that the MP cell population is about 99.9% responsible for the reported in vitro myogenic-endothelial responses of skeletal muscle-derived cells. 相似文献
3.
4.
5.
Haghighipour N Heidarian S Shokrgozar MA Amirizadeh N 《Cell biology international》2012,36(7):669-675
Both fetal and adult skeletal muscle cells are continually being subjected to biomechanical forces. Biomechanical stimulation during cell growth affects proliferation, differentiation and maturation of skeletal muscle cells. Bone marrow-derived hMSCs [human MSCs (mesenchymal stem cells)] can differentiate into a variety of cell types, including skeletal muscle cells that are potentially a source for muscle regeneration. Our investigations involved a 10% cyclic uniaxial strain at 1 Hz being applied to hMSCs grown on collagen-coated silicon membranes with or without IGF-I (insulin-like growth factor-I) for 24 h. Results obtained from morphological studies confirmed the rearrangement of cells after loading. Comparison of MyoD and MyoG mRNA levels between test groups showed that mechanical loading alone can initiate myogenic differentiation. Furthermore, comparison of Myf5, MyoD, MyoG and Myf6 mRNA levels between test groups showed that a combination of mechanical loading and growth factor results in the highest expression of myogenic genes. These results indicate that cyclic strain may be useful in myogenic differentiation of stem cells, and can accelerate the differentiation of hMSCs into MSCs in the presence of growth factor. 相似文献
6.
目的:探讨成肌调节因子(MyoD)在肌肉损伤修复过程中的动态表达,为促进运动肌肉损伤的再生修复提供实验依据。方法:将健康雄性2月龄SD大鼠80只,随机分为对照组(n=10)和下坡运动组(n=70),下坡运动组再分为运动后即刻组、12h、24h、48h、72h、7d和14d组,各运动组动物均进行持续性下坡跑,分别在运动结束后8个时间点麻醉,下腔静脉取血,分离血清,取双侧腓肠肌。常规检测CK、LDH的活性。采用免疫组织化学染色法以及计算机图像分析技术定量统计MyoD因子表达情况。结果:血清CK、LDH在运动后即刻显著上升,后逐渐下降至正常水平。成肌调节因子MyoD在正常骨骼肌中即有表达,各运动组大鼠腓肠肌MyoD因子表达较对照组均有增加,48h组大鼠腓肠肌MyoD免疫阳性细胞核数明显多于对照组(P0.05),后随时间逐渐下降。结论:离心运动后即刻MyoD的表达水平开始上升,48h达到峰值,随后逐渐下降至正常水平。提示成年早期大鼠(2月龄)已具备较成熟的肌肉再生修复能力。 相似文献
7.
8.
9.
Cartilage tissue differentiation from mesenchymal cells derived from mature muscle in tissue culture 总被引:2,自引:0,他引:2
Marshall R. Urist Yoji Terashima M. Nakagawa Charles Stamos 《In vitro cellular & developmental biology. Plant》1978,14(8):697-706
Summary Under the influence of biochemical components of bone matrix gelatin (BMG), cartilage differentiates in tissue culture from the connective tissue cell outgrowths of mature muscle. Proliferation and differentiation begin within 24 hr with synthesis of hyaluronate, continue with high levels of synthesis of DNA and hyaluronidase, and culminate in production of large quantities of chondroitin sulfate. The addition of hyaluronic acid to the culture medium during the first 48 hr of culture depresses, whereas chondroitin sulfate enhances, subsequent production of cartilage. These observations on the cell biosynthetic products prior to the appearance of mature cartilage suggest that the BMG-modified connective tissue outgrowths of mature muscle exhibit the developmental potential of embryonic axial mesenchyme. Whether muscle harbors embryonic cells in a programmed but not yet activated readiness (protodifferentiated state) to differentiate into cartilage, or simply contributes a population of temporarily dedifferentiated fibroblasts, is not known, but in any event, BMG switches the pathway of further development from fibrous connective tissue to cartilage. These investigations were supported by grants-in-aid from the USPHS, National Institute of Dental Research (DE-2103-01). Drs. Terashima and Nakagawa received a research fellowship from the Solo Cup Corporation. Charles Stamos was a Eugene and Marion Bailey Summer Student Research Fellow. 相似文献
10.
Eleonora Cianflone Iolanda Aquila Mariangela Scalise Pina Marotta Michele Torella Bernardo Nadal-Ginard 《Cell cycle (Georgetown, Tex.)》2018,17(8):927-946
Ischemic Heart Disease (IHD) remains the developed world’s number one killer. The improved survival from Acute Myocardial Infarction (AMI) and the progressive aging of western population brought to an increased incidence of chronic Heart Failure (HF), which assumed epidemic proportions nowadays. Except for heart transplantation, all treatments for HF should be considered palliative because none of the current therapies can reverse myocardial degeneration responsible for HF syndrome. To stop the HF epidemic will ultimately require protocols to reduce the progressive cardiomyocyte (CM) loss and to foster their regeneration. It is now generally accepted that mammalian CMs renew throughout life. However, this endogenous regenerative reservoir is insufficient to repair the extensive damage produced by AMI/IHD while the source and degree of CM turnover remains strongly disputed. Independent groups have convincingly shown that the adult myocardium harbors bona-fide tissue specific cardiac stem cells (CSCs). Unfortunately, recent reports have challenged the identity and the endogenous myogenic capacity of the c-kit expressing CSCs. This has hampered progress and unless this conflict is settled, clinical tests of repair/regenerative protocols are unlikely to provide convincing answers about their clinical potential. Here we review recent data that have eventually clarified the specific phenotypic identity of true multipotent CSCs. These cells when coaxed by embryonic cardiac morphogens undergo a precisely orchestrated myogenic commitment process robustly generating bona-fide functional cardiomyocytes. These data should set the path for the revival of further investigation untangling the regenerative biology of adult CSCs to harness their potential for HF prevention and treatment. 相似文献
11.
Signals from damaged but not undamaged skeletal muscle induce myogenic differentiation of rat bone-marrow-derived mesenchymal stem cells 总被引:9,自引:0,他引:9
The regenerative capacity of skeletal muscle has been usually attributed to resident satellite cells, which, upon activation by local or distant stimuli, initiate a myogenic differentiation program. Although recent studies have revealed that bone-marrow-derived progenitor cells may also participate in regenerative myogenesis, the signals and mechanisms involved in this process have not been elucidated. This study was designed to investigate whether signals from injured rat skeletal muscle were competent to induce a program of myogenic differentiation in expanded cultures of rat bone-marrow-derived mesenchymal stem cells (MSC). We observed that the incubation of MSC with a conditioned medium prepared from chemically damaged but not undamaged muscle resulted in a time-dependent change from fibroblast-like into elongated multinucleated cells, a transient increase in the number of MyoD positive cells, and the subsequent onset of myogenin, alpha-actinin, and myosin heavy chain expression. These results show that damaged rat skeletal muscle is endowed with the capacity to induce myogenic differentiation of bone-marrow-derived mesenchymal progenitors. 相似文献
12.
Bayati V Sadeghi Y Shokrgozar MA Haghighipour N Azadmanesh K Amanzadeh A Azari S 《Tissue & cell》2011,43(6):359-366
It has been revealed that skeletal muscle cells have the potential to generate, sense and respond to biomechanical signals and that, mechanical force is one of the important factors influencing proliferation, differentiation, regeneration and homeostasis of skeletal muscle cells and myoblasts. The aim of this study was to illustrate the effect of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells (ASCs). This study was designed to investigate this effect within 3 days in 4 groups: control (untreated), chemical, chemical-mechanical and mechanical based on exposure of ASCs to chemical growth factors for 3 days or to mechanical strain just on the 2nd day. Finally, cell orientation, muscle-related gene expression, myosin protein synthesis and the number of myosin-positive cells were examined to estimate the rate of differentiation. By studying the cells before and after exposure to uniaxial strain, it could be observed that by exerting the load, the cells were organized almost perpendicularly to strain direction. Real-time RT-PCR demonstrated that uniaxial strain had a significant effect on up-regulation of muscle-related genes in chemical–mechanical group (P < 0.001) as compared to mechanical or chemical groups. Immunocytochemistry confirmed the myosin-positive cells in treated groups and the numbers of these cells were enumerated by flow cytometry. These data suggest that uniaxial cyclic strain could affect ASCs and cause their myogenic differentiation and that the combination of chemical myogenic differentiation factors with mechanical signals promotes differentiation much more than differentiation by chemical myogenic differentiation factors or mechanical signals alone. 相似文献
13.
Fengyun Wen Jin Zheng Jing Yu Mingju Gao Sumin Gao Yingying Zhou 《Bioscience, biotechnology, and biochemistry》2016,80(7):1313-1320
Obesity is documented to be a state of chronic mild inflammation associated with increased macrophage infiltration into adipose tissue and liver and skeletal muscle. As a pleiotropic inflammatory mediator, macrophage migration inhibitory factor (MIF) is associated with metabolic disease, so MIF may signal molecular links between adipocytes and myocytes. MIF expression was modified during myoblast differentiation, but the role of MIF during this process is unclear. C2C12 cells were transfected with MIF to investigate their role during differentiation. MIF expression attenuated C2C12 differentiation. It did not change proliferation, but downregulated cyclin D1 and CDK4, causing cell accumulation in the G1 phase. p21 protein was increased significantly and MyoD, MyoG, and p21 mRNA also increased significantly in the C2C12 cells treated with ISO-1, suggesting that inhibition of MIF promotes differentiation. MIF inhibits the myoblast differentiation by affecting the cell cycle progression, but does not affect proliferation. 相似文献
14.
Joseph C. Bullaro 《In vitro cellular & developmental biology. Plant》1981,17(10):839-846
Summary A procedure is described that compares the isotope dilution method of measuring picomolar amounts of amino acids obtained from cellular extracts with a direct method of analysis. Evidence is provided that shows that the direct method is at least as accurate as the isotope dilution method. In addition the direct method is as expedient and requires but a single isotope and fewer chromatograms for analysis. A procedure also is described for selecting the appropriate conditions for dansylation and for measuring the loss of dansyl amino acid due to decomposition. This research was funded through a grant from the Muscular Dystrophy Association of Canada. 相似文献
15.
16.
Bigot A Jacquemin V Debacq-Chainiaux F Butler-Browne GS Toussaint O Furling D Mouly V 《Biology of the cell / under the auspices of the European Cell Biology Organization》2008,100(3):189-199
Background information. Aging of human skeletal muscle results in a decline in muscle mass and force, and excessive turnover of muscle fibres, such as in muscular dystrophies, further increases this decline. Although it has been shown in rodents, by cross‐age transplantation of whole muscles, that the environment plays an important role in this process, the implication of proliferating aging of the muscle progenitors has been poorly investigated, particularly in humans, since the regulation of cell proliferation differs between rodents and humans. The myogenic differentiation of human myoblasts is regulated by the muscle‐specific regulatory factors. Cross‐talk between the muscle‐specific regulatory factors and the cell cycle regulators is essential for differentiation. The aim of the present study was to determine the effects of replicative senescence on the myogenic programme of human myoblasts. Results. We showed that senescent myoblasts, which could not re‐enter the cell cycle, are still able to differentiate and form multinucleated myotubes. However, these myotubes are significantly smaller. The expression of muscle‐specific regulatory factors and cell cycle regulators was analysed in proliferating myoblasts and compared with senescent cells. We have observed a delay and a decrease in the muscle‐specific regulatory factors and the cyclin‐dependent kinase inhibitor p57 during the early step of differentiation in senescent myoblasts, as well as an increase in the fibroblastic markers. Conclusions. Our results demonstrate that replicative senescence alters the expression of the factors triggering muscle differentiation in human myoblasts and could play a role in the regenerative defects observed in muscular diseases and during normal skeletal‐muscle aging. 相似文献
17.
Target gene selectivity of the myogenic basic helix-loop-helix transcription factor myogenin in embryonic muscle 总被引:1,自引:0,他引:1
The myogenic regulatory factors MyoD and myogenin are crucial for skeletal muscle development. Despite their importance, the mechanisms by which these factors selectively regulate different target genes are unclear. The purpose of the present investigation was to compare embryonic skeletal muscle from myogenin+/+ and myogenin−/− mice to identify genes whose expression was dependent on the presence of myogenin but not MyoD and to determine whether myogenin-binding sites could be found within regulatory regions of myogenin-dependent genes independent of MyoD. We identified a set of 140 muscle-expressed genes whose expression in embryonic tongue muscle of myogenin−/− mice was downregulated in the absence of myogenin, but in the presence of MyoD. Myogenin bound within conserved regulatory regions of several of the downregulated genes, but MyoD bound only to a subset of these same regions, suggesting that many downregulated genes were selective targets of myogenin. The regulatory regions activated gene expression in cultured myoblasts and fibroblasts overexpressing myogenin or MyoD, indicating that expression from exogenously introduced DNA could not recapitulate the selectivity for myogenin observed in vivo. The results identify new target genes for myogenin and show that myogenin's target gene selectivity is not based solely on binding site sequences. 相似文献
18.
Hiroshi Yajima Yusuke Ono Keiko Ikeda Erica Yada Yuko Miyagoe-Suzuki Kiyoshi Kawakami 《Experimental cell research》2010,316(17):2932-2944
Muscle satellite cells are essential for muscle growth and regeneration and their morphology, behavior and gene expression have been extensively studied. However, the mechanisms involved in their proliferation and differentiation remain elusive. Six1 and Six4 proteins were expressed in the nuclei of myofibers of adult mice and the numbers of myoblasts positive for Six1 and Six4 increased during regeneration of skeletal muscles. Six1 and Six4 were expressed in quiescent, activated and differentiated muscle satellite cells isolated from adult skeletal muscle. Overexpression of Six4 and Six5 repressed the proliferation and differentiation of satellite cells. Conversely, knockdown of Six5 resulted in augmented proliferation, and that of Six4 inhibited differentiation. Muscle satellite cells isolated from Six4+/−Six5−/− mice proliferated to higher cell density though their differentiation was not altered. Meanwhile, overproduction of Six1 repressed proliferation and promoted differentiation of satellite cells. In addition, Six4 and Six5 repressed, while Six1 activated myogenin expression, suggesting that the differential regulation of myogenin expression is responsible for the differential effects of Six genes. The results indicated the involvement of Six genes in the behavior of satellite cells and identified Six genes as potential target for manipulation of proliferation and differentiation of muscle satellite cells for therapeutic applications. 相似文献
19.
Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers 总被引:15,自引:0,他引:15
Zammit PS Heslop L Hudon V Rosenblatt JD Tajbakhsh S Buckingham ME Beauchamp JR Partridge TA 《Experimental cell research》2002,281(1):39-49
The satellite cell compartment provides skeletal muscle with a remarkable capacity for regeneration. Here, we have used isolated myofibers to investigate the activation and proliferative potential of satellite cells. We have previously shown that satellite cells are heterogeneous: the majority express Myf5 and M-cadherin protein, presumably reflecting commitment to myogenesis, while a minority is negative for both. Although MyoD is rarely detected in quiescent satellite cells, over 98% of satellite cells contain MyoD within 24 h of stimulation. Significantly, MyoD is only observed in cells that are already expressing Myf5. In contrast, a minority population does not activate by the criteria of Myf5 or MyoD expression. Following the synchronous activation of the myogenic regulatory factor+ve satellite cells, their daughter myoblasts proliferate with a doubling time of approximately 17 h, irrespective of the fiber type (type I, IIa, or IIb) from which they originate. Although fast myofibers have fewer associated satellite cells than slow, and accordingly produce fewer myoblasts, each myofiber phenotype is associated with a complement of satellite cells that has sufficient proliferative potential to fully regenerate the parent myofiber within 4 days. This time course is similar to that observed in vivo following acute injury and indicates that cells other than satellite cells are not required for complete myofiber regeneration. 相似文献
20.
Justus P. Beier Franz F. Bitto Claudia Lange Dorothee Klumpp Andreas Arkudas Oliver Bleiziffer Anja M. Boos Raymund E. Horch Ulrich Kneser 《Cell biology international》2011,35(4):397-406
TE (tissue engineering) of skeletal muscle is a promising method to reconstruct loss of muscle tissue. This study evaluates MSCs (mesenchymal stem cells) as new cell source for this application. As a new approach to differentiate the MSCs towards the myogenic lineage, co‐cultivation with primary myoblasts has been developed and the myogenic potential of GFP (green fluorescent protein)‐transduced rat MSC co‐cultured with primary rat myoblasts was assessed by ICC (immunocytochemistry). Myogenic potential of MSC was analysed by ICC, FACS and qPCR (quantitative PCR). MSC—myoblast fusion phenomena leading to hybrid myotubes were evaluated using a novel method to evaluate myotube fusion ratios based on phase contrast and fluorescence microscopy. Furthermore, MSC constitutively expressed the myogenic markers MEF2 (myogenic enhancer factor 2) and α‐sarcomeric actin, and MEF2 expression was up‐regulated upon co‐cultivation with primary myoblasts and the addition of myogenic medium supplements. Significantly higher numbers of MSC nuclei were involved in myotube formations when bFGF (basic fibroblast growth factor) and dexamethasone were added to co‐cultures. In summary, we have determined optimal co‐culture conditions for MSC myogenic differentiation up to myotube formations as a promising step towards applicability of MSC as a cell source for skeletal muscle TE as well as other muscle cell‐based therapies. 相似文献